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Abstract: Calcific aortic valve disease (CAVD) and coronary artery disease (CAD) are related cardio-
vascular diseases in which common mechanisms lead to tissue calcification. Oxidative stress plays a
key role in these diseases and there is also evidence that the redox state of serum albumin exerts a
significant influence on these conditions. To further explore this issue, we used multimarker scores
(OxyScore and AntioxyScore) to assess the global oxidative status in patients with CAVD, with and
without CAD, also evaluating their plasma thiol levels. In addition, valvular interstitial cells were
treated with reduced, oxidized, and native albumin to study how this protein and its modifications
affect cell calcification. The differences we found suggest that oxidative status is distinct in CAVD
and CAD, with differences in redox markers and thiol levels. Importantly, the in vitro interstitial
cell model revealed that modified albumin affects cell calcification, accelerating this process. Hence,
we show here the importance of the redox system in the development of CAVD, emphasizing the
relevance of multimarker scores, while also offering evidence of how the redox state of albumin
influences vascular calcification. These data highlight the relevance of understanding the overall
redox processes involved in these diseases, opening the door to new studies on antioxidants as
potential therapies for these patients.

Antioxidants 2024, 13, 108. https://doi.org/10.3390/antiox13010108 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox13010108
https://doi.org/10.3390/antiox13010108
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-2399-2773
https://orcid.org/0000-0002-5020-949X
https://orcid.org/0000-0002-1402-0526
https://orcid.org/0000-0003-0341-0956
https://orcid.org/0000-0003-3728-2606
https://orcid.org/0000-0003-3482-0915
https://orcid.org/0000-0003-4290-4721
https://doi.org/10.3390/antiox13010108
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox13010108?type=check_update&version=1


Antioxidants 2024, 13, 108 2 of 16

Keywords: aortic stenosis; interstitial cells; calcification; artery; aortic valve; oxidative stress;
multimarker score

1. Introduction

Calcific aortic valve disease (CAVD), also known as aortic valve (AV) stenosis, and
coronary artery disease (CAD), are both progressive conditions with certain similarities,
including common clinical risk factors [1]. The initial stages of CAVD and CAD share
pathogenic mechanisms, including the endothelial dysfunction that favors inflammatory
cell infiltration and lipid deposition in the tissues [2–4]. However, as AVs and arteries
differ structurally and functionally, tissue stiffness has distinct consequences, and the most
severe clinical manifestations in these structures have different causes. Indeed, the clinical
manifestations in CAVD are due to obstructed blood flow, while in CAD, plaque stability is
critical to avoid the release of prothrombotic agents [5,6].

Oxidative stress, which refers to an imbalance between antioxidant defenses and the
production of reactive oxygen species (ROS), plays an important role in the calcification of
vascular tissues, including AVs and arteries [7–10]. It is known that there are important
differences between ROS production and the activity of certain enzymes in CAVD and
CAD [11,12]. Moreover, when CAD is a comorbidity in CAVD patients, it is associated
with alterations to the redox proteome, implying differences in their oxidative statuses [13].
Unfortunately, oxidative stress is not easy to assess due to its complex and multifactorial
nature. Measuring individual biomarkers only partially defines the oxidative state, such
that they may give rise to erroneous conclusions [14,15]. Hence, no single parameter can be
recommended as a gold standard to determine an individual’s redox status. By contrast,
global scores of oxidative status can be used that not only include markers of oxidative
damage but also biomarkers of antioxidant defenses, offering a more complete overview
of oxidative status [16]. Antioxidant capacity can be assessed by chemical-based assays
that analyze free radical scavenging activity, such as 2,2′-azinobis (3-ethylbenzothiazoline-
6-sulfonic acid) (ABTS), 2,2-Diphenyl-1-picrylhydrazylradical (DPPH) or Ferric Reducing
Antioxidant Power (FRAP) assays [17–19]. Other methods, such as the measurement
of the activity of low-molecular-weight antioxidants or antioxidants enzymes, are also
usually used, especially in biological samples. This approach, combining individual plasma
biomarkers of oxidative damage and antioxidant capacity to assess the overall oxidative
balance, has been used successfully in several studies on different cardiovascular diseases
(CVD) [14,20–23].

Considerable attention has been afforded to one potential biomarker of oxidative
stress, the redox state of human serum albumin (HSA), a protein that is the most abundant
source of thiol groups in human plasma [24]. Several studies have shown that the redox
state of HSA is associated with a variety of health conditions, including CVD and type
2 Diabetes Mellitus (T2DM) [25,26]. Classically, the antioxidant activity of HSA has been
attributed to the presence of the free sulfhydryl group of cysteine at position 34 (Cys34) [27].
Nevertheless, S-thiolation has also been described at different disulfide bonds of HSA [28].
Moreover, we recently found two new sites of oxidation and highlighted the implication
of oxidized HSA for the development of CAVD in patients with CAD, maybe due to the
transport of low-molecular-weight thiols inside the AV tissue [13]. Interestingly, endothelial
cells cultured with oxidized albumin exhibit an increase in the markers of endothelial
damage, as well as enhanced expression of inflammatory cytokines that is also related to
vascular calcification [29]. However, the effects of oxidized albumin on valvular interstitial
cells (VICs), the major cell population in heart valves, has not yet been studied.

Despite the known association between CAVD and CAD, the effects of the presence of
CAD in CAVD patients in terms of global oxidative status have not been described. Here
we measured different markers of oxidative damage and antioxidant defense, including
the thiol levels in the plasma of patients, to gain a deeper understanding of the implication
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of HSA in these conditions. In addition, we also studied the effects of oxidized, reduced
and native HSA on VICs in vitro, demonstrating its importance in the calcification process
(Figure 1). The use of in vitro models is currently a cost-effective way to develop new
pharmacological treatments. Moreover, understanding the global redox state associated
with CAVD and CAD is key to taking a step forward towards precision personalized
medicine, facilitating the prescription of adequate therapies to these patients.
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Figure 1. Workflow of the study. (A) Different markers of oxidative damage and antioxidant
defense, including thiol levels, were measured in plasma samples from patients with CAVD, with and
without CAD. (B) Human VICs were treated with oxidized, reduced, and native HSA. Subsequently,
calcification of these cells was assessed by using Alizarin Red staining. Microscope images size is
665.6 µm × 665.6 µm.

2. Materials and Methods
2.1. Patient Selection

In this cross-sectional study, peripheral blood samples from 4 groups of subjects were
collected: (i) controls without CAVD or CAD (C, n = 19); (ii) subjects with CAD alone (CAD,
n = 16); (iii) patients with CAVD alone (CAVD, n = 20); and (iv) patients with both CAVD
and CAD (CAVD + CAD, n = 20). All the patients were recruited from the Hospital General
Universitario de Toledo (Spain).

Patients with any severe morbidity (e.g., ischemic heart disease with ventricular
dysfunction or end-stage chronic kidney disease—CKD), any type of DM, bicuspid AV, a
family or personal history of aortopathy, rheumatic valve disease or moderate or severe
mitral valve disease were excluded from the study. Significant differences in terms of
cardiovascular risk factors (gender, obesity, hypertension, and dyslipidemia) were avoided.
The blood samples were collected in tubes containing EDTA and centrifuged for 10 min at
1125× g, and the resulting supernatant was immediately frozen at −80 ◦C until analysis.
Collection, processing and storage were constant among the samples to avoid differences
due to experimental handling.

This study was carried out in accordance with the guidelines of the Helsinki Declara-
tion and the study design was approved by the local ethics committee. Signed informed
consent was obtained from all individuals prior to their inclusion in the study.

2.2. Biomarkers of Oxidative Damage

Oxidative damage to proteins, lipids and DNA was evaluated by measuring protein car-
bonyls, oxidized low-density lipoprotein (oxLDL) and 8-hydroxy-20-deoxyguanosine (8-OHdG)
levels. Protein carbonyl groups were measured using 2,4-dinitrophenylhydrazine in a protocol



Antioxidants 2024, 13, 108 4 of 16

adapted to a microplate reader [30], and they were expressed as nmol/mg of total protein.
OxLDL and 8-OHdG were assayed using commercial enzyme-linked immunosorbent assay
(ELISA) kits (Mercodia AB, Uppsala, Sweden, and Stress-MarqBiosciences Inc., Victoria, BC,
Canada, respectively), following the manufacturer’s instructions. Pro-oxidant xanthine oxidase
(XOD) activity was determined with the Amplex Red assay (Invitrogen, Carlsbad, CA, USA)
and expressed as mU/mg of total protein.

2.3. Biomarkers of Antioxidant Defense

Catalase and superoxide dismutase (SOD) activity was assessed as markers of enzy-
matic antioxidant activity. Plasma catalase activity was measured using the Amplex Red
assay (Invitrogen) and expressed as U/mg of total protein. SOD activity was estimated
using a colorimetric assay (Invitrogen, Carlsbad, CA, USA) and expressed as mU/mg
of total protein. The overall activity of low-molecular-weight antioxidants or the total
antioxidant capacity (TAC) was determined using an enhanced horseradish–peroxidase
catalyzed-based luminol chemiluminescence assay adapted to a microplate reader [31].
Luminescence inhibition by the addition of plasma was used to calculate the area under
the curve (AUC).

2.4. Serum Free Thiol Levels

Plasma thiol compounds were assayed using a SensoLyte® Thiol Quantitation Assay
Kit (AnaSpec, Fremont, CA, USA) according to the manufacturer’s instructions. This assay
is based on the reaction of the sulfhydryl group of thiols with Ellman’s Reagent, generating
2-nitro-5-thiobenzoic acid (TNB) that in turn produces a yellow color that can be detected
at 420 nm absorbance. The intensity of the color produced is proportional to the thiol
concentration and it is expressed as µM thiol.

2.5. OxyScore and AntioxyScore

Multimarker scores of oxidative damage were computed as described previously [14,32–34].
Briefly, markers of oxidative damage or antioxidant defenses were standardized for each subject,
using healthy subjects as a reference. The sum of the standardized values for protein carbonyls,
oxLDL, 8-OHdG, and XOD activity was used to calculate the score of oxidative damage (OxyScore),
whereas the sum of the standardized values of catalase and SOD activity and that of the TAC
were used to calculate the score of global antioxidant defense (AntioxyScore).

2.6. Valvular Interstitial Cell Culture

Human cardiac VICs (Innoprot, Derio, Spain, P10462) were used in this study. These
cells were isolated from heart valves and cryopreserved at passage one, after which they are
guaranteed to expand further by 10 population doublings under the conditions indicated
in the data sheet. VICs were cultured in Fibroblast Medium-2 (FM-2: Innoprot, Derio,
Spain), designed for the optimal growth of normal human cardiac fibroblasts in vitro,
a medium that contains essential and non-essential amino acids, vitamins, organic and
inorganic compounds, hormones, growth factors, trace minerals, and a low concentration
of fetal bovine serum (FBS, 5%). In these experiments, the cells were cultured for 7 days
in two different media: (i) a special medium for fibroblasts (FIBm) that favors a quiescent
phenotype (Hyclone Dulbecco’s Modified Eagle Medium (DMEM)), supplemented with
2% heat-inactivated FBS, 150 U/mL penicillin/streptomycin, 2 mM L-glutamine, 10 ng/mL
fibroblast growth factor (FGF-2) and 50 ng/mL insulin and (ii) osteogenic medium (OSTm),
to induce osteogenic differentiation of the HAVICs (FIBm supplemented with 50 µg/mL
ascorbic acid, 10 mM β-glycerophosphate and 100 nM dexamethasone) [35,36]. As we
observed differences in calcification after 24 h of culture (Figure S1), different concentrations
of HSA were added to both these media and treatment was maintained during that period of
time: either native HSA, OxHSA or RedHSA at a final concentration of 0.5, 1 and 2 mg/mL.
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2.7. Preparation of Modified HSA

Oxidized HSA (OxHSA) was prepared following the protocol described previously,
with minor modifications [37]. Briefly, HSA (Sigma Aldrich, St. Louis, MO, USA, Ref.
A9731-5G) was diluted to 0.01 mM and incubated with CuSO4 (15 µmol/L) for 24 h at 37 ◦C
before adding 0.15 mmol/L EDTA to prevent further oxidation. OxHSA was concentrated
using regenerated cellulose membrane columns with a cutoff of 10 kDa, and the protein
concentration was determined using a NanoDrop (Thermo Scientific, Waltham, MA, USA).
The level of protein oxidation was determined with the OxyBlot Protein Oxidation Detection
Kit, according to manufacturer’s specifications (Sigma Aldrich, St. Louis, MO, USA, Ref.
S7150). Briefly, the OxyBlot kit derivatizes carbonyl groups to a 2,4-dinitrophenylhydrazone
(DNP) moiety, which can then be detected with anti-DNP antibodies.

Albumin reduction was achieved as described previously, with minor modifica-
tions [29]. Diluted HSA (0.01 mM) was incubated with a 0.5 mM DTT solution for
1.5 h at 37 ◦C. At the end of the incubation, DTT was removed using regenerated cellulose
membrane columns with a 10 kDa cutoff and the protein concentration was determined
using a NanoDrop. To analyze protein reduction, reduced HSA (RedHSA) was labeled
with SulfoBiotics PEG-PCMal (Dojindo Molecular Technologies Inc., Rockville, MD, USA,
Ref. SB20-01), a 5 kDa Protein-SHifter, in accordance with the manufacturer’s instructions.
Subsequently, RedHSA was analyzed by immunodetection as described previously [13].

2.8. Alizarin Red Staining

The cells were washed with PBS, fixed with 4% paraformaldehyde for 15 min, and
then incubated for 10 min with Alizarin Red S (Sigma Aldrich, St. Louis, MO, USA) [38].
After washing with deionized water, calcium deposition was visualized under an Olympus
IX83 inverted microscope, capturing 49 images per well, which were analyzed with ScanR
software (v3.4.1., Olympus, Tokyo, Japan). Each of these experiments were performed in
triplicate.

2.9. Statistical Analysis

Statistical analyses were performed using GraphPad Prism software (v.8.0.2., Graph-
Pad Software Inc., San Diego, CA, USA) and SPSS software for Windows (v..15.0., SPSS
Inc., Chicago, IL, USA). First, normality was assessed with the Kolmogorov–Smirnov test,
and consequently, normally distributed variables were analyzed by parametric tests and
those distributed non-normally were analyzed with non-parametric tests. Differences be-
tween the groups for the clinical parameters with discrete variables were calculated using
a chi-squared test, while continuous variables such as oxidative markers were calculated
by one-way ANOVA with a Bonferroni’s post hoc analysis for the four-group compar-
isons and adjusted for age and dyslipidemia. The descriptive data were presented as the
mean ± standard deviation (SD) or as percentages.

3. Results

In this work, we initially analyzed clinical samples to determine the global oxidative
statuses of four groups of subjects: controls without CAVD or CAD, subjects with CAD
alone, patients with CAVD alone, or patients with both CAVD and CAD. We assessed mark-
ers of oxidative damage and of antioxidant defenses, as well as evaluating any reduction in
thiol levels. In addition, we used an in vitro model to study the direct effect of the HSA
redox state on the calcification of VICs.

3.1. Characteristics of the Study Population

The clinical characteristics of the study groups were compared (Table 1) and there
were no significant differences between the groups in terms of the main cardiovascular risk
factors, with the exception of the lower mean age of the controls when compared with the
other groups. As dyslipidemia was almost significant, results are adjusted for these two
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factors: age and presence of dyslipidemia. Patients with DM were excluded from the study
in order to minimize the presence of confounding factors.

Table 1. Clinical characteristics of the subjects studied: C, control without calcific aortic valve disease
or coronary artery disease; CAD, control with coronary artery disease; CAVD, calcific aortic valve
disease without coronary artery disease; CAD, calcific aortic valve disease with coronary artery
disease. Abbreviations: M/F, male/female; AHT, Arterial Hypertension; p, p-value.

Clinical
Characteristics

C
(n = 19)

CAD
(n = 17)

CAVD
(n = 20)

CAVD + CAD
(n = 20) p

Age 65.4 ± 8.5 80.81 ± 9.2 80.70 ± 6.1 76.2 ± 7.8 0.000
Gender (M/F) 10/9 9/7 11/9 14/6 0.684

%AHT 47 62 80 55 0.183
%Dyslipidemia 26 62 45 65 0.064

%Diabetes 0 0 0 0 1.000
%Smokers 15 0 0 10 0.140

3.2. Markers of Oxidative Damage and of Antioxidant Defenses

Oxidative damage to DNA was measured using the 8-OHdG levels, and it was
significantly higher in patients with CAVD and CAD (63.34 ± 16.09 ng/mL) than in
the controls (41.84 ± 7.07 ng/mL, adjusted p-value = 0.00) or patients with CAD alone
(34.56 ± 12.41 ng/mL, adjusted p-value = 0.00: Figure 2A). There were also differences in
this parameter between controls and patients with CAVD alone (adjusted
p-value = 0.012: Figure 2A). Stronger pro-oxidant XOD enzymatic activity was detected in
both groups of patients with CAD, although the differences between these subjects with
and without CAVD were not significant (Figure 2A). In contrast, the protein carbonylation
and oxLDL levels did not vary significantly between the three groups (Figure 2A). Similarly,
catalase and SOD activity did not differ between the three groups of patients studied
(Figure 2B), and along similar lines, the luminescence in the TAC assay was also similar in
each group (Figure 2B). All mean values and the remaining statistical details are shown in
Supplementary Tables S1 and S2.
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Figure 2. Markers of oxidative status in plasma from the four groups of study. (A) Markers of oxida-
tive damage, including protein carbonyls, 8-hydroxy-2′-deoxyguanosine (8-OHdG) xanthine oxidase
(XOD) activity and oxidized LDL (oxLDL) (n = 15 subjects/each group). (B) Markers of antioxidants
defense, including total antioxidant capacity (TAC), superoxide dismutase (SOD) activity and catalase
(CAT) activity (n = 15 subjects/each group). (C) Free reduced thiols (n = 14 subjects/CAD group and
n = 17 subjects/C, CAVD and CAVD + CAD group). Data are represented as the mean ± SD. AUC,
Area under the curve; C, Controls; CAD, Coronary artery disease; CAVD, Calcific aortic valve disease.
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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3.3. Serum Thiol Levels

After measuring the thiols, we observed lower levels of reduced thiols in conjunction with
the pathologies (controls = 20.94 ± 4.08 µM; CAD = 18.93 ± 3.05 µM; CAVD = 14.98 ± 3.31 µM;
and CAVD + CAD = 15.63 ± 3.50 µM: Figure 2C). Significant differences existed between the
controls and the CAVD patients, both without and with CAD (adjusted p-value < 0.01 in both
cases), as well as between patients with CAD alone and patients with both pathologies (adjusted
p-value < 0.05, see Supplementary Table S2 for the remaining statistical details).

3.4. Global Oxidative Status

We found that the multimarker score of oxidative damage (OxyScore) was significantly
higher in patients with CAD and CAVD (2.54 ± 2.41) than in the control patients (−0.87 ± 1.85,
adjusted p-value = 0.001) or in patients with CAD alone (−2.15 ± 2.09, adjusted p-value = 0.000).
By contrast, there were no differences in the multimarker antioxidant defense scores (An-
tioxyScore) of the groups (Figure 3, see Supplementary Tables S1 and S2 for all the mean values
and the remaining statistical details).
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3.5. Cell Calcification on Exposure to HSA

Human VICs were cultured in the presence of different concentrations of HSA, in-
cluding basal, RedHSA and OxHSA. HSA modifications were confirmed by immunoblot
(Figure 4A). After 24 h in culture with FIBm or OSTm, differences in calcification were evi-
dent, and specifically, the calcification of cells cultured in FIBm augmented when exposed
to higher concentrations of OxHSA (Figure 4B,C: p-values < 0.005 in all cases). Surpris-
ingly, cells respond in a different manner to HSA when cultured in FIBm or OSTm. In
OSTm, the cells appeared to calcify more in the presence of high concentrations of RedHSA
(Figure 4B,D), with significant differences when compared to the cells maintained in OSTm
alone (p-values < 0.005 for the three concentrations, the mean values and the remaining
statistical details can be found in Supplementary Tables S3 and S4).
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Figure 4. Results from in vitro model. (A) Immunoblot of modified HSA. Reduced HSA (RedHSA)
was labeled with SulfoBiotics-PEG-PCMal, which produces a mobility shift corresponding to ap-
proximately 5 kDa for each molecule of PEG-PCMal bound to a free thiol group of the target protein.
Thus, after the blotting, several bands corresponding to RedHSA are observed (from 60 to 150 kDa),
while the lane of native HSA only shows one band. Oxidized HSA (OxHSA) was evaluated using
OxyBlot Protein Oxidation Detection Kit. This kit allows the immunodetection of carbonyl groups
through DNP-derivatization and subsequent detection of this DNP moiety with a specific primary
antibody. It can be observed that the bands corresponding to OxHSA are more intense than the
bands corresponding to native HSA. (B) Representative images of the Alizarin Red staining at a
concentration of 1 mg/mL of modified or native HSA after 24 h of treatment. Microscope images size
is 665.6 µm × 665.6 µm. (C) Calcification levels of cells cultured for 24 h in medium for fibroblast
(FIBm) when supplemented with different concentrations of modified or native HSA. (D) Calcification
levels of cells cultured for 24 h in osteogenic medium (OSTm) when supplemented with different
concentrations of modified or native HAS was measured using Alizarin red staining. All experiments
were performed in triplicate. * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

Oxidative stress represents an imbalance between the production of ROS and the
ability to detoxify reactive products and/or repair the resulting damage. The toxic effects
of oxidative stress caused by peroxide and free radical production produce damage in all
cell components, affecting proteins, lipids and DNA. Despite the importance of oxidative
stress in biology and medicine, it is a phenomenon that is still challenging to measure.
ROS are highly reactive, and consequently, they have short half-lives in biological envi-
ronments, making them difficult to measure directly. Indeed, even indirect estimates of
their abundance and reactivity are complicated. As such, a common method to assess
oxidative stress is to measure the macromolecules oxidized (lipids, proteins, and DNA)
and the antioxidants (enzymatic and non-enzymatic antioxidants) [39,40].

Oxidative stress is implicated in pathophysiological vascular calcification, and it plays
a significant role in the development and progression of CAVD and CAD, even being
able to predict cardiovascular events [41–46]. Given this association, we evaluated here
the global oxidative status associated with both these pathologies using the multimarker



Antioxidants 2024, 13, 108 9 of 16

parameters, OxyScore and AntioxyScore, as well as the plasma thiol levels. In addition, the
effect of the redox state of HSA on VICs in culture was also studied.

4.1. Oxidative Status

Higher levels of 8-OHdG were found in CAVD patients relative to the controls, which
indicates more severe oxidative damage to DNA. Higher levels of 8-OHdG were associated
with an unfavorable 30-day prognosis following AV replacement and better discrimination
of standard clinical models predicting the 30-day and 1-year risk of standardized end-
points [47,48]. Indeed, we found higher levels of 8-OHdG in patients with both CAVD
and CAD, consistent with the fact that CAD is a negative predictive indicator in patients
with CAVD [49–51]. It is important to highlight here that the differences between pa-
tients with and without CAD are not significant, although a clear tendency does exist.
Previous studies showed the importance of 8-OHdG in the atherosclerotic process, and
high levels of 8-OHdG have been found in fragments of aorta from patients with severe
atherosclerotic lesions. In addition, 8-OHdG levels have been correlated with the number
of vessels affected [52,53] and, in leukocyte mtDNA in diabetic patients, with coronary
stenosis severity [54]. An extended meta-analysis of 14 studies showed that the association
between 8-OHdG levels and CVD is largely independent of diabetes, hyperlipidemia, body
mass index and smoking habits. By contrast, the association between 8-OHdG levels and
CVD was stronger in younger subjects, and a higher prevalence of hypertension was asso-
ciated with smaller differences in 8-OHdG levels between CVD patients and controls [55].
This phenomenon might be explained by the reduced DNA turnover associated with
aging [56] and by the higher levels of 8-OHdG found in hypertensive subjects relative
to normotensive controls [57]. The use of ELISA kits for the measurement of 8-OHdG
should also be highlighted. Although the gold standard for 8-OHdG is high performance
liquid chromatography coupled with an electrochemical detector, immunological methods,
such as ELISA, are less costly and time consuming than chromatography. Furthermore,
ELISA kits are tools widely used in clinical practice as they are used in surveillance and
disease monitoring as well as diagnostic tools. The use of these methodologies at these
stages of the research is a step forward in looking for clinical application and facilitates
its implementation. It is important to note that the cohort of patients with severe CAVD
studied here has an average age above 75 years old. Moreover, hypertension is more
prevalent in patients with CAVD, such that we cannot rule out this comorbidity from the
study [58]. To overcome this issue, we avoided significant differences in hypertension
among the study groups. For those reasons, the differences we found in 8-OHdG levels
may be less pronounced than those described elsewhere.

Although we do not find more significant differences in markers of oxidative damage,
by focusing on XOD activity, a non-significant increase in ROS was evident in CAD patients
relative to non-CAD patients. This enzyme is implicated in ROS production [59], and it
is believed to promote inflammatory responses and atherosclerotic plaque formation [60],
consistent with the enhanced activity found in these patients.

Regarding antioxidant levels, it has been previously described that expression and
activity of antioxidant enzymes are reduced in calcified regions of stenotic AV when
compared with non-calcified regions. Additionally, although oxidative stress appears to
be increased in stenotic AV, the mechanisms that account for this oxidative stress differ
greatly from those observed in atherosclerotic arteries [11]. Supporting our data from
previous studies, our results showed no differences in individual markers of antioxidant
defense [14].

Importantly, we found fewer reduced thiol groups in patients with CAVD, groups
that offer protection against oxidative stress through ROS scavenging. In fact, low levels of
serum free thiols are associated with a higher risk of cardiovascular events [61]. Recently,
an analysis of four cohorts from different European countries observed associations of both
high derivatives of reactive oxygen metabolites levels and low total thiol levels with fatal
myocardial infarction and stroke, two atherosclerotic diseases [62]. The results suggest
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an important contribution of an imbalanced redox system to the etiology of mainly fatal
MI and stroke events. Indeed, the results indicated that thiol levels may be an important
factor in the development and progression of CVD, including AV disease in the context of
atherosclerosis, as we hypothesized previously [63].

In considering the global scores, we observed a gradual increase in the OxyScore of
patients with CAVD, both with and without CAD, relative to the controls. By contrast,
the AntioxyScore does not vary significantly. There is evidence that oxidative stress may
activate antioxidant defense mechanisms, for example through the activity of transcription
factors like Nrf2 [64]. However, other studies showed that an excessive amount of ROS will
produce an impairment in the antioxidant system, dampening the activity of antioxidant
enzymes [65]. We previously found that despite an increase in oxidative end-products,
patients with CAVD and T2DM do not respond to oxidative insults [14], as evident here. In
fact, patients with CAVD and CAD have higher OxyScore and lower AntiOxyscore values
than patients with CAVD alone, although these differences were not significant. In the light
of this, we hypothesized that these patients have weaker cellular resilience to oxidative
stressors, and as such, they are unable to counteract the harmful effects of ROS through
such mechanisms.

4.2. How the Human Serum Albumin Redox State Affects Valvular Interstitial Cells

As we have discussed above, patients with CAVD have lower levels of reduced thiol
groups than controls, i.e., a lower capacity for protection against ROS. This result highlights
the importance of HSA in both CAVD and CAD, as this protein plays a key role in the
antioxidative capacity of blood plasma and its ability to manage ROS [66] given that it is
responsible for trapping more than 70% of the free radicals in plasma [67]. However, more
studies will be needed to fully understand the role of thiols and HSA in CAVD and CAD.

The redox state of HSA has been associated with greater cardiovascular risk in pa-
tients with other comorbidities, such as CKD or COVID-19 infection [68–70]. Moreover,
patients with CAVD and CAD have more circulating OxHSA in their plasma [13]. Here,
to assess if this circulating HSA may be harmful to VICs, we studied the effects of dif-
ferent concentrations of modified HSA in vitro. As a result, calcification was observed
to be affected by exposure to RedHSA and OxHSA, although interestingly, differences
were found when HSA was added to FIBm or OSTm. Cell calcification is stronger when
FIBm is supplemented with OxHSA, consistent with the previous hypothesis that oxidized
circulating HSA might act as a carrier of low molecular weight thiols, which could in
turn be released into the subendothelial space and aggravate the oxidative stress suffered
by local tissues [13]. In other cell populations, such as endothelial cells or neutrophils,
OxHSA produces an increase in apoptosis, inflammation, senescence and intracellular
ROS production, thereby enhancing oxidative stress and cell damage [37,71] (Figure 5).
Importantly, we also found enhanced calcification with non-modified HSA, which makes
sense, as it usually undergoes some degree of oxidation. Alternatively, calcification is more
pronounced in OSTm supplemented with RedHSA, the antioxidant activity of which is
known to be stronger than that of OxHSA [72]. The binding properties of HSA depend
on the three-dimensional structure of the binding sites, a structure that is altered by redox
modifications [73]. Due to these structural changes, the redox state influences the drug
binding properties of HSA. Thus, we hypothesize that RedHSA has a stronger affinity for
the osteogenic components of OSTm (ascorbic acid, β-glycerophosphate, and dexametha-
sone), increasing the uptake of these substances by VICs (Figure 4). This would explain
why these cells calcified in a more intense manner. If we consider the important role of has
as a drug carrier, this result could be key in the clinical field for therapeutic purposes.
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Figure 5. Hypothesis about the effect of oxidized HSA (OxHSA) in medium for fibroblasts (FIBm)
and reduced HSA (RedHSA) in osteogenic medium (OSTm). In both cases, an intense calcification is
observed in valvular interstitial cells, but OxHSA is believed to induce proinflammatory cytokines
and reactive oxygen species, while RedHSA may act as a carrier of the osteogenic components that
have the OSTm.

Here, we obtain evidence of the importance of the redox system in the development
of CAVD. We found that in patients with both CAVD and CAD, CAVD has a stronger effect
on the oxidative status than CAD. There has been considerable interest in antioxidants in
recent years for their protective role in CVD, even in conjunction with CAVD and CAD,
and through different mechanisms such as NADPH Oxidase 2 inhibition [42,74,75]. Better
understanding of which redox processes are affected in these conditions will be essential
to selecting the most adequate therapy for each patient. The application of multimarker
scores may play a significant role in selecting such therapies, as they provide information
about the different mechanisms that are implicated in maintaining the redox balance. In
addition, in vitro models are important to understand the effects of different substances on
specific tissues. We demonstrate that the redox state of HSA influences calcification, and
we have evidence of differential transport rates according to that state. It is important to
highlight the importance of this kind of study to assess the influence of different mediators
of oxidative stress. These molecules have a physiological role, and in many cases, the
therapeutic goals of non-targeted broad-spectrum antioxidants fail [76]. For that reason,
such studies must adopt a precision medicine perspective. Indeed, understanding the
specific redox changes that occur in patients with CAVD and different comorbidities,
such as CAD, is essential, as patients with different comorbidities could have an additive
accumulation of redox biomarkers [77]. These studies will pave the way for the design of
new therapeutic strategies that may slow down the course of the disease, such as through
the development of targeted drugs.

The main limitation of this study is that the sample size included is relatively small, as
well as the heterogeneity in age. Although we excluded patients with DM, it was impossible
to avoid other risk factors, such as hypertension, due to its elevated prevalence in patients
with developed CVD. Thus, further studies on larger cohorts will be necessary to obtain
more information about the effects of these comorbidities and to achieve better patient
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stratification based on their clinical characteristics. Importantly, different cardiovascular
drugs, such as statins, have antioxidant properties that may affect outcomes. Unfortunately,
information about patient medication is lacking, which is also a limitation of this study.
Furthermore, additional in vitro studies should be performed to characterize the different
structural modifications albumin undergoes.

5. Conclusions

Here, we provide information about the redox alterations found in patients with CAVD
and CAD, which indicates that these impair the antioxidant responses in these patients such
that they fail to fully neutralize the harmful effects of ROS. In addition, we demonstrate that
different HSA redox states affect valvular cell calcification in different manners, potentially
accelerating this process. These results highlight the importance of understanding the
whole redox processes taking place in these diseases, as these mechanisms differ in each
pathology. As such, future studies might focus on antioxidants as personalized therapies
for these patients from a precision medicine perspective.
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