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Abstract: In this paper, an innovative method is put forward for estimating the dynamic mechanical
behaviors of reinforced concrete (RC) column members by applying the random forest algorithm.
Firstly, the development of dynamic modified coefficient (DMC) predictive models and the realization
of the proposed method were elaborated. Then, due to the lack of dynamic loading tests on RC
column members, a numerical model of RC columns considering the dynamic modification on
flexural, shear and bond-slip behaviors was developed on the OpenSees platform, and the model
accuracy and the effectiveness were verified with the available test results. Moreover, by comparing
the simulated results of the hysteretic curve using numerical models with different complexities, the
influences of dynamic modification and the deformation sub-element were investigated. Furthermore,
a numerical experiment database was established to obtain the training data for developing the DMC
predictive models of critical mechanical behavior parameters, including the yielding bearing capacity,
ultimate bearing capacity and displacement ductility. Finally, the results of feature importance for
different input parameters were studied, and the model accuracy was evaluated using the test set
and available experimental data. It was revealed that the predictive models developed using the
random forest algorithm can be employed to reliably estimate the dynamic mechanical behaviors of
RC column members.

Keywords: dynamic mechanical behavior; reinforced concrete column; random forest algorithm;
dynamic modified coefficient; predictive model

1. Introduction

Reinforced concrete (RC) columns are critical load-bearing components in building
structures. Accurately and reliably evaluating their mechanical behaviors under dynamic
loading is of great importance in the seismic design and analysis of RC structures. It is
widely known that RC materials are strain-rate sensitive, meaning that the properties of
reinforcement and concrete under various loading rates are quite different [1–3]. As a
result, different mechanical behaviors of RC columns have been measured under dynamic
loading and quasi-static loading [4–7]. Generally, the available dynamic loading tests on
RC columns indicate that the bearing capacity and stiffness, as well as the energy dissipa-
tion capacity, are increased while the ductility might be decreased and the performance
deterioration is aggravated for RC columns under relatively high loading rates [8].

Quite a number of research works have been carried out to test the dynamic mechanical
behaviors of RC columns. Among them, the experimental method [9] is the most convincing;
however, the test data are limited due to the large financial and human costs. As an
alternative, some scholars have made attempts to establish numerical models to simulate
the dynamic mechanical behaviors of structural members [10–13] and further develop
empirical models of dynamic increase factor (DIF) to estimate the critical mechanical
behavior parameters [14–17]. Based on the dynamic loading test results and the Bayesian
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updating method, Li et al. [18] developed predictive models of the dynamic modified
coefficient (DMC) for RC columns, which can be used to estimate the dynamic mechanical
behaviors of RC columns under seismic loading. The disadvantages of available studies can
be summarized as: (1) the predictive models of DIF at the member level were established on
limited experimental or numerical data, and (2) the numerical models are not sufficiently
accurate because the dynamic effect on the shear and bond-slip behaviors of RC column
members have often been neglected.

With the rapid development of data science and computer technology, machine learn-
ing has been widely applied to the field of structural engineering in recent years [19–22].
Many machine learning techniques have been adopted by researchers to predict the mechan-
ical behaviors and failure mode of RC structural members [23–25]. The empirical-based
support vector machine method was employed by Liu et al. [26] to predict the force-
deformation backbone with the basic structural parameters of RC columns taken as the
inputs. Todorov et al. [27] used different machine learning methods to identify different
damage states, such as spalling, core crushing and bar buckling of RC bridge piers, and
the accuracy of the machine learning-based models was improved as compared with the
existing physics-based empirical models. Luo et al. [28] proposed a machine learning-based
backbone curve model of force-deformation for flexure- and shear-critical columns, and its
robustness and accuracy were demonstrated by comparison with the traditional modeling
approaches. By employing ensemble machine learning techniques, Feng et al. [29] studied
the failure mode classification and bearing capacity prediction of RC columns. Their pro-
posed method had better performance than the single learning method and the empirical
formulas provided by the design codes.

For this paper, predictive models of the dynamic modified coefficient (DMC) were
developed for estimating the dynamic mechanical behaviors of RC columns through
machine learning (i.e., the random forest algorithm). In Section 2, the random forest method
is introduced for developing DMC predictive models. In Section 3, a numerical model
of RC columns considering the dynamic effect is established and validated. Moreover, a
numerical database for model training in terms of critical mechanical behavior parameters
of RC columns is developed. In Section 4, the feature importance and the model accuracy
are evaluated using the testing set data. Finally, in Section 5, the main conclusions of this
paper are summarized and further works are also proposed.

2. Method for Estimating Dynamic Mechanical Behaviors of RC Columns
2.1. Predictive Models of Dynamic Modified Coefficient

The results of available experiments on RC columns indicate that with the increase
of the loading rate, the bearing capacity is enhanced while the ductility is likely to be
reduced [6,7]. Similar to the widely used empirical models of dynamic increase factor
(DIF) [30–32], which were established at the material level, the dynamic modified coefficient
is defined as the ratio of the mechanical behavior parameter under the dynamic loading
rate (denoted by the subscript ‘d’) to the corresponding value under static loading rate
(denoted by the subscript ‘s’). In this paper, the predictive models of DMC for the yielding
bearing capacity Fy, the ultimate bearing capacity Fu and the ductility coefficient µ are
expressed as

DMCFy(input1, input2, · · · , inputn) = Fyd/Fys (1)

DMCFu(input1, input2, · · · , inputn) = Fud/Fus (2)

DMCµ(input1, input2, · · · , inputn) = µd/µs (3)

where input1, input2, . . ., inputn denote the input variables that have a considerable influ-
ence on the mechanical behavior and dynamic effect of RC columns. Based on the available
experimental observations, 5 structural design parameters of RC column members, includ-
ing the axial load ratio (n0), shear span ratio (λ), strength of longitudinal reinforcement
(fy), compressive strength of concrete ( f ′c) and stirrup spacing (S) are selected as input
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variables. Moreover, a loading rate related parameter, i.e., the strain rate index (SRI) [33], is
incorporated into the predictive models, which is defined as

SRI = lg
( .
εd/

.
ε0
)

(4)

where
.
εd and

.
ε0 denote the dynamic and quasi-static strain rates, respectively, and the

quasi-static strain rate is taken as 1 × 10−5/s [18].
Due to the inadequacy of dynamic loading test data on RC columns, this paper

develops the predictive models of DMC based on the numerical results of mechanical
behavior parameters of RC columns. To ensure the accuracy and reliability of predictive
models, it is noted that the numerical simulation needs to sufficiently consider the influence
of the dynamic effect on the mechanical behavior and deformation mechanism of RC
columns under different loading rates. More importantly, a large number of training data
are required in the model development when employing the random forest method.

2.2. Random Forest Method

The traditional method for estimating the mechanical behaviors of RC columns is by
conventional regression fitting with the experimental or numerical data. In this paper, the
random forest method is employed to develop predictive models for rapidly estimating
the dynamic modified coefficient (DMC) of RC columns. As one of the commonly used
machine learning techniques, the random forest method has been applied in solving various
problems in the field of civil engineering [34–36]. The advantages of the proposed models
over the traditional models are:

(1) The random forest method is more suitable for establishing the complex nonlinear
relationship between input and output parameters, because the difficulty of assuming the
form of expression is avoided;

(2) A few samples from the original training set are randomly selected to form a
sub-sample set, which allows each decision tree to be trained on a specific set of samples,
thereby increasing the diversity of the model;

(3) For each node of decision tree, randomly selected features (i.e., input parameters),
are considered when determining the best segmentation point. This can prevent some
features from heavily influencing the predictive model, thus improving the robustness of
the model;

(4) By averaging or weighted averaging the results of multiple decision trees, the final
predicted value of the random forest model can be reliably obtained.

2.3. Realization of the Method

The step-by-step description of the methodology of the random forest machine learn-
ing method is illustrated as follows, and the schematic plot of the procedure to develop the
DMC predictive models is as shown in Figure 1.

(1) Due to the lack of dynamic loading test data, a numerical model database was de-
veloped for training data. The numerical model needed to accurately simulate the
dynamic mechanical behaviors of RC columns. Moreover, the critical design param-
eters of RC columns were considered and columns with the same parameters were
designed to be under different strain rate levels.

(2) Based on the simulated results of mechanical behavior parameters, the dynamic
modified coefficient (DMC) values in terms of the yielding bearing capacity, the
ultimate bearing capacity and the ductility coefficient were obtained.

(3) Before the model was trained, the obtained data were divided into 80% for the
training set (for training data) and 20% for the test set (for verification). Moreover, the
parameters of the random forest algorithm were set, including the number of decision
trees (N = 200) and the maximum depth of the forest (depth = 10), etc.

(4) When employing the random forest algorithm, the DMC values of the yielding bearing
capacity, the ultimate bearing capacity and the ductility coefficient were treated as
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outputs, and 5 structural parameters and the strain rate index introduced in Section 2.1
were selected as input variables.

(5) During the training process, the criterion of minimum mean square error (MSE) [29]
was adopted for selecting features in construction of binary trees. The mean square
error (i.e., MSE) was obtained by

MSE =
1
n

n

∑
i=1

(yi − ŷ)2 (5)

where n denotes the number of sample data, while yi and ŷ represent the value of
sample data and the mean value. The MSE of randomly selected features and possible
splitting point were calculated. The features and splitting point that minimized the
weighted sum of the mean square error were selected for node splitting, and multiple
decision trees were constructed.

(6) Finally, after the model was trained, by taking the average results of decision trees,
the value of DMC predicted by the random forest model was acquired. The feature
importance of the node was estimated to evaluate the contribution of each feature in
influencing the results of the predictive models.
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Figure 1. Illustration of procedure to develop the DMC predictive models.

3. Dynamic Modified Numerical Model of RC Columns
3.1. Establishment of Numerical Model

The developed numerical model of RC columns was composed of three sub-elements
in series (see Figure 2), including the fiber beam-column element, the zero-length shear
element and the bond-slip element to simulate the flexural deformation, the shear de-
formation and the bond-slip deformation, respectively. Based on the limit state material
theory [37], the mechanical behaviors of column members under different failure modes
could be simulated. Moreover, dynamic modifications were made to the three sub-elements
to consider the influences of loading rate on the mechanical behavior and deformation
mechanism of RC column members.
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Figure 2. Illustration of the developed numerical model for RC columns.

The flexural sub-element was developed by using the force-based beam-column
element on the OpenSees platform. The cross section of the flexural sub-element was
divided by fibers and the uniaxial material constitutive models of reinforcing steel and
concrete 04 were employed to depict the material properties of reinforcement and concrete,
respectively. For reinforcement, the strength degradation under cyclic loading [38] and
the buckling effect [39] were considered. As for concrete, the degradation of strength and
stiffness during cyclic loading, and the enhancement of concrete strength and ductility [40]
due to the constraint effect of stirrups were fully taken into account.

To consider the strain rate effect of materials on the flexural behavior of columns, the
constitutive model parameters of reinforcement and concrete were dynamically modified
by using the available empirical DIF equations [41,42]. The dynamic modified constitutive
models and the static constitutive models of reinforcement and concrete are plotted in
Figure 3. The parameters modified were the yielding strength fy, the ultimate strength fu
and the initial hardening strain εh of reinforcement, and the compressive strength f ′c , the
tensile strength ft, the elastic modulus Ec and the ultimate compressive strain εcd of concrete.
The employed DIF equations are tabulated in Table 1.
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Table 1. DIF equations for dynamic modification to flexural sub-element.

Material Parameter Expression of DIF Model Relevant Parameters

Concrete [42]

f ′c
DIFf ′c =

f ′cd
f ′cs

=
( .

εc.
εc0

)1.026α
,

.
εc ≤ 30/s

DIFf ′c =
f ′cd
f ′cs

= γ
( .

εc.
εc0

) 1
3 ,

.
εc > 30/s

α = 1
5+ f ′cs

10

log γ = 6.16α − 2.0

ft
DIFft =

ftd
fts

=
( .

εt.
εt0

)1.016α
,

.
εt ≤ 30s−1

DIFft =
ftd
fts

= γ
( .

εt.
εt0

) 1
3 ,

.
εt > 30s−1

α = 1
10+6 f ′cs

10

log γ = 7.11α − 2.33

Ec DIFEc =
Ecd
Ecs

=
( .

εc.
εc0

)0.026 -

εcd DIFεc =
εcd
εcs

=
( .

εc.
εc0

)0.02 -

Reinforcement [43]
fy DIFfy =

fyd
fys

= 1 + c f lg
.
ε
.
ε0

c f = 0.1709 − 3.289 × 10−4 fys
cu = 0.02783 − 2.982 × 10−5 fys
ch = 0.9324 − 0.00212 fys

fu DIFfu =
fud
fus

= 1 + culg
.
ε
.
ε0

εh DIFεh = εhd
εhs

= 1 + chlg
.
ε
.
ε0

Note: The subscripts ‘s’ and ‘d’ denote the static and dynamic material parameters, respectively;
.
εc and

.
εc0 = 3 × 10−5/s represent the strain rates of compressive concrete under dynamic and static loading, respectively;
.
εt and

.
εt0 = 3× 10−6/s represent the strain rates of tensile concrete under dynamic and static loading, respectively;

.
ε and

.
ε0 = 2.5 × 10−4/s denote the strain rates of reinforcement under dynamic and static loading, respectively.

In the numerical model, the shear stress–shear strain relationship obtained by the
modified compression field theory (i.e., MCFT) [44] was used to derive the constitutive
model of force-deformation for the shear sub-element. To consider the influence of dynamic
effect on shear bearing capacity and shear deformation of RC columns, the following MCFT
calculation equations were modified using the DIF equations of materials. The material
parameters modified were the compressive strength f ′c , the tensile strength ft and the
elastic modulus Ec of concrete, and the yielding strength of longitudinal reinforcement and
stirrups, i.e., fy and fyt. The MCFT equations considering the dynamic modification are
listed in Table 2. The schematic plot of dynamic modified and the static constitutive models
of shear force-deformation are compared in Figure 4.

Table 2. Dynamic modified MCFT equations for shear sub-element.

MCFT Equations [43] Description Modified Parameters

f2 ≤ f ′c ·DIFfc

0.8−0.34 ε1
εc

[
2
(

ε2
εc

)
−

(
ε2
εc

)2
] The average compression stress f 2 should not

exceed its allowable value. f ′c

f1 = ε1 · Ec · DIFEc ≤
ft ·DIFft

1+
√

500ε1

The average tensile stress f 1 should not exceed
its allowable value. ft and Ec

fyx = Es · εsx ≤ fy · DIFfy

The stress of longitudinal reinforcement should
not exceed its dynamic yielding strength fy

fyv = Es · εsv ≤ fyt · DIFfyt

The stress of stirrups should not exceed their
dynamic yielding strength fyt

vci ≤ vci,max =

√
f ′ c ·DIFf ′c

0.31+ 24w
da+16

The shear stress vci should
not exceed the maximum allowable value vci,max

f ′c

To accurately describe the dynamic behavior of the bond-slip sub-element, the consti-
tutive model of bond stress-slip amount (τ − s) in Equation (6) derived from the dynamic
loading pull-out test results [44] was employed

Fτ(s) =


τu

(
2
√

s
s0
− s

s0

)
, 0 ≤ s ≤ s0

τu

(
kr + (1 − kr) exp

(
β
(

s
s0
− 1

)2
))

, s > s0
(6)
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where τu and s0 represent the ultimate bond stress and the corresponding slip amount; β
denotes the control coefficient for the descending branch of model; kr is the ratio of residual
bond stress to ultimate bond stress. The parameters τu, s0 and β are relevant to the loading
rate and the corresponding formulas are tabulated in Table 3.
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Table 3. Parameters relevant to loading rate in the bond-slip model.

Parameter Formulas

Ultimate bond stress τu τu√
f ′cu

= a + blg
.
v
.
v0

Slip amount s0 s0 = g + f lg
.
v
.
v0

Control coefficient β β = m + nlg
.
v
.
v0

Note:
.
v and

.
v0 = 0.01mm/s denote the dynamic and static loading rates, respectively; a, b, g, f, m and n are

regression coefficients determined from the dynamic loading experiments [44].

Figure 5 illustrates the comparison results of static and dynamic bond-slip constitutive
models. It can be observed that with the increase of loading rate, the ultimate bond stress τu
is magnified and the slip amount s0 is reduced, while the model shape is slightly changed.
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The bond-slip material [45] defining the relationship between longitudinal reinforce-
ment stress and pull-out amount (σs − S) was employed to simulate the end rotation of
columns caused by the bond-slip effect [46,47]. To acquire the pull-out amount S at column
end at the given yielding strength fy and ultimate strength fu of longitudinal reinforcement,
the micro-element method elaborated in [48] was adopted. The calculation process was
realized through a self-compiled program using the Python language. Concrete 01 and
the modified hysteric constitutive model were used for concrete and reinforcement in the
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bond-slip sub-element, respectively. The dynamic modified and the corresponding static
constitutive models are plotted in Figure 6. Based on the DIF equations [42], the constitutive
model parameters of reinforcement in the zero-length bond-slip spring were modified. The
modified parameters included the yielding strength fy, the strain at yielding strength εy, the
ultimate strength fu and the slope of the hardening branch Eh. The corresponding formulas
are presented in Table 4.
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Table 4. Dynamic modified parameters for bond-slip sub-element [42].

Parameter Expression of Dynamic Modification

Yielding strength fy, fyd = fy · DIFfy

Strain at yielding strength εy fud = fu · DIFfu

Ultimate strength fu εyd =
fyd
fys

εy = DIFfy · εy

Slope of hardening branch Eh Ehd =
fu ·DIFfu− fy ·DIFfy

εu−DIFfy ·εy

3.2. Influences of Model Complexity on the Simulated Results

To investigate the influences of dynamic modification to sub-elements on the numerical
results, six models with different complexities were established, as shown in Figure 7.
By analyzing the results of Model-1/Model-2 (single sub-element), Model-3/Model-4
(two sub-elements) and Model-5/Model-6 (three sub-elements), the difference in simulated
hysteretic curves using numerical models with different sub-elements was investigated.
By comparing the simulated results of Model-1/Model-3/Model-5 (without dynamic
modification) and Model-2/Model-4/Model-6 (with dynamic modification), the impact of
dynamic modification on the hysteretic behaviors of RC columns was revealed.
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Figures 8–10 show the influences of the modeling approach on simulated hysteric
behavior of three represented RC columns. Case-1, Case-2 and Case-3 were predicted to be
under flexural, shear-flexural and shear failure modes, respectively. The design parameters
of RC columns for case study are listed in Table 5. The critical mechanical behavior points,
i.e., the yielding point, the ultimate point and the failure point, are also marked in the
figures. The ductility coefficient is defined as the ratio of ultimate displacement to the
yielding displacement. The yielding point was obtained by using the average results of the
energy equivalent method, the geometric method and the R-PARK method. The failure
point was taken as the point when the bearing capacity dropped to 85% of the ultimate
bearing capacity.
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Table 5. Design parameters of RC columns for case study.

No. Geometric Size
(mm)

f’
c

(MPa)
fy

(MPa) λ
ρl

(%)
S

(mm) n0 Failure Mode

Case-1 300 × 300 × 800 50 500 2.67 2.26% 50 0.4 Flexural
Case-2 300 × 300 × 550 50 400 1.83 2.26% 50 0.2 Flexural-shear
Case-3 300 × 300 × 550 30 335 1.83 2.26% 50 0.4 Shear

Note: λ = shear span ratio of RC column members; ρl = longitudinal reinforcement ratio; S = stirrup spacing and
n0 = axial load ratio.

For Case-1, by comparing the group of static models shown in Figure 8a–c, it was found
that the inclusion of bond-slip sub-element had a considerable impact on the simulated
result of ductility while the influence of the shear sub-element was minor. By comparing
the group of dynamic models shown in Figure 8d–f, it can be observed that the influences
of sub-elements were more significant when considering the dynamic effect. For Case-2
and Case-3, by comparing Figure 9a–c (or Figure 10a–c), it was found that the inclusion
of the shear sub-element had a considerable impact on the simulated result of hysteretic
behavior as compared with the bond-slip sub-element. As the bond-slip sub-element was
considered (Figures 9e and 10e), the enhancement of bearing capacity induced by dynamic
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modification was more obvious for columns under flexural-shear and shear failure modes;
when the shear sub-element was further incorporated for columns under flexural-shear
failure mode (Figure 9f), the hysteretic curve exhibited accelerated degradation in the
failure stage. For columns under shear failure mode, the degradation of bearing capacity
and stiffness in Model-6 (Figure 10f) was comparatively more significant.

Furthermore, the results of bearing capacity and displacement ductility between the
numerical models with and without the dynamic modification are quantitatively compared
in Table 6. For the three representative cases, it was found that the dynamic modification
to a single sub-element led to an increase of bearing capacity and an increase of ductility,
while the dynamic modification to two and three sub-elements led to an increase of bearing
capacity and a decrease of ductility. Due to the fact that in most dynamic loading test
results the ductility of RC columns exhibited a decreasing trend [6,7], it was more reliable
to simulate the hysteretic behavior of RC columns with bond-slip and shear sub-elements.
Moreover, to more accurately simulate the mechanical behaviors of RC columns under
seismic loading rate, dynamic modification also needed to be taken into account.

Table 6. Comparison results between the numerical models.

NO.
Model-D1/-S1 Model-D2/-S2 Model-D3/-S3

Fud−Fus
Fus

µd−µs
µs

Fud−Fus
Fus

µd−µs
µs

Fud−Fus
Fus

µd−µs
µs

Case 1 15.53% 18.89% 15.84% −20.58% 14.83% −5.19%
Case 2 16.01% 34.89% 35.69% −25.91% 32.91% −22.67%
Case 3 20.04% 24.34% 18.81% −35.92% 22.04% −26.36%

3.3. Validation of Numerical Model

To verify the accuracy of the proposed numerical model, the simulated backbone
curves of RC columns obtained by the dynamic modified model and unmodified model
were compared with the measured results from different experiments [4,7,10], as presented
in Figure 11. The critical mechanical behavior points, i.e., the yielding point, the ultimate
point and the failure point are also plotted in the figures. It was observed that the backbone
curves from the elastic stage to the descending stage of RC columns could be well estimated
by employing the dynamic modified numerical model. As compared with the commonly
used unmodified model, the dynamic modified model provided more accurate predicted
results for the backbone curve of RC columns under a dynamic loading rate.
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4. Development of Numerical Model Database

Given the lack of dynamic loading test results, the training data for the random forest
algorithm were based on the results of the proposed numerical model. For this paper,
a total of 930 × 4 = 3720 numerical models were established to develop the numerical
model database. Four levels of strain rate (10−5/s, 10−3/s, 10−2/s, 10−1/s) were taken into
account. Under each strain rate level, 930 numerical models of columns were established
considering different structural parameters, such as the concrete compressive strength
(30–50 MPa), the reinforcement yielding strength (335–500 MPa), the shear span ratio
(1.67–3.83), the axil load ratio (0.2–0.6) and the stirrup spacing (50–50 mm). It is noted that
the above structural parameters were uniformly distributed on the corresponding interval
and randomly assigned to form the basic structural design parameters for a numerical
model of the columns. Although the numerical models were designed for the Chinese
building design code specifically, the proposed method and research conclusions can be
extended to foreign situations and other materials.

Based on the numerical results, the bearing capacity and displacement at yielding
point, the ultimate point and the failure point were determined using the same approach
illustrated in Section 3.2. In the database, the numerical samples obtained under strain
rate levels (10−3/s, 10−2/s, 10−1/s) were treated as the dynamic mechanical behavior
parameters, whereas the numerical samples under strain rate level of 10−5/s were con-
sidered as the corresponding static mechanical behavior parameters. Then, the values of
DMCFy ,DMCFu and DMCµ were calculated by employing Equations (1)–(3). The predictive
models of DMC were developed by 80% of the DMC values. In that case, the total number
of training data were 930 × 3 × 80% = 2232.

5. Predicted Results Using the Model
5.1. Results of Feature Importance

To evaluate the feature importance of each node, the weighted reduction in MSE
(i.e., the sum of reduction in MSE before and after splitting of features multiplied by the
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proportion of sample number on each leaf node) was calculated. To compare the relative
importance of each feature, the results of feature importance for all nodes were further
normalized. The results of feature importance are presented in Figure 12. The detailed
values of feature importance and the ranking order are given in Table 7.
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Table 7. Results of feature importance and ranking.

DMC Model
Ranking of Feature Importance

1 2 3 4 5 6

DMCFy
λ S f ′c n0 fy SRI

0.2896 0.2264 0.1374 0.1247 0.1147 0.1071

DMCFm

λ S f ′c SRI n0 fy
0.2585 0.2147 0.1908 0.1485 0.1158 0.0717

DMCµ
λ S f ′c n0 SRI fy

0.3691 0.2008 0.1369 0.1137 0.0950 0.0845

It can be concluded that the shear span ratio λ was the most important feature param-
eter that affected the three predictive models of DMC, following by the stirrup spacing
S and the concrete strength f ′c . For the three DMC models, differences were found as
to the order of the 4th to 6th important features. Feature importance could be used to
measure the contribution of each feature in influencing the results of the predictive models,
which optimized the process of feature selection during model training [49]. It should be
mentioned that for the random forest method, random seeds or model parameters may
lead to different results of feature selection, indicating that the importance of features is
dependent on the training set, including the distribution of data, the sample size and the
randomness of the model.

5.2. Validation of DMC Models

Figure 13 shows the validation results of DMC models in terms of the yielding bearing
capacity, the ultimate bearing capacity and the ductility coefficient, respectively. The
prediction points marked by the red triangle and the y = x line denoted by the dash line
are plotted in the figure. If the predicted value was exactly the same as the actual value,
the point is on the y = x line. In other words, the closer the point was to the y = x line, the
more accurate was the predicted result. From the distribution of the scatter plots, it can be
observed that the predicted points are distributed around the y = x line, indicating that the
developed DMC models were capable of predicting the influences of dynamic effect on the
mechanical behavior parameters, i.e., the yielding bearing capacity, the ultimate bearing
capacity and the ductility coefficient of RC columns.
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Figure 13. Validation results of the developed DMC models.

To further verify the model accuracy, the developed models were employed to predict
the DMC values in terms of the yielding capacity, the ultimate capacity and the ductility
coefficient (i.e., DMCFy , DMCFu and DMCµ) of RC columns at three levels of strain rate,
i.e., 10−3/s, 10−2/s and 10−1/s, respectively, as shown in Figure 14. It was found that the
predictive models provided good estimated results of the DMC values at different strain
rate levels.
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Moreover, the effectiveness of the developed models was verified by the test results of
13 RC column specimens from available dynamic loading experiments [9]. Figure 15 shows
the comparison results of measured and predicted DMC values. It is noted that the test
strain rate of the longitudinal reinforcement was used to obtain the strain rate index. The
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R-square and the mean square error were 0.72 and 0.003 for the predictive model of DMCFy ,
0.76 and 0.001 for the predictive model of DMCFu , 0.68 and 0.001 for the predictive model
of DMCµ, respectively. By taking the structural design parameters and the calculated SRI
of each column specimen as inputs, it was found that the predictive models developed
by the random forest method provided accurate results estimating the change in yielding
and ultimate bearing capacity and ductility coefficient of column members under different
seismic loading rates.
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5.3. Evaluation of Model Precision

To evaluate the goodness of fit for the developed DMC models, the R-square (R2) and
the mean square error (MSE) were used in this paper, which are defined as follows

R2 = 1 − SSres

SStot
(7)

where SSres denotes the sum of squares for residuals, and SStot denotes the sum of squares
for total.

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (8)

where Yi denotes the predicted value, Ŷi denotes the actual value, respectively.
The fitting precision of the DMC models as to the total of the testing set and the three

sub-testing sets at different levels of strain rate is tabulated in Table 8.

Table 8. Evaluation results of DMC model precision.

Model
SRI (Total) SRI = 4 SRI = 3 SRI = 2

R2 MSE R2 MSE R2 MSE R2 MSE

DMCFy 0.67 0.01 0.61 0.01 0.70 0.02 0.61 0.01
DMCFu 0.77 0.03 0.69 0.02 0.82 0.03 0.77 0.03

µ 0.70 0.02 0.61 0.02 0.75 0.02 0.68 0.03

It was found that the models provided accurate and reliable predictive results with the
test data. Moreover, it should be mentioned that due to the fact that different failure modes
of RC columns were not distinguished in the development of DMC models (i.e., all the
data were mixed), this may have exerted a certain impact on the precision of the predictive
models. Thus, further studies are needed to improve the applicability of the models.

6. Conclusions

In this paper, for accurately estimating the dynamic mechanical behaviors of RC
column members, predictive models of the dynamic modified coefficient (DMC) were
developed based on the random forest method and a numerical model database. The main
conclusions are summarized as follows:
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(1) By training a large number of data using the random forest method, the DMC pre-
dictive models of yielding capacity, ultimate capacity and ductility coefficient for RC
columns were developed. Accuracy of the proposed models has been verified using
the reserved 20% data and experimental data. Given the structural design param-
eters as inputs, the proposed models can be used to rapidly evaluate the dynamic
mechanical behaviors of RC columns under seismic loading rates.

(2) The numerical model of RC columns was established by dynamic modification to
different deformation sub-elements. It can provide accurate and effective simulated
results of the dynamic mechanical behaviors of RC columns, making up for the
deficiency of insufficient test data. By comparing the simulated hysteretic curves
using numerical models with different complexities, the necessity of incorporating
shear and bond-slip sub-elements and dynamic modification was revealed.

(3) By analyzing the feature importance, it was found that the shear span ratio was the
most important factor affecting the DMC models, followed by the stirrup spacing and
the concrete compressive strength. For the three DMC models, differences were found
as to the order of the 4th to 6th important features. The results of feature importance
were dependent on the training data; however, it provided a reference to measure the
contribution of input parameters to the results of the developed predictive models.

(4) In future research works, the accuracy of predictive models can be improved by
distinguishing different failure modes of RC columns and the machine learning
method can be improved to develop explainable predictive models. For dynamic
analysis of structural systems considering the change in strain rate, a program of
real-time dynamic modification to constitutive models of deformation sub-elements
needs to be developed. Moreover, the proposed numerical model and method can be
applied to other types of structural members.
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