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Featured Application: The developed process simulation model is used for economical analysis
of a two-stage hydrogenation of the bio-oil process, it is also adaptable for simulation and
performance evaluation of process with various types of feedstocks. As the catalytic reaction
mechanisms and catalysts coking deactivation kinetics are embedded, its specialty is to simulate
and evaluate the process with large catalyst usage or significant catalyst decay.

Abstract: Bio-oil hydrogenation upgrading process is a method that can convert crude bio-oil into
high-quality bio-fuel o0il, which includes two stages of mild and deep hydrogenation. However,
coking in the hydrogenation process is the key issue which negatively affects the catalyst activity
and consequently the degree of hydrogenation in both stages. In this paper, an Aspen Plus process
simulation model was developed for the two-stage bio-oil hydrogenation demonstration plant which
was used to evaluate the effect of catalyst coking on the bio-oil upgrading process and the economic
performance of the process. The model was also used to investigate the effect of catalyst deactivation
caused by coke deposition in the mild stage. Three reaction temperatures in the mild stage (250 °C,
280 °C, and 300 °C) were considered. The simulation results show that 45% yield of final product is
obtained at the optimal reaction condition which is 280 °C for the mild stage and 400 °C for the deep
stage. Economic analysis shows that the capital cost of industrial production is $15.2 million for a
bio-oil upgrading plant at a scale of 107 thousand tons per year. The operating costs are predicted to
be $1024.27 per ton of final product.

Keywords: bio-fuel; aspen plus; hydrogenation; simulation; economic analysis

1. Introduction

As a renewable energy source, biomass contributes about 15% to the total global energy
consumption. In China, a traditional agricultural country, the use of straw, sugar cane, and rice
husk has great potential for future energy and fuels [1]. It is reported that total agricultural and forestry
waste in China reaches 1.5 billion tons per year, of which straw has attracted increasing interests due
to environmental concerns as most of it is burned on farmland. If straw were used, the bioenergy
from available sources would be equivalent to 180 million tons of standard coal [2]. If one takes into
account the CO, uptake by plants during growth and supposes that the biomass is processed efficiently
for energy and fuels, CO; emissions can be reduced by about 90% compared with fossil energy [3].
There are various processes for converting biomass to energy and fuels including thermochemical
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processes and bioprocesses. It is believed that the thermochemical processes, including combustion,
gasification pyrolysis, and liquefaction, are most promising in the short and medium terms of 5 to
10 years [4]. In recent years, extensive studies have been reported on the commercialization of these
technologies [5]. However, most of these studies were conducted at pilot or demonstration scales due
to the difficulties and challenges in constructing full commercial-scale plants.

Aspen Plus, a large-scale chemical process simulation software, has been widely used in the
design and optimization of unit operation devices such as distillation, absorption, and gas fractionation
in chemical processes. Optimizing and improving the production itself using the software’s own
analysis tools (sensitivity analysis, design regulations, etc.) can reduce costs for capital and operation,
in addition to saving energy and avoiding negative impacts on the environment. Based on the
experimental studies carried out on the fast pyrolysis process of biomass, Susanne et al. [6,7] carried
out a simulation design for the process of hydrogenation of bio-oil to biodiesel. In these studies, the
simulation of the whole process from raw biomass materials through pyrolysis, bio-oil hydrogenation
to transportation fuel was established. Atsonios et al. [8] also conducted research on the hydrotreating
of pyrolysis oil produced by the co-pyrolysis of coal and biomass. They used specific components of the
oil including anisole, guaiacol, acetic acid, ethylene, and furan as model compounds to represent the
pyrolysis oils. The effect of the co-pyrolysis, hydrogenation, catalytic reforming hydrogen production,
and coke combustion on the overall process was investigated. In a separate study, Wright et al. [9]
simulated the hydrogenation process of bio-oil produced by the rapid pyrolysis of cornstalk, and
conducted economic and technical assessments of the entire process. It is found that hydrogen sources
have significant impacts which include hydrogen production from reforming part of the pyrolysis
bio-o0il and hydrogen purchased from the commercial process of natural gas reforming. The results
show that if the hydrogen is obtained from reforming pyrolysis bio-oil, the final liquid product yield
has the greatest impact on the whole process economy. However, if the hydrogen is purchased
from the commercial process, the biomass raw material price has the greatest impact on the entire
process economy.

In this study, an Aspen Plus-based process model was established to simulate the two stages of
bio-oil hydrogenation. The unique feature of the model was that it considered intrinsic reaction kinetics
of catalyst coking deactivation in the first mild stage and the influences of the whole production process.
The model also included material mass balance and energy balance in the bio-oil hydrogenation process
under different reaction conditions. The process was finally optimized based on economic analysis to
achieve the lowest operating costs and the lowest capital costs.

2. Development of a Process Model for Two-Stage Bio-Oil Hydrogenation (HDO)

2.1. Specification of Compounds from Bio-Oil

A process model was developed by using Aspen Plus to simulate the process of two-stage
bio-o0il hydrogenation. According to the properties of raw bio-oil and products shown in Table 1,
and for simulation purposes, the hundreds of substances presenting bio-oil and products were
therefore divided into 9 model components according to the reported study [10]: (1) BIO-OIL (organic
compounds of raw bio-0il, CHj 4700 56); (2) Hp; (3) ODF (oil-phase organic compounds of mild
stage, CHj 4700 11); (4) AQO (aqueous phase organic compounds of mild stage, CH3 0201.9); (5) CO»;
(6) HyO; (7) COKES (soluble coke deposit, Cs); (8) COKEIS (insoluble coke deposit, Cjs); and (9)
PRODUCT (model compound that represents the final product of bio-fuel, with same properties of
gasoline, CH; 71). Model compounds were selected from the Aspen Plus database to represent the
above-mentioned substances in the bio-oil and the upgraded products [11]. The developed HDO
process model is adaptable for different types of bio-oil feedstock with given properties and reaction
kinetic parameters.
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Table 1. Properties of the feedstock and products of the mild and deep stages [9,11,12].

Properties Bio-Oil Mild-Stage Production = Deep-Stage Production

Density (kg L™1) 1.1-1.2 1.2 0.84
Viscosity (c St at 25 °C) 19-25 74 2.8

Water content (wt %) 20-30 114 0.02

Higher heating value (M] kg~') 16-18 29.5 45.6

pH 2.7 42 -

Elemental analysis (wt %, a. f)

C 44-46 78.3 88

H 67 9.6 11.5

@) 4648 114 0.5

2.2. Process Setup

As discussed above, the whole HDO process was divided into two main stages which included a
mild hydrogenation stage and a subsequent deep hydrogenation stage. The system flow diagram for
the bio-oil hydrogenation process is shown in Figures 1 and 2. The whole HDO process consists of
seven unit operations: (1) hydrogen preheating; (2) bio-oil preheating; (3) mild hydrogenation reactor;
(4) mild hydrogenation product solid-liquid separation; (5) mild hydrogenation product liquid—gas
separation; (6) deep hydrogenation reaction; and (7) product cooling and pressure separation.

Bio-oil H2 Catalysts
Establish | Fortran | Mild hydrogenation |
reaction statement (RCSTR)
Separation
Circulating
hydrogen
Product '
Deep hydrogenation
(RSTOIC)
) Waste

Figure 1. Simulation procedure of the bio-oil hydrogenation (HDO) process.
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The organic compounds of raw bio-oil (BIO-OIL), hydrogen (H2-1), and the catalyst (CATALYST)
are treated as input parameters under normal conditions that are first preheated by the stream
(MIXTURE3) and then continuously fed into the first stage HDO, or the mild hydrogenation reactor
(RCSTR). According to the reported research and experimental data, operating temperature for the
mild hydrogenation reactor of raw bio-oil is set at 250 °C, 280 °C, and 300 °C, respectively. The kinetic
reactions added to this RCSTR reactor include the main bio-oil hydrogenation reaction plus side
reactions of the catalyst coking [12].

The product stream (MIXTURE1) from mild hydrogenation reactor first enters a solid-fluidized
bed separator (SEP-1) to remove the used catalysts (with soluble and insoluble coke deposits), and
the liquid product then flows into a three-phase separator (SEP-2) to be separated into: (1) water
and aqueous phase organic compounds (AQO) formed during the hydrogenation reaction; (2) the
unreacted bio-oil with an oil-phase organic compound (ODF); and (3) a mixture of gaseous products
and unreacted hydrogen (GAS-1). The organic compound (ODF) and unreacted hydrogen (H2-2)
are separated from stream (GAS-1) and then fed into the secondary hydrogenation reactor (RSTOIC)
for the deep hydrogenation. The product stream (MIXTURED3) is separated after the heat exchanger.
Excessive hydrogen (H2-C) from the deep hydrogenation is continuously recycled and fed to the mild
reactor. The heat recovery of the process is achieved by a series of heat exchangers between process
streams and feedstock, and the only unit operation that requires external heat supply within the entire
process is the secondary hydrogenation reactor.

2.3. Determination of Properties of Bio-Oil and Upgraded Products

The bio-oil and its upgraded product components in this study are complicated, mostly non-polar
mixtures of acids, substances, aldehydes, ethers, and alcohols. Therefore, the PR-BM method was
chosen in Aspen Plus to determine the chemical and physical properties for both bio-oil and its
upgraded products.

2.4. Input Parameters for Plant Operation and Simulation of Hydrogenation Upgrading of Bio-Oil

The annual throughput of the demonstration plant in this case study was set at 107 thousand
tons per year of raw bio-oil. Therefore, the input flow rates of feedstock materials were set as follows:
10,000 kg /h for the organic compounds of raw bio-oil (BIO-OIL), 345 kg/h for the hydrogen (H2), and
10 kg /h for the fresh catalyst feed (CATALYST). Catalyst loading in the reactor (RCSTR) was 200 kg.
The ratios among the feed streams were selected from reported values [13]. The Ni-based commercial
catalysts were used in the mild stage of hydrogenation (HDO). Three sets of operating conditions for
mild HDO step were assessed which were, respectively, (1) 250 °C, 5.6 MPa; (2) 280 °C, 8 MPa; and (3)
300 °C, 10 MPa. The optimum reaction conditions were eventually selected according to the desired
product yield.

According to the theory of mild hydrogenation kinetics, the chemical conversion reactions
among the components was established [10]. The model for the conversion of the catalytic bio-oil
hydrogenation process was obtained by fitting the experimental data of product distribution and
catalyst deactivation in the small industrial reaction [14]. The pre-exponential factor A and the
activation energy E in the chemical reactions were obtained from the previous study on kinetic
modeling of the bio-oil hydrogenation from which the parameters of the mild-stage reactions were
fitted. Their values are given in Table 2, with the parameter setting of reaction conditions as
described above.
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Table 2. Kinetic parameters of bio-oil hydrogenation in the mild hydrogenation stage.

Kinetic Reactions A E (kJ/mol)

BIO-OIL + 0.22H,—0.7420DF + 0.192AQO0 + 0.121H,0 + 0.076CO, 4.31 x 10% (m3 MPa~! kg~ ' h™1) 80
BIO-OIL—1.869Cs 1.67 x 10* (m3 h~1 kg1 9.4

BIO-OIL—1.869C;s 5.09 x 10% m3 h~1kg~1) 169.5

Cs—0.535BIO-OIL 0.5003 (h—1) 44.3
ODF—1.269C; 6.58 x 10* (m3 h~1 kg™1) 16

Cs—0.7870DF 2 (1) 453

AQO—2.705C; 12 x 103 m3h~Tkg™1) 14.6

Cs—0.396AQ0 51 46.7

Cs —C;q 1.54 x 103 (h—1) 52.6

The deactivation rate of the catalyst is defined as follows:

- Meat f
Meat

Xe=1 1)
where mc;; is the total mass of the catalyst at a given time and m,; ¢ is the mass of fresh catalyst. The
relationship between the deactivation rate of the catalyst and catalyst coking has been derived from
coking theory [14] and experimental results of the batch hydrogenation reactor [15] and is expressed
as follows: 5
dstC =Ky {(1 —Xc) - <o¢dr§fs +(1 - oc)‘h;‘?s)] @

where Ky is the deactivation constant of coke deposition, o is the weighing factor of coke type, and 3
is the deactivation exponent. The mathematical expression of impacts of catalyst coking deactivation
(Equation (2)) on the reaction system in the mild HDO stage is embedded into the Aspen model using
a FORTRAN subroutine.

The deep hydrogenation step used a Ni/Al,O3 catalyst, under the operating conditions of 400 °C
and 15 MPa.

The stoichiometry for deep hydrogenation reaction which produces the final upgraded bio-fuel
(PRODUCT) is obtained from reported experimental results [16] and shown in Equation (3).

ODF + 0.23H, — PRODUCT + 0.11H,O 3)
3. Results and Discussion

3.1. Analysis on Bio-Oil Conversion under Different Reaction Conditions

In running the process model, the operating temperatures for the mild hydrogenation reactor
was set at 250 °C, 280 °C, and 300 °C, respectively, and the corresponding pressures were 5.6 MPa,
8 MPa, and 10 MPa. The deep hydrogenation stage used a Ni/Al,O3 catalyst under the operating
conditions of 400 °C and 15 MPa. As per the simulation results shown in Figure 3, among the various
products from the bio-oil upgrading, the yield of the bio-fuel is the highest (45%) and the total amount
of coke is the lowest with the mild hydrogenation reactor temperature of 300 °C. However, the yields
of bio-fuel and the total coke deposits at 280 °C and 300 °C are very similar. Moreover, the lower
operating temperature is beneficial for the sake of process safety as the corresponding pressure is
lower. The selection of optimal reaction temperature for the mild stage will be further discussed in the
energy analysis section. The amount of insoluble coke deposit increases with the elevated reaction
temperature, which is consistent with the reported trend of insoluble coke deposit with reaction
temperature in the literature [17]. According to the Arrhenius reaction formula, the higher temperature
promotes endothermic reactions. However, the production of insoluble coke deposits is the main
reason for catalyst deactivation. The yield of the o0il phase (ODF) in the first stage does not increase
linearly with increasing temperature.
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Figure 3. The mass flow at different temperatures of the mild HDO stage. (a) PRODUCT (model
compound that represents the final product of bio-fuel, with same properties of gasoline, CH; 7;); (b)
ODF (oil-phase organic compounds of mild stage, CH; 470y 11); (c) COKES (soluble coke deposit, Cs);
and (d) COKEIS (insoluble coke deposit, Cjs).

A more detailed material balance of the whole industrial process under different reaction
conditions is shown in Tables A1-A3. Since the amount of catalyst is unchanged during the reaction,
the flow of catalyst is not shown in the stream summary tables. The slight mass imbalances (0.1-0.6%)
in the stream tables were caused by the inherent convergence issues of the Aspen Plus v7.2 software
(AspenTech, Boston, Massachusetts, US).

3.2. Analysis on Energy Consumption and Energy Flows

The summary of energy flows in each major unit is shown in Figure 4, in which the negative heat
duties of the two reactors indicate that an external heat supply is required for maintaining the required
operating temperature. However, the required heat duty of the mild HDO reactor is less than that of
the deep stage because the feedstock streams have been partially preheated by the product streams
through the heat exchangers.

In total, three heat exchangers are employed for heat recovery. The heat exchange rate in HEATX2
is the highest, because the amount of heat required for bio-oil preheating is large due to high mass
flow rate. The optimal reaction temperature for the mild stage was selected as 280 °C, because the
product yields at the two operating temperatures are similar but the energy required for 280 °C is less
than that for 300 °C.
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321.38
HEATX3 321.38
321.38
3698.95
HEATX2 3898.85
4492.73
3624.57
HEATX1 3426.55
2830.80
-31,000.69
RSTOIC  -31,160.70
-31,384.45
-5927.49
RCSTR -6239.62
-6648.30
-35,000 -25,000 -15,000 -5,000 5,000
250°C m280°C m300°C

Figure 4. Heat duty of the key blocks in the process.

4. Economic Evaluations

4.1. Fixed Capital Cost

According to the throughput of the process plant defined in this case study, the minimum possible
capital investment for the unit product was estimated. The fixed capital cost of the demonstration
plant was approximated as the sum of fixed costs (equipment costs and installation costs), because the
ancillary costs for a demonstration plant are unpredictable.

The cost for purchasing major equipment (reactors, separators, heat exchangers, etc.) was
estimated from the power-law relationship between purchase price, equipment size, and inflation
index [18]. The installed costs were estimated using the installation factor method [19]:

New Equipment Cost = Original Equipment Cost (New size/Original size) P 4)

Installed Equipment Cost = Equipment Cost x Installation Factor )]

The values for the installation factors and exponential factors in Equations (4) and (5) are shown in

Table 3, and the equipment purchase and installation costs of the demonstration plant are summarized
in Table 4.

Table 3. Installation factor and exponential factor.

Equipment Installation Factor Exp
reactor (stainless steel) 1.6 0.5
heat exchanger (stainless steel) 22 0.7
separator 3.02 0.7

Table 4. Equipment costs and installation costs.

Equipment Equipment Cost (millions $) Installation Cost (millions $)

RCSTR 31 5.0
RSTOIC 1.7 2.8
HEATX1 0.2 0.44
HEATX2 0.23 0.5
HEATX3 0.02 0.04
SEP1 0.02 0.06
SEP2 0.18 0.54
SEP3 0.008 0.02
SEP4 0.09 0.28

Total 15.2
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4.2. Operating Costs

The operating costs mainly consist of costs for materials and energy consumption, whereas the
taxes are not included in this study. The total annual operating time is assumed to be 8000 h. Operating
costs include the costs for bio-oil, hydrogen, and catalyst (the average cost of catalyst for the deep
and mild stages). The cost of bio-oil is assumed to be the production cost of the pyrolysis process of
biomass under ideal conditions [13]. The purchase price of hydrogen considered here is $1.50/gallon
of gasoline equivalent (GGE) or nearly $1.50/kg [13]. Prices for the external steam supply to heat the
HDO reactors and for cooling water are based on the Chinese industrial standard. The labor costs are
estimated as 120 employees in total with an annual salary of $9000. The other costs include the general
overheads and the plant maintenance which account for up to 2% of the fixed capital cost.

The overall unit production costs of two scenarios are shown in Table 5 [7,9], which include the
practical unit production and the ideal unit production costs. The ideal production assumes that the
catalyst activity is not affected by catalyst coking, whereas the practical production takes in account
the coking deactivation of the catalyst. By comparing the two cases, one can see that the costs for
bio-oil, hydrogen, cooling water, and steam supply are virtually unchanged, because the increases in
feed rates for those material and energy streams to maintain the same yield of desired product are not
significant. However, the unit cost of the product increases by approximately 10%, because a higher
feeding rate of fresh catalyst is required to balance the effect of catalyst coking deactivation.

Table 5. Estimation of raw material costs for the two cases [7,9].

Unit Costs (§/t) Practical Production Costs Ideal Production Costs

($/v) ($/t)
Bio-oil 188.55 [13] 419.75 415.05
Catalyst (Ni-based) 34,444 [7] 76.68 0.0032
Hydrogen 1500 [13] 115.21 113.7
Steam 28.88 346.21 344.58
Cooling water 0.46 0.063 0.062
Labor costs 28.88 28.88
Fixed costs 21.13 21.13
Other costs 16.36 16.36
Total 1024.27 939.76

A sensitivity analysis of the influences on the production costs was performed for both the
practical and ideal scenarios, and the resulting minimum and maximum production costs [13,20] that
reflect the impact of common variations of the key input parameters from the base case are shown in
Figures 5 and 6 The costs of materials and utilities as well as the yield of final products are included.
Bio-fuel yield has the strongest positive influence on the production cost; this implies that slight
improvements in the overall performance of bio-oil upgrading process could reduce the cost of fuel
significantly. In addition, the production costs are sensitive to the purchase price of raw bio-oil, as the
cost for acquiring feedstock can vary widely between locations and throughout the year. Moreover,
the influence of the catalyst is significant in the practical scenario but is negligible in the ideal case,
which is due to the fact that the feeding rate of fresh catalyst in the latter is negligible in comparison
with the former because no coking deactivation of the catalyst occurs.
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Bio-fuel yield (50; 45: 40 wt %bio-oil) 1.17

Cooling water ($0.31; $0.46; $0.62/t)
Steam ($19.3; $28.9; $38.5/t) 0.91 1.14
Hydrogen ($1000; $1500; $2000/t)
Catalyst ($22,963; $34,444; $45,925/t)
Bio-oil ($126;5189; $251/t) 0.88 1.16
085 090 095 100 1.05 110 115 1.20
B maximum HEminimum (thousands $/t)

Figure 5. Sensitivity analysis for the practical production costs.

Bio-fuel yield (50; 45: 40 wt %bio-oil )
Cooling water ($0.31; $0.46; $0.62/t)

Steam ($19.3; $28.9; $38.5/t) 0.82

Hydrogen ($1,000; $1,500; $2,000/t)

Catalyst ($22,963; $34,444; $45,925/t)

Bio-oil ($126; $189; $251/t)  0.80

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
H maximum B minimum (thousands $/t)

Figure 6. Sensitivity analysis for the ideal production costs.

The comparison of production costs estimated in this study with different research studies [7,13]
and of average gasoline prices throughout 2018 is shown in Figure 7. Both practical and ideal (where
no catalyst coking occurs) production costs estimated in this study are higher than the results from
other research studies. The reason for this is that only the hydrogenation process of bio-oil has been
considered in this study, whereas both processes of pyrolysis and hydrogenation were included in
Wright et al. [13] and Jones et al. [7]. The overall heat efficiency of the integrated process of pyrolysis and
hydrogenation is higher, as the heat surplus of the pyrolysis plant could be utilized for hydrogenation;
the cost for external steam could thus be reduced in comparison with the sole hydrogenation process.
However, the cost for purchasing bio-oil from biomass pyrolysis can be subsidized according to the
renewable energy policy in China. Therefore, the industrial production of upgraded bio-fuel from
two-stage hydrogenation of bio-oil is economically feasible as the production cost is $168/ton lower
than the average gasoline price in 2018.
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Figure 7. Comparison of simulated production cost and the average cost of Chinese gasoline in
2018 [7,13].

5. Conclusions

In this study, a process simulation and a cost analysis were carried out for a bio-oil hydrogenation

demonstrating plant with an annual throughput of 107 thousand tons of raw bio-oil. The following
conclusions were drawn from this study.

@

@)

)

A process model was developed using Aspen Plus to simulate the bio-oil HDO production
process, material and energy balances throughout the plant were carried out, and deactivation
of the catalysts due to coking in the mild HDO stage was embedded into the process model
using a FORTRAN subroutine. The developed process model was capable of simulating the
HDO process with extended ranges of feedstock properties and different reaction kinetics. From
the simulation results, the yield of simulated bio-fuel varied between 44.1% and 45% across the
selected temperature range of mild HDO reaction (250 °C-300 °C), whereas the optimal reaction
temperature for the mild hydrogenation stage was found to be 280 °C, making this trend optimal
for industrial design.

The simulation results showed that the catalyst deactivation due to coking could decrease the
yield of the desired product, and that a larger feedstock flow for maintaining the productivity
was required to compensate for the effect of coking deactivation. All these results showed that
the catalyst deactivation affected the performance in the practical production process. Thus, the
main reason for the catalyst deactivation was the presence of insoluble coke deposits, which
affected the hydrogenation reaction in the mild stage, making it one of the decisive factors of the
whole process.

A cost analysis of the bio-oil HDO production was performed and the minimum required costs
were estimated. The total fixed capital cost for the demonstration plant with an annual throughput
of 107 thousand tons of raw bio-oil was estimated at $15.2 million. The required variable costs
for the unit product in the ideal case was found to be $939.76; where the unit production cost
for the practical case, which included the catalyst deactivation, was found to be $1024.27 /ton.
The additional $76.68/ton came mainly from the expenditures related to the extra catalyst. A
sensitivity analysis of the key process variables showed that the bio-fuel yield has the most
impact on the unit production cost. Variations of 5% in the bio-fuel yield resulted in production
costs rising from 0.92 to 1.2 thousand/ton for the practical scenario. The industrial production of
upgraded bio-fuel from the two-stage hydrogenation of bio-oil is economically feasible as the
operating costs are $168/ton which is lower than the average gasoline price in 2018.
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Appendix A. Stream Information and Energy Analysis of the Whole Process

Table Al. Simulated results for main streams of products from mild hydrogenation of bio-oil at 250 °C
and 5.6 MPa and deep hydrogenation at 400 °C and 15 MPa.

Streams B-OIL-IN H2-IN MIXTURE1 MIXTURE2 MIXTURE3 PRODUCT H2-C
Total Flow, kg/h 10,000 345 11,264.79 11,190.29 6147.53 4364.09 849.13
Temperature, °C 192.79 250 250 20 30 30 30
Mass Flow for all
components, kg/h
H, 0 345 995.55 995.55 849.13 0 849.13
WATER 0 0 934.51 934.51 630.26 0 0
CO, 0 0 1435.13 1435.13 0 0 0
BIO-OIL 10,000 0 304.05 304.05 304.05 0 0
ODF 0 0 4847.93 4847.93 0 0 0
AQO 0 0 2673.13 2673.13 0 0 0
COKES 0 0 74.28 0 0 0 0
COKEIS 0 0 0.23 0 0 0 0
PRODUCT 0 0 0 0 4364.09 4364.09 0

Table A2. Simulated results for main streams of products from mild hydrogenation of bio-oil at 280 °C
and 8 MPa and deep hydrogenation at 400 °C and 15 MPa.

Streams B-OIL-IN H2-IN MIXTURE1 MIXTURE2 MIXTURE3 PRODUCT H2-C
Total Flow, kg/h 10,000 345 10,862.11 10,824.59 5633.78 4491.99 434.76
Temperature, °C 192.79 250 280 20 3 30 30
Mass Flow for all
components, kg/h
H, 0 345 585.48 585.48 434.76 0 434.76
WATER 0 0 962.54 962.54 648.73 0 0
CO, 0 0 1478.17 1478.17 0 0 0
BIO-OIL 10,000 0 58.3 58.3 58.3 0 0
ODF 0 0 4990.01 4990.01 0 0 0
AQO 0 0 2750.11 2750.11 0 0 0
COKES 0 0 36.86 0 0 0 0
COKEIS 0 0 0.66 0 0 0 0
PRODUCT 0 0 0 0 4491.99 4491.99 0
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Table A3. Simulated results for main streams of products from mild hydrogenation of bio-oil at 300 °C
and 0 MPa and deep hydrogenation at 400 °C and 15 MPa.

Streams B-OIL-IN H2-IN MIXTURE1 MIXTURE2 MIXTURE3 PRODUCT H2-C
Total Flow, kg/h 10,000 345 10,624.99 10,587.65 5377.13 4508.92 195.85
Temperature, °C 192.79 250.00 300 20 30 30 30
Mass Flow for all
components, kg/h
H, 0 345 347.13 347.13 195.85 0 195.85
WATER 0 0 967.13 967.13 651.18 0 0
CO, 0 0 1485.22 1485.22 0 0 0
BIO-OIL 10,000 0 21.19 21.19 21.19 0 0
ODF 0 0 5008.81 5008.81 0 0 0
AQO 0 0 2758.16 2758.16 0 0 0
COKES 0 0 35.97 0 0 0 0
COKEIS 0 0 1.36 0 0 0 0
PRODUCT 0 0 0 0 4508.92 4508.92 0

Table A4. Energy analysis of the overall process at 250 °C and 5.6 MPa and deep hydrogenation at

400 °C and 15 MPa.
Inlets Outlets Operation Heat Heat
Temperature s
Flow Temp. Flow Temp. o Medium Duty(kw)
Stream (kg/h) ©0) Stream (kg/h) ©0) O
RCSTR B-OIL-IN 10,000 192.79 steam
H2-IN 345 250 MIXTURE1 11,264.79 250 250 (400 °C) —5927.49
H2-C 849.13 30
RSTOIC OIL-1 5151.98 steam  —31,000.69
H2-2 995.55 20 9 6147.53 400 400 (600 °C)
HEATX1 5(Hot) 11,190.29 254.07 8(Hot) 11,190.29 192.39 3624.57
1(Cold) 10,000 118.85 B-OIL-IN(Cold) 10,000 192.79
HEATX2 18(Hot) 6147.53 375.51 MIXTURE3(Hot) 6147.53 30 3698.95
BIO-OIL(Cold) 10,000 20 1(Cold) 10,000 118.85
HEATX3 9(Hot) 6147.53 400 18(Hot) 6147.53 375.51 321.38
H2(Cold) 345 20 H2-IN(Cold) 345 250

Table A5. Energy analysis of the overall process at 280 °C and 8 MPa and deep hydrogenation at

400 °C and 15 MPa.
Inlets Outlets Operation Heat Heat
Flow Temp. Flow Temp. Temperature Me(ei?um Duty
o
Stream (ke/h) ©C) Stream (kg/h) ©0) (°Q) (kw)
RCSTR B-OIL-IN 10,000 192.79 steam
H2-IN 345 250 MIXTURE1 10,862.11 280 280 (400 °C) —6239.62
H2-C 434.76 30
RSTOIC OIL-1 5048.30 steam
H2-2 585.48 20 9 5633.78 400 400 (600 °C) —31,160.70
HEATX1 5(Hot) 10,824.59 279.77 8(Hot) 10,824.59 196.85 3426.55
1(Cold) 10,000 118.85 B-OIL-IN(Cold) 10,000 192.79
HEATX2 18(Hot) 5633.78 371.78  MIXTURE3(Hot) 5633.78 30 3898.85
BIO-OIL(Cold) 10,000 20 1(Cold) 10,000 118.85
HEATX3 9(Hot) 5633.78 400 18(Hot) 5633.78 371.78 321.38
H2(Cold) 345 20 H2-IN(Cold) 345 250
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Table A6. Energy analysis of the overall process at 300 °C and 10 MPa and deep hydrogenation at
400 °C and 15 MPa.

Inlets Outlets Operation Heat Heat
S Flow Temp. S Flow Temp. Temperature Mes?um Duty
o
tream (kg/h) ©0) tream (kg/h) ©0) O (kw)
RCSTR B-OIL-IN 10,000 192.79 steam
H2-IN 345 250 MIXTURE1 10,624.99 300 300 (400 °C) —6648.30
H2-C 195.84 30
RSTOIC OIL-1 5030.01 steam
H2-2 34714 20 9 5377.13 400 400 (600 °C) —31,384.45
HEATX1 5(Hot) 10,587.66 284.44 8(Hot) 10,587.66 183.57 2830.80
1(Cold) 10,000 118.85 B-OIL-IN(Cold) 10,000 192.79
HEATX2 18(Hot) 5377.15 369.32  MIXTURE3(Hot) 5377.15 30 4492.73
BIO-OIL(Cold) 10,000 20 1(Cold) 10,000 118.85
HEATX3 9(Hot) 5377.15 400 18(Hot) 5377.15 369.32 321.38
H2(Cold) 345 20 H2-IN(Cold) 345 250
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