
Citation: Glenis, A.; Vouros, G.A.

SCALE-BOSS-MR: Scalable Time

Series Classification Using Multiple

Symbolic Representations. Appl. Sci.

2024, 14, 689. https://doi.org/

10.3390/app14020689

Academic Editors: Katia Lida

Kermanidis, Phivos Mylonas and

Manolis Maragoudakis

Received: 6 December 2023

Revised: 6 January 2024

Accepted: 9 January 2024

Published: 13 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

SCALE-BOSS-MR: Scalable Time Series Classification Using
Multiple Symbolic Representations †

Apostolos Glenis * and George A. Vouros

Department of Digital Systems, University of Piraeus, 185 34 Piraeus, Greece; georgev@unipi.gr
* Correspondence: apostglen46@gmail.com
† This is the extended version of the conference paper “SCALE-BOSS: A framework for scalable time-series

classification using symbolic representations” published in the year 2022 as a proceedings of the 12th Hellenic
Conference on Artificial Intelligence.

Abstract: Time-Series-Classification (TSC) is an important machine learning task for many branches
of science. Symbolic representations of time series, especially Symbolic Fourier Approximation (SFA),
have been proven very effective for this task, given their abilities to reduce noise. In this paper, we
improve upon SCALE-BOSS using multiple symbolic representations of time series. More specifically,
the proposed SCALE-BOSS-MR incorporates into the process a variety of window sizes combined
with multiple dilation parameters applied to the original and to first-order differences’ time series,
with the latter modeling trend information. SCALE-BOSS-MR has been evaluated using the eight
datasets with the largest training size of the UCR time series repository. The results indicate that
SCALE-BOSS-MR can be instantiated to classifiers that are able to achieve state-of-the-art accuracy
and can be tuned for scalability.

Keywords: time series; time series classification; symbolic representations; multiple representations;
accuracy; execution time

1. Introduction

Time Series Classification (TSC) is an important machine learning task for many
branches of science. Time series classifiers incorporate intertwined components on building
time series representations, learning predictive models exploiting such representations, and
measuring similarities between time series. These implement laborious processes towards
improving computational efficiency, especially for training TSC models and achieving
accuracy of predictions.

TSC can be applied in many types of data such as ECG in medicine; sensor data in
diverse fields, including Internet of Things (IoT); and even imaging data. Indicative ap-
plications include seizure detection [1], earthquake monitoring [2], insect classification [3],
as well as applications in power systems [4]. In many of these applications, having an
algorithm that responds fast and accurately is important. Many algorithms have been
proposed to tackle the scalability issue [5–11], which are reviewed subsequently.

This work aims to contribute to this objective by proposing the SCALE-BOSS-MR
framework for symbolic TSC that are able to achieve state-of-the-art accuracy with low
execution time.

Indeed, the objective of this work is to provide a generic framework for building TSC
algorithms that are efficient to learn models of time series, while achieving the accuracy
reported by state-of-the-art algorithms. The main ideas behind the proposed framework
are as follows: (a) Exploit symbolic representations of time series; (b) leverage TSC with
efficient machine learning algorithms, and (c) incorporate techniques to increase efficiency
without compromising accuracy. Specifically, we have chosen to use the state-of-the-art
SFA symbolic representation of time series, together with the Bag-Of-SFA words (BOSS)
approach for encoding the training and test set.

Appl. Sci. 2024, 14, 689. https://doi.org/10.3390/app14020689 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14020689
https://doi.org/10.3390/app14020689
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5451-622X
https://doi.org/10.3390/app14020689
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14020689?type=check_update&version=1

Appl. Sci. 2024, 14, 689 2 of 25

In a previous work, we have proposed the SCALE-BOSS framework [9] to balance
between efficiency and accuracy for TSC. The SCALE-BOSS framework has two main
variations: One using clustering and the other using classification algorithms for TSC
along a pipeline. These variations exploit symbolic time series representations, resulting
in concrete TSC algorithms. Specifically, we can build different TSC classifiers with the
only requirement that the clustering algorithm uses some form of cluster representatives.
Then, simply using a 1-NN classifier, we can classify time series by comparing them only
to the (few, compared to the series in the training set) representatives. On the other hand,
we can use classification methods that work on the term-frequency vector of the symbolic
representation. One of the main conclusions of that study is that we can build very efficient
TSC methods using clustering and classification methods that exploit time series’ class
representatives, such as k-means, mini-batch k-means, or random forests. We have shown
that SCALE-BOSS [9] manages to achieve significant improvement on the efficiency of
training and testing TSC models, but with room to improve the accuracy of predictions.

Here, we leverage ideas from state-of-the-art algorithms,extending the SCALE-BOSS
framework [9] using multiple time series representations to achieve state-of-the-art accuracy,
while maintaining high computational efficiency.

Specifically, the contributions of this work are as follows:

1. We incorporate into SCALE-BOSS-MR and explore the use of

• multiple window sizes;
• multiple dilation parameters;
• trend information by means of time series’ first-order differences.

to balance accuracy with the scalability of TSC algorithms exploiting symbolic time
series representation.

2. We present extensive results from a multitude of classifiers built using the SCALE-
BOSS-MR framework. The proposed classifiers can provide either state-of-the-art
accuracy or state-of-the-art scalability. Some of the proposed classifiers provide a
balance between accuracy and scalability, meaning that they retain state-of-the-art
accuracy while also being significantly faster than other state-of-the-art classifiers that
use symbolic representations.

The paper is organized as follows: Section 2 provides an overview of the literature
and describes how it relates to SCALE-BOSS-MR. Section 3 describes the pipeline of the
framework and its instantiations. Section 4 evaluates different TSC algorithms created
using the proposed framework, and finally, Section 5 concludes the paper.

2. Literature Review

As pointed out in the introductory part of this article, one of the main ideas of the
proposed approach is to use a symbolic representation of time series. The following
paragraphs elaborate on such representations and corresponding TSC methods.

In [12], the authors present the SAX-VSM classification algorithm that uses the SAX
representation and Term Frequency—Inverse Document Frequency (TF-IDF) weighting.
A tf-idf vector is created for each class, after the training set has been transformed into
SAX words. Then, the set of target time series is transformed into SAX words and the
Term-Frequency (TF) vector is created for each time series in the target set. To classify a
time series, the cosine similarity between the TF vectors of that series and of the classes’
centers is computed.

In [13], the authors introduce the Bag of SFA Symbols Ensemble classifier (BOSS) that
uses Symbolic Fourier Approximation (SFA) [14] to classify a time series. To compute SFA
words, a number of Fourier coefficients are computed, which are grouped based on common
prefixes, building histograms per group, discretized, and mapped to an alphabet. The SFA
approximation, and thus BOSS, uses a symbolic representation based on the frequency
domain, providing information about the whole series. Properties of this representation
lead to significant lower training times compared to using the SAX representation. The

Appl. Sci. 2024, 14, 689 3 of 25

BOSS ensemble classifier is based on a 1-NN classification using multiple BOSS models at
different time series’ substructural sizes. However, BOSS requires the entire training set to
be available while classifying target time series.

In [5], the authors present the BOSS-VS classification algorithm where each data point
in the training set is transformed into SFA words. Then, a centroid is created for each
class and the cosine similarity is computed between centroids and target series, as in [12].
This significantly reduces computational complexity and the memory footprint of the
classification algorithm, since now each target time series is only compared to the class
centroids. While BOSS-VS improves in scalability, it manages to do so at the expense
of accuracy.

In [15], the authors present the K-BOSS-VS algorithm for time series classification,
which is based on state-of-the-art symbolic time series classification algorithms, such as
BOSS-VS and BOSS [5,13]. The main intuition behind the K-BOSS-VS method is that, by
exploiting SFA representations, instead of having a single centroid to represent each class
label, we can have K representatives per class. K-BOSS-VS applies the K-means clustering
algorithm to each class label of the training set to obtain the K representatives per class.
In so doing, it is between using a single representation per class, as in [5], or computing
similarities with the entire training set, as in [13]. K-BOSS-VS addresses the scalability
problem while at the same time achieving an accuracy greater than BOSS-VS and close
to BOSS.

cBOSS [16] aims to speedup BOSS. Due to its grid-search method and the method
of retaining ensemble members, BOSS is unpredictable in its time and memory resource
usage. cBOSS utilizes an altered random selection of parameters of its ensemble members,
allowing the user to control the build using a time contract. In doing so, it manages to
significantly speed up BOSS while retaining accuracy.

S-BOSS [17] is a variation of BOSS that takes into account the location of the symbolic
words in a series. The intuition is that in some datasets, the locations of certain discrimi-
natory subsequences are important. Some patterns may gain importance only when they
occur in a particular location, or a frequently occurring word may be indicative of different
classes depending on when/where it occurs.

In [18], the authors propose WEASEL as a middle ground between BOSS-VS [5] and
BOSS [13] for time series classification, balancing between accuracy and scalability. It uses
SFA, but it does a few novel things: First, WEASEL performs feature discretization to reveal
differences between classes; second, it uses windows of variable lengths, also considering
the order of windows; and finally, it uses statistical feature selection, leading to significantly
reduced runtime. Finally, WEASEL uses unigram and bigrams’ symbolic representation of
the time series. WEASEL is more scalable and accurate than BOSS, but it is not as scalable
as BOSS-VS, as shown in [9].

ROCKET [7] is a non-symbolic time series classification algorithm that uses numerous
(10,000) convolution kernels together with a linear classifier (ridge regression or logistic
regression). A significantly faster version of ROCKET, called MiniRocket, is presented
in [8], which uses fewer parameters than ROCKET to extract features, without sacrificing
accuracy. Multi-Rocket [10] uses first differences to further improve accuracy compared
to Mini-Rocket: Given a time series x with subsequent points with arithmetic values xi,
i = 0, 1, . . ., first-order differences are computed following outi = xi+1 − xi, revealing time
series trend information. Dilation allows for certain elements in the input time series to
be downsampled by a factor d, by including every d-th time series value. The ROCKET
family of algorithms does not employ a symbolic representation of time series, and it
proves to be very scalable while maintaining state-of-the-art accuracy. However, first-order
differences and dilation parameters can also be applied on top of algorithms that use
symbolic representations to increase their accuracy.

Leveraging these ideas, WEASEL 2.0 [11] builds an ensemble of classifiers, choos-
ing at random window sizes, dilation and the use of first-order differences. Combining
windowing and dilation, each window at offset i and of length l includes l time series

Appl. Sci. 2024, 14, 689 4 of 25

elements which are downsampled starting from i by a factor d: This combination increases
the receptive field of the algorithms with respect to the windowing process. Using these
techniques, WEASEL 2.0 manages to provide state-of-the-art accuracy while maintaining
computational efficiency.

Similarly, MR-SQM [19,20] uses different kinds of symbolic representations to improve
accuracy.

TDE [21] is a classification algorithm that combines design features of four classifiers
(BOSS, WEASEL, S-BOSS, and cBOSS). Like BOSS, TDE is a homogeneous ensemble of
nearest neighbor classifiers that uses distance between histograms of word counts and
injects diversity via parameter variation. TDE takes the ensemble structure from cBOSS,
which is more robust and scalable. The use of spatial pyramids is adapted from S-BOSS
and it uses bi-grams like WEASEL. TDE is significantly more accurate than WEASEL and
S-BOSS while retaining the scalability of cBOSS.

In [22], the authors present Contracted Shapelets, a method to speedup shapelet-
based time series classification by performing early abandon. The authors present binary
shapelets in order to address three problems of shapelet transform: loss of class information,
managing easy vs. hard to classify classes, and addressing multi-class problems.

In [23], the authors propose Proximity Forest, an algorithm that learns accurate models
from datasets with millions of time series and classifies a time series in milliseconds.
The models are ensembles of highly randomized Proximity Trees. Whereas conventional
decision trees branch on attribute values (and usually perform poorly on time series),
Proximity Trees branch on the proximity of time series to exemplar time series, leveraging
the decades of work into developing relevant measures for time series. The authors show
that their multi-resolution multi-domain linear classifier achieves a similar accuracy to the
state-of-the-art COTE ensemble, as well as to recent deep learning methods (FCN, ResNet).

TS-CHIEF (Time Series Combination of Heterogeneous and Integrated Embedding
Forest) [6] rivals HIVE-COTE in accuracy, but it is significantly faster. TS-CHIEF constructs
an ensemble classifier that integrates the most effective methods in the TSC literature such
as BOSS and Proximity Forest.

In this paper, we present an improved version of SCALE-BOSS [9], called SCALE-
BOSS-MR (i.e., SCALE-BOSS with Multiple Representations). SCALE-BOSS-MR draws
inspiration from many diverse state-of-the-art TSC algorithms in order to improve accuracy
and bring the framework closer to the state-of-the-art algorithms to which it is compared
with in Section 4, without increasing the computational cost of TSC methods. More
concretely, in SCALE-BOSS-MR, we explore (a) the use of first-order differences to encode
trend information similarly to Multi-Rocket [10], (b) the use of different window sizes over
the time series similarly to WEASEL [18], and finally, (c) the use of dilation similarly to
Rocket [7] and WEASEL 2.0 [11].

3. Framework Description: From SCALE-BOSS to SCALE-BOSS-MR

As already pointed out, two main ideas behind the SCALE-BOSS framework are
as follows: (a) Exploit symbolic representations of time-series, and (b) leverage efficient
machine learning algorithms for clustering and classification. Especially, we focus on
models that exploit representatives of time series, so as to balance between computational
efficiency and prediction accuracy.

As shown in Figure 1, the first step of this framework is to compute the symbolic
representation of the training set. Any symbolic representation such as SFA or SAX can be
used here.

Figure 1. SCALE-BOSS workflow.

Appl. Sci. 2024, 14, 689 5 of 25

Then, the second step computes the Term-Frequency Vectors for the training set, thus
creating a Bag-Of-SFA Symbols (BOSS) for the training set.

The third step computes the models of time series, which will be used subsequently
for making time series label predictions: To construct such a model, we can use either a
clustering or a classification mechanism exploiting the term-frequency vectors. In any case,
our interest is on these models that learn representatives of classes/clusters to whom test
cases will be compared with, without excluding others.

Having these models, the fourth step computes the symbolic representation for the
test set, while the fifth step computes the term-frequency vectors for the test set.

The sixth and final step predicts the label for the test case exploiting the model used.
Specifically, in this work, and in case we use a time-series clustering mechanism, a 1-NN
classifier classifies the test time series by comparing it to the representatives of each cluster.
On the other hand, if a classifier is used, then the test time series is classified using the
trained classifier model.

For the different instantiations of the framework, here we succinctly mention all the
choices made and alternatives in the TSC pipeline:

1. We have chosen SFA as the symbolic representation. The framework can be tuned to
other symbolic representations, but we have chosen SFA because it has been proven
superior to others (e.g., SAX) [15,24].

2. Regarding clustering algorithms, we evaluated the use of K-Means, Mini-Batch K-
Means, BIRCH, DBSCAN, and K-Medoids.

3. Regarding classifiers, we tested the framework with SGD, LinearSVC, AdaBoost,
Multi-Layer Perceptron, Naive Bayes, QDA, RBF-VSM, Decision Trees (DT), and
Random Forest (RF).

4. Regarding the distance measure for comparing time series in the clustering approach,
we use the cosine similarity of their term-frequency vectors.

It is not our purpose to describe here all alternative clustering and classification
methods that have been used, but subsequently,we provide details on the most effective
ones, focusing on those that provide a condensed representation of time series in a form of
time series class representatives.

Considering the clustering algorithms, all algorithms exploit representatives, except
DBSCAN [25,26], which was used as a classic algorithm of density-based time series
clustering methods. From the classifiers, we consider that DT and RF provide an elaborated
representation of time series along model (decision tree) paths, which can be considered to
model training set variations, much like class time series class representatives do.

Close to tree representations, BIRCH [27] is an incremental clustering algorithm using
Clustering Feature Trees. BIRCH uses the concept of a Clustering Feature (CF): this is a
triple that contains the number of data points in the cluster, the linear sum of the points,
and the square sum of the points. A CF tree is a height-balanced tree with two parameters:
the branching factor B and the threshold T. Each non-leaf node contains at most B entries of
the form (CF, childi), and each leaf node consists of L CFs. In addition, each leaf node has
two pointers, “prev” and “next”, which are used to chain all leaf nodes together for efficient
scans. All entries in a leaf node must satisfy a threshold requirement, with respect to a
threshold value, and thus, a leaf node represents a cluster made up of all the subclusters
represented by its entries.

While the K-BOSS-VS method [15] applies K-means to each class label of the training
set to obtain the K representatives per class, we have evaluated the use of clustering variants
that increase the computational efficiency of the overall method, such as Mini-Batch K-
Means [28], thus resulting in the MB-K-BOSS-VS configuration. Mini-Batch K-Means is an
online variant of the K-Means clustering algorithm that converges using only a subset of
the dataset and has results very close to the full K-Means clustering algorithm.

In addition to these clustering algorithms, we also evaluated the use of the K-Medoids
algorithm [29]. This is a fast and simple algorithm that calculates the distance matrix once
and then finds the cluster medoids in each iteration step.

Appl. Sci. 2024, 14, 689 6 of 25

Using decision trees to classify symbolic representations of time series, instead of
using similarities between the representatives and the test set, we feed the normalized
term-frequency vectors of the training set into a decision tree (DT) classifier or a random
forest (RF) classifier. Then, the trained model is used to infer the class label for each time
series in the test set. RF is essentially an ensemble variant of DT, allowing us to vary the
number of trees, much like varying the number of class representatives in K-BOSS-VS.

In the evaluation reported in [9], we show that amongst the classifiers, Random Forest
and MLP provided the best results. For clustering algorithms, Mini-Batch K-Means and
K-Means provided the best accuracy. In any case, although computationally efficient, the
accuracy achieved by these methods is lower than that of state-of-the-art methods.

SCALE-BOSS-MR refines the SCALE-BOSS framework by fusing multiple representa-
tions into a single term-frequency vector that is in turn fed into the regular SCALE-BOSS
pipeline. This procedure was mostly inspired by WEASEL [18]. Multiple representations
of time series result from the use of first differences of time series in combination with
multiple temporal time series’ windows and multiple dilation filters. Given any specific
dilated window, this is processed to obtain a term-frequency vector using unigrams or
bigrams, and all the term vectors from all dilated windows are stacked column-wise to
provide the representation of the time series.

More specifically, as we can see in Figure 2, the SCALE-BOSS-MR framework works,
stage by stage, as follows:

1. Computes the dilated windows for the training set given a configuration of W window
sizes in a set of window_con f igs and D dilation filters in a set of
dilation_ f ilter_con f igs. This results in DW = W × D dilated windows configura-
tions;

2. Computes the DW first-order differences’ dilated windows, i.e., dilated windows for
the time series created by the first-order differences of the original time series;

3. Computes the term-frequency vectors of dilated windows for the original time series
and of the dilated windows for the first-order differences’ time series, then stacks the
term-frequency vectors column-wise;

4. Fits the model using the time series representations of the training set;
5. In the next three stages, computes the symbolic representation for the dilated windows

of a time series from the test set, as well as the corresponding first-order differences’
time series, then computes and stacks the term-frequency vectors.

Figure 2. SCALE-BOSS-MR workflow.

Algorithm 1 provides a succinct and comprehensive description of SCALE-BOSS-MR.
More specifically, lines 1–9 describe the main SBMR function: in lines 2 and 3, the

algorithm loops over window configurations and dilation sizes configurations. For each
window configuration, it computes the dilated time series according to the dilation parame-
ter and produces the term-frequency vector. Line 6 maintains the resulting term-frequency
vector by concatenating column-wise term-frequency vectors produced by each window
and dilation configuration.

Lines 11 and 12 of the algorithm initialize an empty term-frequency vector for the train
and test set, respectively. In Line 13, the algorithm computes the term-frequency vector for
the training set.

Appl. Sci. 2024, 14, 689 7 of 25

Algorithm 1: SCALE-BOSS-MR algorithm
Input :X: the training set
Input :y_train: the labels for the training set
Input :X_test: the test set
Input :window_configs: the window sizes and steps
Input :dilation_filter_configs: the dilation filter sizes
Input :clf: Classifier that can work on term-frequency vectors
Output :predicted: the predictions for the test set

1 Function SBMR-inner(X, window_con f igs, dilation_ f ilter_con f igs,
global_term_ f requency_vector):

2 for curr_window_con f ig in window_con f igs do
3 for curr_dilation_ f ilter in dilation_ f ilter_con f igs do
4 X_dilated← dilation (X,curr_dilation_filter)
5 curr_term_frequency_vector_train← process_time_series

(X_dilated,curr_window_config)
6 global_term_frequency_vector← hstack

(global_term_frequency_vector,curr_term_frequency_vector)
7 end for
8 end for
9 return

10

11 global_term_frequency_vector_train← array ()
12 global_term_frequency_vector_test← array ()
13 SBMR-inner (X,window_configs, dilation_filter_configs,

global_term_frequency_vector_train)
14 if doTrend then
15 X_trend_train← diff (X)
16 SBMR-inner (X_trend_train,window_configs, dilation_filter_configs,

global_term_frequency_vector_train)
17 clf.fit (global_term_frequency_vector_train,y_train)
18 SBMR-inner (X_test,window_configs, dilation_filter_configs,

global_term_frequency_vector_test)
19 if doTrend then
20 X_trend_test← diff (X_test)
21 SBMR-inner (X_trend_test,window_configs, dilation_filter_configs,

global_term_frequency_vector_test)
22 predicted← clf.predict (global_term_frequency_vector_test)
23 return predicted

Incorporating first-order differences into the process is an optional alternative, and
one can configure the method using the doTrend variable. In Lines 14 to 16, the algorithm
calls for the SBMR function for the first-order differences’ time series of the training
set, maintaining the resulting term-frequency vector by concatenating column-wise term-
frequency vectors produced by each window and dilation configuration. In Line 17, the
classifier is trained on the final term-frequency vectors for the training set. Similarly, in
Line 18, the algorithm calls for the SBMR function for the first-order differences’ time series
of the test set and proceeds in Lines 19 to 21 to compute the term-frequency vector for the
test set. Finally, in Line 22, the classifier makes its predictions, taking as input the final
concatenated term-frequency vector for the test set.

The framework has been implemented on top of the pyts [30] Time Series Classification
library. The source code of the SCALE-BOSS-MR implementation is provided in https://github.
com/aglenis/scale_boss_mr (accessed on 8 January 2024).

We have chosen the word length to be equal to four in all the configurations we explore,
given that it is the “default” for the BOSS-VS implementation of pyts.

https://github.com/aglenis/scale_boss_mr
https://github.com/aglenis/scale_boss_mr

Appl. Sci. 2024, 14, 689 8 of 25

Additionally, when computing the symbolic representation, we use unigrams, or
unigrams and bigrams: Using bigrams and unigrams helps retain sequence information
that is inherently lost in the bag-of-words model.

As a final note, it is clear from the specified algorithm that trend information is split in
parts by the windowing process applied on first-order differences’ time series, according to
the windowing and dilation configurations.

For the different clustering algorithms and classifiers, we have used the implementa-
tions provided by the Sci-kit Learn [31] python library.

4. Evaluation

Aiming to balance between accuracy of predictions and efficiency in training and
testing, we evaluate instantiations of the SCALE-BOSS-MR framework in comparison to
the state-of-the-art methods, in terms of the mean total time and mean accuracy.

The mean total time is the total execution time (both train and test time) for all datasets
divided by the total number of datasets. The mean accuracy is the average accuracy across
all datasets. We also provide the standard deviation (std) of the total execution time and of
accuracy.

Accuracy and execution time are the commonly used measures to report performance
in most works in the literature, e.g., [11]. This choice allows us to be directly comparable to
other algorithms. However, to comprehensively present the strengths and limitations of
SCALE-BOSS-MR, we directly compare SCALE-BOSS-MR configurations with state-of-the-
art algorithms such as WEASEL 2.0, Rocket, MiniRocket, and MRSQM.

While Appendix A reports on accuracy and total execution time for individual
time series datasets, we report on mean accuracy and mean total execution time in the
main part of the paper, comprehensively providing the strengths and limitations of the
proposed framework.

Table 1 shows the characteristics of the UCR datasets used in the evaluation. UCR time-
series datasets are the de facto datasets for time series classification, and we have chosen
to use the eight datasets from the UCR time series repository with the largest training set.
Train_size denote the number of time series in the training set, test_size denote the number
of time series in the test set, n_classes denotes the number of classes in the dataset, and
n_timestamps denotes the length of each time series in the dataset. The datasets are split
into train and test time series by the dataset providers.

Table 1. Characteristics of the datasets.

Name Train_Size Test_Size n_Classes n_Timestamps

Crop 7200 16,800 24 46
FordB 3636 810 2 500
FordA 3601 1320 2 500
NonInvasiveFetalECGThorax2 1800 1965 42 750
NonInvasiveFetalECGThorax1 1800 1965 42 750
PhalangesOutlinesCorrect 1800 858 2 80
HandOutlines 1000 370 2 2709
TwoPatterns 1000 4000 4 128

Table 2 specifies the configurations of window sizes and window steps. When the
value is a float, the float represent the percentage of the size of time series. If the value is
an integer, then this denotes the number of subsequent time series points included in the
window. Integer values of the window sizes are those used by WEASEL in [18]; however,
with sufficiently large differences between subsequent window configuration sizes (i.e.,
four). Similarly, float values are those provided by pyts as initial values, and we add to
them to these further configurations for exploration.

Appl. Sci. 2024, 14, 689 9 of 25

Table 2. Window configurations.

Name Window_Configs (Window Sizes) Window Step

W0 24 1
W1 0.1, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 0.0125
W2 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 0.0125
W3 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 0.00625
W4 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 0.003125
W5 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 0.003125
W6 4, 12, 28 1
W7 4, 8, 12, 16, 20, 24, 28 1
W8 4, 8, 12, 16, 20, 24, 28, 32, 36, 40 1
W9 12, 16, 20, 24, 28, 32, 36, 40 1
W10 12, 16, 20, 24, 28, 32, 36, 40 2
W11 12, 16, 20, 24, 28, 32, 36, 40 4
W12 4, 8, 12, 16, 20, 24, 28, 32, 36, 40 4
W13 4, 8, 12, 16, 20, 24, 28, 32, 36, 40 2
W14 12, 16, 20, 24, 28, 32 2
W15 12, 16, 20, 24, 28, 32, 36, 40, 32 8

Table 3 shows dilation configurations in terms of the dilation factors. These dilation
configurations are those mostly suggested in [11]. We subsequently perform a thorough
evaluation to determine the best dilation configuration parameters in order to balance
between accuracy and execution time.

Table 3. Dilation configurations.

Name Dilation_Filter_Configs

D0 1 (no dilation)
D1 1, 5, 7, 9, 11
D2 1, 7, 9, 11
D3 1, 7, 11
D4 1, 11
D5 1, 7
D6 1, 9

To present the results, we use the following SCALE-BOSS-MR configurations’ naming
convention:

NAME-CLS_METHOD-WINDOW_CONFIG-USE_OF_TREND-DILATION_CONFIG-
NGRAM,
where

• NAME is the name of the method used; for example, SBMR corresponds to SCALE-
BOSS-MR;

• CLS METHOD refers to the classifier used, e.g., Random Forest (RF), MLP, or MB-
K-BOSS-VS. The MB-K-BOSS-VS classifier exploits the concatenated term-frequency
vector resulting from the SCALE-BOSS-MR workflow, etc.;

• WINDOW CONFIG refers to the window configuration as described in Table 2;
• USE OF TREND denotes whether or not we use first-order differences to encode trend

information. When the configuration uses first-order differences, this is denoted by
“trend”, whereas if not, we denoted it as “noTrend”;

• DILATION CONFIG denotes the dilation filter values as described in Table 3;
• NGRAM denotes whether we use unigrams or unigrams together with bigrams.

Unigrams are denoted as UG whereas unigrams and bigrams are denoted as BG.

Appl. Sci. 2024, 14, 689 10 of 25

Table 4 shows the results from different SBMR configurations, including also BOSS-
RF, BOSS-MLP, and MB-K-BOSS-VS, all with trend information and no multiple window
configurations, but with alternative dilation configurations and n-grams.

Table 4. Accuracy and total execution time of the classifiers using the W0 windows configuration.

Accuracy_Mean Accuracy_std Total_Time_Mean Total_Time_std
Algorithm

SBMR-RF-W0-trend-D1-BG 0.857 0.089 111.7 57.8
SBMR-RF-W0-trend-D3-BG 0.857 0.085 70.0 36.4
SBMR-RF-W0-trend-D2-BG 0.856 0.085 92.1 47.0
SBMR-RF-W0-trend-D6-BG 0.849 0.082 52.4 26.7
SBMR-RF-W0-trend-D1-UG 0.848 0.083 101.6 57.3
SBMR-RF-W0-trend-D4-BG 0.847 0.078 46.0 23.6
SBMR-RF-W0-trend-D5-BG 0.843 0.085 51.2 26.5
SBMR-RF-W0-trend-D6-UG 0.839 0.082 38.8 21.6
SBMR-RF-W0-trend-D0-UG 0.827 0.080 19.1 11.6
SBMR-MLP-W0-trend-D0-UG 0.816 0.090 21.9 10.6
BOSS-RF 0.796 0.088 9.7 5.5
BOSS-MLP 0.778 0.102 12.5 5.4
SBMR-MB-K-BOSS-VS-trend-D0-UG 0.766 0.098 19.0 11.7
MB-K-BOSS-VS 0.727 0.101 11.5 6.9

Additionally, Table 5 shows results from different SBMR configurations, with and
without trend information and no dilation, but with different classifiers, window con-
figurations, and n-grams. Tables 4 and 5 show, among others, that RF are the most
competitive classifiers.

Table 5. Accuracy and execution time of configurations with multiple window sizes.

Accuracy_Mean Accuracy_std Total_Time_Mean Total_Time_std
Algorithm

SBMR-RF-W8-trend-D0-UG 0.869 0.079 204.0 130.6
SBMR-RF-W8-trend-D0-BG 0.863 0.081 216.8 123.2
SBMR-RF-W9-trend-D0-UG 0.862 0.080 154.9 96.8
SBMR-RF-W10-trend-D0-UG 0.862 0.078 72.7 45.5
SBMR-RF-W8-noTrend-D0-BG 0.861 0.080 104.6 60.6
SBMR-RF-W13-trend-D0-UG 0.861 0.074 91.8 55.9
SBMR-RF-W8-noTrend-D0-UG 0.859 0.078 93.8 59.1
SBMR-RF-W14-trend-D0-UG 0.850 0.073 54.8 33.4
SBMR-RF-W11-trend-D0-UG 0.846 0.074 36.5 21.3
SBMR-RF-W12-trend-D0-UG 0.845 0.070 44.9 25.8
SBMR-RF-W7-noTrend-D0-UG 0.843 0.072 60.8 36.6
SBMR-RF-W6-trend-D0-UG 0.842 0.081 52.8 32.3
SBMR-RF-W4-trend-D0-UG 0.841 0.097 264.9 203.1
SBMR-RF-W1-trend-D0-BG 0.832 0.103 58.3 36.5
SBMR-RF-W1-trend-D0-UG 0.830 0.101 49.6 31.9
SBMR-RF-W4-noTrend-D0-UG 0.830 0.100 132.1 105.1
SBMR-RF-W5-noTrend-D0-UG 0.825 0.098 80.1 67.9
SBMR-RF-W3-noTrend-D0-UG 0.824 0.106 75.7 50.8
SBMR-RF-W2-noTrend-D0-UG 0.814 0.110 42.3 23.4
SBMR-RF-W1-noTrend-D0-BG 0.814 0.106 29.8 17.8
SBMR-RF-W1-noTrend-D0-UG 0.813 0.105 25.8 17.2
SBMR-MB-K-BOSS-VS-W1-trend-D0-BG 0.794 0.098 67.6 56.8
SBMR-MB-K-BOSS-VS-W1-trend-D0-UG 0.788 0.112 43.5 27.9

Appl. Sci. 2024, 14, 689 11 of 25

Table 5. Cont.

Accuracy_Mean Accuracy_std Total_Time_Mean Total_Time_std
Algorithm

SBMR-MB-K-BOSS-VS-W1-noTrend-D0-BG 0.767 0.106 32.5 24.9
SBMR-MB-K-BOSS-VS-W1-noTrend-D0-UG 0.760 0.113 23.1 15.4

Table 6 shows different configurations with RF classifiers, but also with different
combinations of window and dilation configurations.

Table 6. Accuracy and execution time for combinations of window and dilation configurations.

Accuracy_Mean Accuracy_std Total_Time_Mean Total_Time_std
Algorithm

SBMR-RF-W8-trend-D6-BG 0.875 0.079 489.0 234.5
SBMR-RF-W14-trend-D3-BG 0.865 0.077 230.8 105.2
SBMR-RF-W10-trend-D6-BG 0.865 0.073 217.9 100.4
SBMR-RF-W14-trend-D6-BG 0.863 0.074 149.2 68.3
SBMR-RF-W11-trend-D3-BG 0.859 0.073 201.1 103.7
SBMR-RF-W11-trend-D6-BG 0.857 0.073 116.3 54.1

Subsequently, we describe the major findings from the results reported in these tables
and provide further results that allow us to show the potential of the proposed approach.

4.1. Evaluation of SBMR with D0 and W0 Configurations

From Table 4 and Figure 3, we can see the following.

1. BOSS-RF starts with an approximately 0.8 accuracy and 9.7 s of mean total execution time;
2. SBMR-RF-W0-trend-D0-UG achieves a 0.827 accuracy with 19.7 s of mean total execu-

tion time. This means that adding trend information gives a boost in accuracy, but at
the expense of doubling the mean total execution time;

3. SBMR-RF-W0-trend-D6-BG achieves a 0.849 accuracy with 52 s of mean total execution
time. This means that even moderate dilation helps to boost accuracy at the expense
of further increasing the total execution time;

4. SBMR-RF-W0-trend-D3-BG achieves an accuracy of 0.857 with 70 s of mean total
execution time.

From the above, we can conclude the following:

1. Bigrams with dilation help to improve the accuracy of the method;
2. D6 (described in Table 3) performs better than D4 (with little difference) and D5 (with

slightly bigger difference) configurations;
3. However, D3 (as described in Table 3) performs best (but with slightly worse total

execution time compared to D6 and D4 configurations). This is expected, as the
representations from D3 are more in number compared to those of D4 and D6, while
it seems that the receptive field introduced by D4 and D6 is not sufficient for the
algorithms to discriminate between time series’ classes effectively. It must be noted
that in these configurations, dilation applies once to the time series, as these use the
W0 window configuration. This is further supported by the results reported by D1 and
D2, which incorporate the representations produced by D3 and D6, thus achieving
nearly the same accuracy, but with considerably increased total execution time;

4. An additional finding is that representations with bigrams (BG) are in general more effec-
tive compared to those using unigrams (UG), in these configurations of the framework.

Appl. Sci. 2024, 14, 689 12 of 25

Figure 3. Total execution time (in seconds) and accuracy for single window representation.

Table 5 provides evidence on window configurations with no dilation. Contrary to
what is reported in Table 4, here, representations with unigrams seem to be more effective
compared to those with bigrams, while it is clear that adding representations with trend
increases the mean classification accuracy. The W8 configuration reports the best mean
accuracy among others, although with increased total execution time. This is so, given
that W8 incorporates many window configurations, all with step 1. In contrast, W10 is
an indicative case with slightly fewer window configurations, and step 2 achieves worst
accuracy, but with significantly reduced mean total execution time.

4.2. Evaluation of SBMR-RF with Multiple Windows and Dilation Configuration

Table 6 and Figure 4 report on configurations combing window and dilation configu-
rations, with representations including bigrams, including trend information. The results
show the following:

1. SBMR-RF-W8-D6-trend-BG achieves an accuracy of 0.875 with 489 s of mean total
execution time compared to the undilated 0.863 with 216 s of mean total execution
time reported in Table 5;

2. SBMR-RF-W14-D6-trend-BG achieves a slightly worst accuracy of 0.863 with signif-
icantly reduced mean total execution time of 149 s versus 0.850 with 54 s for the
undilated case reported in Table 5;

3. SBMR-RF-W11-D6-trend-BG achieves an accuracy of 0.857 with 116 s compared to
0.846 with 36 s for the undilated case reported in Table 5;

4. SBMR-RF-W10-D6-trend-BG achieves an accuracy of 0.865 with 217 s compared to
0.862 with 72 s for the undilated case reported in Table 5.

From the above, we can conclude the following:

1. Dilation combined with window configurations has a considerable impact on total
execution time, as expected, but significantly increases the accuracy of predictions for
any of the windowing configurations;

2. Dilation configuration D3 is slightly better in terms of accuracy compared to con-
figuration D6, which is significantly faster than D3. This is due to the fact that D3
increases the time series representations when combined with window configurations,
resulting in the worst total execution time compared to D6. This leads us to believe
that D6 achieves a good balance between total execution time and accuracy when it is
combined with suitable window configurations.

Appl. Sci. 2024, 14, 689 13 of 25

Figure 4. Average total execution time (in seconds) and accuracy for multiple window configurations.

4.3. Evaluation of SBMR with the Ridge Regression with Cross-Validation Classifier

As part of the evaluation, we used a Ridge Regression with a Cross-Validation classifier
denoted by RidgeCV. We chose to run experiments using RidgeCV because it is the classifier
used in ROCKET, miniRocket, and WEASEL 2.0.

The results with the RidgeCV and W0 configuration can be found in Table 7, showing,
at a great extent, consistency with the results reported for RF.

From Table 8 and Figure 5, we can see the following:

1. The best configuration in terms of accuracy is SBMR-RidgeCV-W8-trend-D6-BG,
which achieves an accuracy of 0.892 with 517.5 s of mean total execution time.

2. Other window configurations can improve the execution time, but at the expense of
lower accuracy:

• SBMR-RidgeCV-W14-trend-D6-BG achieves an accuracy of 0.882 with 160.4 s of
mean total execution time;

• SBMR-RidgeCV-W11-trend-D6-BG achieves an accuracy of 0.881 with 129 s of
mean total execution time;

• SBMR-RidgeCV-W0-trend-D6-BG achieves an accuracy of 0.844 with 70.2 s of
mean total execution time.

3. Opting for no dilation but with different window configurations can further improve
the total execution time, but at the expense of even lower accuracy:

• SBMR-RidgeCV-W11-trend-D0-BG achieves an accuracy of 0.844 with 63.5 s of
mean total execution time;

• SBMR-RidgeCV-W15-trend-D0-BG achieves an accuracy of 0.831 with 40.6 s of
mean total execution time;

• SBMR-RidgeCV-W11-trend-D0-UG achieves an accuracy of 0.827 with 43.7 s of
mean total execution time.

Appl. Sci. 2024, 14, 689 14 of 25

Table 7. Accuracy and execution time of RidgeCV classifier without multiple windows.

Accuracy_Mean Accuracy_std Total_Time_Mean Total_Time_std
Algorithm

SBMR-RidgeCV-W0-trend-D1-BG 0.858 0.095 135.9 66.4
SBMR-RidgeCV-W0-trend-D2-BG 0.855 0.094 100.2 48.8
SBMR-RidgeCV-W0-trend-D3-BG 0.852 0.090 78.2 38.0
SBMR-RidgeCV-W0-trend-D6-BG 0.844 0.087 59.6 37.4
SBMR-RidgeCV-W0-trend-D5-BG 0.841 0.095 59.8 33.8
SBMR-RidgeCV-W0-trend-D4-BG 0.840 0.089 60.2 36.4
SBMR-RidgeCV-W0-trend-D6-UG 0.818 0.101 38.7 21.9
SBMR-RidgeCV-W0-trend-D0-UG 0.780 0.101 21.5 11.4
SBMR-RidgeCV-W0-noTrend-D0-UG 0.743 0.100 11.2 6.0

Table 8. Accuracy and execution time of RidgeCV classifier with multiple windows and dilation
configurations.

Accuracy_Mean Accuracy_std Total_Time_Mean Total_Time_std
Algorithm

SBMR-RidgeCV-W8-trend-D6-BG 0.892 0.079 517.5 247.6
SBMR-RidgeCV-W14-trend-D6-BG 0.882 0.077 160.4 76.3
SBMR-RidgeCV-W11-trend-D6-BG 0.881 0.076 129.0 68.3
SBMR-RidgeCV-W15-trend-D6-BG 0.871 0.071 78.9 51.7
SBMR-RidgeCV-W0-trend-D6-BG 0.844 0.087 70.2 43.6
SBMR-RidgeCV-W11-trend-D0-BG 0.844 0.075 63.5 35.9
SBMR-RidgeCV-W15-trend-D0-BG 0.831 0.072 40.5 30.0
SBMR-RidgeCV-W11-trend-D0-UG 0.827 0.085 43.6 22.6

Figure 5. Average total execution time (in seconds) and accuracy using ridge regression.

From the above, we can see that using RidgeCV SCALE-BOSS-MR gives better results
in terms of accuracy when using both multiple windows representation and dilation,
compared to RF, without a significant increase in total execution time.

Appl. Sci. 2024, 14, 689 15 of 25

4.4. Comparison with the State-of-the-Art Algorithms

From the state-of-the-art algorithms, WEASEL 2.0 and MR-SQM exploit symbolic
representations and are thus closer to our method. Table 9 and Figure 6 report on state-of-
the-art algorithms:

1. WEASEL V2.0 achieves the best accuracy of 0.904 with 339 s of mean total execution
time compared to 309 of Rocket and 18.7 s of Mini-Rocket;

2. MR-SQM with five SFA representations achieves a 0.889 accuracy with 418 s of mean
total execution time. With single SFA representation and single SAX representation, it
achieves 0.878 with 176 s of exec time. Using only a single SFA, it achieves an accuracy
of 0.861 with 117 s of mean total execution time.

Given the above results, we can conclude the following:

1. SBMR-RidgeCV-W8-trend-D6-BG achieves an almost state-of-the-art accuracy, but
with a significant increase in total execution time compared with the state-of-the-art
methods. SBMR-RidgeCV-W8-trend-D6-BG is only 1% less accurate than WEASEL 2.0,
Rocket, and MiniRocket. This suggests that the added representations help achieve a
state-of-the-art accuracy;

2. SBMR-RidgeCV-W11-trend-D6-BG achieves an accuracy of 0.881, very close to the ac-
curacy achieved by state-of-the-art algorithms, and with 129 s of mean total execution
time, which is significantly faster than state-of-the-art algorithms exploiting symbolic
representations;

3. SBMR-RidgeCV-W15-trend-D6-BG achieves an accuracy of 0.871, which is still close
to the state of the art with 79 s of mean total execution time, being even faster than
SBMR-RidgeCV-W11-trend-D6-BG.

Figure 6. Average total execution time (in seconds) and accuracy for the state-of-the-art representations.

These results show that the SCALE-BOSS-MR can be configured to achieve high
accuracy, with low total execution time, compared to state-of-the-art methods exploiting
symbolic representations.

Appl. Sci. 2024, 14, 689 16 of 25

Table 9. Accuracy and execution time of state-of-the-art algorithms.

Accuracy_Mean Accuracy_Pop_std Total_Time_Mean Total_Time_Pop_std
Algorithm

WEASEL_V2 0.904 0.078 339.6 189.9
Rocket 0.901 0.084 309.3 167.7
MiniRocket 0.900 0.082 18.7 20.1
MRSQM_nsax0_nsfa5 0.889 0.093 418.8 239.4
MRSQM_nsax1_nsfa1 0.878 0.101 176.2 101.1
MRSQM_nsax0_nsfa1 0.861 0.109 117.2 76.1
MRSQM_nsax1_nsfa0 0.839 0.113 104.2 59.0

5. Conclusions

In this paper, we extend the SCALE-BOSS framework by incorporating into the process
multiple time series representations using multiple time series’ windows’ sizes combined
with multiple dilation parameters and applied to the original time series, as well as to the
first-order differences’ time series encoding trend information. Specifically, SCALE-BOSS-
MR presents an improved version of SCALE-BOSS [9], incorporating multiple time series
symbol-only representations, drawing inspiration from many diverse state-of-the-art TSC
algorithms, with the objective to achieve state-of-the-art accuracy without increasing the
computational cost of TSC methods. In so doing, SCALE-BOSS-MR incorporates (a) first-
order differences to encode trend information similarly to Multi-Rocket [10], (b) different
window sizes over the time series similarly to WEASEL [18], and (c) multiple dilation
parameters similarly to Rocket [7] and WEASEL 2.0 [11].

The major findings are as follows: Adding trend information improved TSC accuracy,
while maintaining scalability in terms of execution time. Using both multiple window sizes
and trend information, the produced algorithms reach state-of-the-art accuracy.

Specifically:

1. Trend encoding helps both algorithms in the single window case and when using
multiple window sizes;

2. Adding dilation configurations to the SCALE-BOSS-MR workflow helps significantly,
but it increases the execution time considerably when combined with multiple window
configurations;

3. Adding multiple window sizes to the SCALE-BOSS-MR workflow also helps in
significantly increasing accuracy;

4. Using multiple window sizes, trend information, and dilation, we can achieve state-
of-the-art accuracy. In addition, the resulting method can be tuned to be as efficient as
other state-of-the-art methods exploiting symbolic time series representations;

5. Adding a few representations resulting from different dilation configurations im-
proves accuracy while at the same time retaining scalability. This is validated since
D6 is only marginally worse than D3 in terms of accuracy, but it is significantly faster
and is also combined with suitable window configurations;

6. Ridge regression with cross validation performed the best in terms of accuracy com-
pared to the Random Forest classifier;

7. SCALE-BOSS-MR is only 1% less accurate compared to state-of-the-art algorithms
when tuned for accuracy, while it can be significantly faster than state-of-the-art
algorithms with minimal loss in accuracy (2–3%) when tuned for scalability.

As future work, we plan to port SCALE-BOSS-MR on a parallel processing framework
such as Apache Spark [32], which is similar to [15]. This will allow for (a) incorporating
additional time series representations to further increase accuracy in more efficient ways;
(b) investigating using multiple instantiations of SCALE-BOSS-MR in an ensemble without
compromising efficiency; and (c) providing experimental results with real-world datasets,
with big data characteristics and application/domain-related characteristics (e.g., delay).

Appl. Sci. 2024, 14, 689 17 of 25

Furthermore, while SCALE-BOSS-MR shows that it can be tuned to accuracy vs. com-
putational efficiency, we need effective ways of determining the appropriate configurations
to address real-world requirements: This is an important part of future work as well.

Finally, we do plan to investigate the use of convolutional neural networks on top of
the symbolic representations to further advance accuracy while significantly reducing the
total execution time and well as adapting the SCALE-BOSS-MR algorithm for multivariate
time series classification.

Author Contributions: Conceptualization, A.G. and G.A.V.; methodology, A.G. and G.A.V.; software, A.G.;
validation, A.G. and G.A.V.; formal analysis, A.G. and G.A.V.; investigation, A.G.; resources, not applicable;
data curation, A.G.; writing—original draft preparation, A.G. and G.A.V.; writing—review and editing,
A.G. and G.A.V.; visualization, A.G. and G.A.V.; supervision, G.A.V.; project administration, G.A.V.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The UCR
datasets used in this study can be found at: http://www.timeseriesclassification.com/dataset.php
(accessed on 8 January 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

The appendix shows detailed accuracy and total execution time results for all the
methods and datasets. The detailed tables help compare the proposed methods with other
methods proposed in the literature, as well as compare the proposed methods against each
other on a per-dataset basis.

http://www.timeseriesclassification.com/dataset.php

Appl. Sci. 2024, 14, 689 18 of 25

Table A1. Accuracy of the classifiers without multiple window configurations.

Dataset Crop FordA FordB HandOutlines NonInvasiveFetalECGThorax1 NonInvasiveFetalECGThorax2 PhalangesOutlinesCorrect TwoPatterns
Algorithm

SBMR-RF-W0-trend-D1-BG 0.705 0.911 0.728 0.914 0.900 0.930 0.818 0.952
SBMR-RF-W0-trend-D1-UG 0.710 0.914 0.740 0.835 0.894 0.922 0.814 0.952
SBMR-RF-W0-trend-D3-BG 0.709 0.917 0.738 0.911 0.893 0.925 0.817 0.945
SBMR-RF-W0-trend-D4-BG 0.709 0.910 0.741 0.895 0.884 0.915 0.805 0.916
SBMR-RF-W0-trend-D5-BG 0.708 0.919 0.742 0.792 0.898 0.924 0.812 0.947
SBMR-RF-W0-trend-D6-BG 0.703 0.914 0.741 0.892 0.894 0.919 0.805 0.924
SBMR-RF-W0-trend-D6-UG 0.707 0.912 0.759 0.784 0.907 0.920 0.793 0.929
BOSS-MLP 0.576 0.872 0.695 0.776 0.795 0.798 0.774 0.941
SBMR-MLP-W0-trend-D0-UG 0.641 0.892 0.794 0.749 0.859 0.866 0.779 0.950
BOSS-RF 0.634 0.883 0.717 0.838 0.780 0.823 0.765 0.928
SBMR-RF-W0-trend-D0-UG 0.683 0.924 0.768 0.811 0.845 0.878 0.774 0.936
MB-K-BOSS-VS 0.550 0.833 0.668 0.681 0.702 0.771 0.712 0.902
SBMR-MB-K-BOSS-VS-W0-trend-D0-UG 0.608 0.883 0.720 0.686 0.773 0.828 0.717 0.918

Table A2. Total execution time without multiple window configurations.

Dataset Crop FordA FordB HandOutlines NonInvasiveFetalECGThorax1 NonInvasiveFetalECGThorax2 PhalangesOutlinesCorrect TwoPatterns
Algorithm

SBMR-RF-W0-trend-D1-BG 87.343 135.100 122.949 194.351 152.298 151.977 11.589 38.516
SBMR-RF-W0-trend-D1-UG 58.626 122.240 127.212 184.951 140.944 139.074 10.026 30.200
SBMR-RF-W0-trend-D2-BG 79.353 108.209 104.967 158.977 125.302 121.167 9.591 29.938
SBMR-RF-W0-trend-D3-BG 55.140 86.998 77.606 122.502 94.733 93.438 7.314 23.052
SBMR-RF-W0-trend-D4-BG 37.555 55.917 52.452 79.548 60.430 62.730 4.875 14.792
SBMR-RF-W0-trend-D5-BG 40.507 62.404 56.891 87.589 69.401 71.217 5.389 16.574
SBMR-RF-W0-trend-D6-BG 40.689 63.691 57.149 90.239 72.025 70.745 5.749 19.403
SBMR-RF-W0-trend-D6-UG 25.173 48.654 43.773 70.978 53.165 53.914 3.921 11.617
BOSS-MLP 14.537 12.924 13.113 18.980 16.656 16.805 2.836 4.653
SBMR-MLP-W0-trend-D0-UG 19.615 24.757 25.050 36.260 30.015 29.316 2.973 7.908
BOSS-RF 5.879 11.837 10.547 18.049 13.826 13.815 0.931 2.741
SBMR-RF-W0-trend-D0-UG 8.869 23.781 21.487 36.326 28.164 27.698 1.695 5.371
MB-K-BOSS-VS 5.991 13.669 12.064 21.532 17.655 17.501 0.979 3.261
SBMR-MB-K-BOSS-VS-W0-trend-D0-UG 8.150 23.272 21.998 35.862 27.673 29.041 1.482 5.154

Appl. Sci. 2024, 14, 689 19 of 25

Table A3. Accuracy using different windows’ configurations.

Dataset Crop FordA FordB HandOutlines NonInvasiveFetalECGThorax1 NonInvasiveFetalECGThorax2 PhalangesOutlinesCorrect TwoPatterns
Algorithm

SBMR-MB-K-BOSS-VS-W1-D0-BG 0.673 0.730 0.616 0.886 0.737 0.785 0.739 0.969
SBMR-MB-K-BOSS-VS-W1-trend-D0-BG 0.688 0.791 0.644 0.911 0.792 0.833 0.738 0.953
SBMR-MB-K-BOSS-VS-W1-trend-D0-UG 0.686 0.777 0.609 0.892 0.804 0.827 0.723 0.988
SBMR-MB-K-BOSS-VS-W1-noTrend-D0-UG 0.664 0.719 0.588 0.868 0.752 0.786 0.730 0.979
SBMR-RF-W1-noTrend-D0-BG 0.713 0.811 0.626 0.922 0.810 0.850 0.790 0.988
SBMR-RF-W1-trend-D0-BG 0.723 0.856 0.638 0.914 0.851 0.882 0.807 0.987
SBMR-RF-W1-trend-D0-UG 0.729 0.828 0.644 0.914 0.853 0.880 0.801 0.992
SBMR-RF-W1-noTrend-D0-UG 0.717 0.789 0.632 0.916 0.818 0.851 0.788 0.994
SBMR-RF-W10-trend-D0-UG 0.713 0.933 0.815 0.835 0.901 0.912 0.812 0.971
SBMR-RF-W11-trend-D0-UG 0.708 0.926 0.795 0.816 0.887 0.889 0.802 0.945
SBMR-RF-W12-trend-D0-UG 0.716 0.924 0.788 0.830 0.883 0.888 0.802 0.931
SBMR-RF-W13-trend-D0-UG 0.724 0.930 0.817 0.835 0.903 0.908 0.803 0.963
SBMR-RF-W14-trend-D0-UG 0.710 0.929 0.804 0.838 0.884 0.880 0.803 0.951
SBMR-RF-W2-noTrend-D0-UG 0.718 0.793 0.615 0.924 0.822 0.861 0.790 0.992
SBMR-RF-W3-noTrend-D0-UG 0.719 0.810 0.628 0.916 0.844 0.873 0.810 0.996
SBMR-RF-W4-trend-D0-UG 0.732 0.848 0.672 0.916 0.867 0.893 0.803 0.996
SBMR-RF-W4-noTrend-D0-UG 0.721 0.814 0.662 0.911 0.853 0.883 0.796 0.997
SBMR-RF-W5-noTrend-D0-UG 0.717 0.805 0.670 0.919 0.838 0.863 0.795 0.996
SBMR-RF-W6-trend-D0-UG 0.715 0.908 0.737 0.827 0.905 0.896 0.796 0.950
SBMR-RF-W7-noTrend-D0-UG 0.714 0.912 0.774 0.851 0.860 0.883 0.800 0.949
SBMR-RF-W8-noTrend-D0-BG 0.712 0.930 0.801 0.859 0.894 0.900 0.809 0.984
SBMR-RF-W8-trend-D0-BG 0.724 0.930 0.804 0.830 0.917 0.923 0.800 0.980
SBMR-RF-W8-trend-D0-UG 0.729 0.934 0.804 0.859 0.921 0.914 0.808 0.982
SBMR-RF-W8-noTrend-D0-UG 0.718 0.922 0.805 0.849 0.891 0.898 0.803 0.985
SBMR-RF-W9-trend-D0-UG 0.720 0.927 0.811 0.824 0.914 0.916 0.803 0.981

Appl. Sci. 2024, 14, 689 20 of 25

Table A4. Total execution time using different windows’ configurations.

Dataset Crop FordA FordB HandOutlines NonInvasiveFetalECGThorax1 NonInvasiveFetalECGThorax2 PhalangesOutlinesCorrect TwoPatterns
Algorithm

SBMR-MB-K-BOSS-VS-W1-D0-BG 86.356 20.894 18.920 59.325 25.624 26.825 6.214 16.277
SBMR-MB-K-BOSS-VS-W1-trend-D0-BG 200.633 41.447 37.514 111.834 51.802 50.080 12.117 35.905
SBMR-MB-K-BOSS-VS-W1-trend-D0-UG 63.766 34.822 32.983 105.891 40.918 41.350 9.537 19.486
SBMR-MB-K-BOSS-VS-W1-noTrend-D0-UG 32.922 17.800 16.825 58.226 22.518 22.307 5.061 9.755
SBMR-RF-W1-noTrend-D0-BG 53.764 26.274 21.370 64.255 23.518 25.175 8.189 16.317
SBMR-RF-W1-trend-D0-BG 123.621 48.227 44.306 113.608 44.698 47.865 12.850 31.346
SBMR-RF-W1-trend-D0-UG 67.551 41.563 39.191 123.410 46.112 44.985 11.648 22.346
SBMR-RF-W1-D0-UG 38.886 22.346 19.385 64.721 23.268 21.385 6.192 10.634
SBMR-RF-W10-trend-D0-UG 28.821 90.495 82.290 141.950 105.976 106.154 6.003 20.042
SBMR-RF-W11-trend-D0-UG 19.471 45.179 41.175 69.448 51.510 50.943 3.553 10.818
SBMR-RF-W12-trend-D0-UG 25.852 55.476 49.940 85.222 62.440 62.680 4.545 13.631
SBMR-RF-W13-trend-D0-UG 40.024 113.978 104.673 176.298 133.941 131.057 8.028 26.638
SBMR-RF-W14-trend-D0-UG 24.444 69.885 61.702 106.377 77.706 78.166 4.887 15.989
SBMR-RF-W2-noTrend-D0-UG 66.429 34.471 32.837 86.851 45.062 45.409 9.464 18.323
SBMR-RF-W3-noTrend-D0-UG 54.580 64.919 57.721 190.971 95.157 95.112 9.929 37.914
SBMR-RF-W4-trend-D0-UG 115.171 272.809 248.441 712.521 338.855 337.439 19.800 74.526
SBMR-RF-W4-noTrend-D0-UG 55.183 135.333 123.038 369.460 164.462 163.198 10.083 36.445
SBMR-RF-W5-noTrend-D0-UG 34.064 91.950 82.449 239.261 83.306 85.705 5.608 18.888
SBMR-RF-W6-trend-D0-UG 25.724 66.809 50.068 103.188 78.103 77.710 5.087 15.794
SBMR-RF-W7-noTrend-D0-UG 27.869 76.878 68.603 116.077 86.834 87.152 5.637 17.672
SBMR-RF-W8-noTrend-D0-BG 58.735 129.312 117.890 196.222 148.158 146.636 9.260 31.182
SBMR-RF-W8-trend-D0-BG 130.044 264.569 241.091 404.723 305.697 300.872 20.342 67.718
SBMR-RF-W8-trend-D0-UG 70.762 251.439 226.320 408.547 302.159 297.023 17.237 58.612
SBMR-RF-W8-D0-UG 34.509 117.547 106.560 183.777 137.370 136.876 8.005 26.503
SBMR-RF-W9-trend-D0-D0-UG 55.596 197.256 200.075 294.347 220.346 219.082 11.669 40.845

Table A5. Accuracy results with different windows and dilation configurations.

Dataset Crop FordA FordB HandOutlines NonInvasiveFetalECGThorax1 NonInvasiveFetalECGThorax2 PhalangesOutlinesCorrect TwoPatterns
Algorithm

SBMR-RF-W10-trend-D6-BG 0.722 0.930 0.793 0.914 0.899 0.924 0.814 0.924
SBMR-RF-W11-trend-D3-BG 0.724 0.926 0.774 0.916 0.888 0.915 0.810 0.916
SBMR-RF-W11-trend-D6-BG 0.723 0.926 0.775 0.924 0.894 0.917 0.803 0.891
SBMR-RF-W14-trend-D3-BG 0.719 0.932 0.783 0.911 0.890 0.928 0.818 0.941
SBMR-RF-W14-trend-D6-BG 0.725 0.920 0.780 0.911 0.900 0.924 0.816 0.929
SBMR-RF-W8-trend-D6-BG 0.730 0.928 0.788 0.911 0.922 0.942 0.819 0.959

Appl. Sci. 2024, 14, 689 21 of 25

Table A6. Total execution time results with different windows and dilation configurations.

Dataset Crop FordA FordB HandOutlines NonInvasiveFetalECGThorax1 NonInvasiveFetalECGThorax2 PhalangesOutlinesCorrect TwoPatterns
Algorithm

SBMR-RF-W10-D6-trend-bigram 279.795 250.885 230.631 333.031 270.118 274.105 22.243 83.030
SBMR-RF-W11-D3-trend-bigram 402.083 206.374 187.194 255.903 219.389 212.974 20.059 104.887
SBMR-RF-W11-D6-trend-bigram 196.900 128.388 117.495 158.459 132.424 129.837 12.071 55.198
SBMR-RF-W14-D3-trend-bigram 328.484 257.580 235.637 343.221 281.788 279.821 24.589 95.934
SBMR-RF-W14-D6-trend-bigram 179.336 176.598 156.272 233.769 186.544 186.198 16.465 58.888
SBMR-RF-W8-D6-trend-bigram 548.205 564.149 514.789 815.115 619.852 621.876 50.155 178.285

Table A7. Accuracy using ridge regression classifier without multiple window configurations.

Dataset Crop FordA FordB HandOutlines NonInvasiveFetalECGThorax1 NonInvasiveFetalECGThorax2 PhalangesOutlinesCorrect TwoPatterns
Algorithm

SBMR-RidgeCV-W0-noTrend-D0-UG 0.579 0.885 0.665 0.668 0.743 0.796 0.733 0.877
SBMR-RidgeCV-W0-trend-D0-UG 0.622 0.914 0.743 0.649 0.830 0.843 0.752 0.891
SBMR-RidgeCV-W0-trend-D1-BG 0.717 0.936 0.721 0.886 0.921 0.940 0.787 0.960
SBMR-RidgeCV-W0-trend-D2-BG 0.711 0.923 0.715 0.886 0.917 0.939 0.791 0.958
SBMR-RidgeCV-W0-trend-D3-BG 0.701 0.923 0.749 0.857 0.910 0.933 0.781 0.960
SBMR-RidgeCV-W0-trend-D4-BG 0.696 0.915 0.728 0.838 0.896 0.912 0.779 0.953
SBMR-RidgeCV-W0-trend-D5-BG 0.701 0.934 0.748 0.770 0.909 0.929 0.779 0.959
SBMR-RidgeCV-W0-trend-D6-BG 0.699 0.924 0.741 0.832 0.907 0.926 0.788 0.936
SBMR-RidgeCV-W0-trend-D6-UG 0.648 0.921 0.737 0.746 0.892 0.913 0.755 0.929

Table A8. Total execution time using ridge regression classifier without multiple window configurations.

Dataset Crop FordA FordB HandOutlines NonInvasiveFetalECGThorax1 NonInvasiveFetalECGThorax2 PhalangesOutlinesCorrect TwoPatterns
Algorithm

SBMR-RidgeCV-W0-noTrend-D0-UG 8.016 13.956 12.343 19.992 15.528 15.329 1.144 3.432
SBMR-RidgeCV-W0-trend-D0-UG 15.590 27.439 24.766 37.587 28.384 29.850 2.043 6.809
SBMR-RidgeCV-W0-trend-D1-BG 151.967 158.446 145.818 209.656 182.595 186.436 13.105 39.796
SBMR-RidgeCV-W0-trend-D2-BG 121.808 117.256 105.820 159.941 128.159 128.951 9.795 29.982
SBMR-RidgeCV-W0-trend-D3-BG 99.919 90.811 82.360 124.798 97.516 99.381 8.204 22.887
SBMR-RidgeCV-W0-trend-D4-BG 132.663 63.136 60.237 79.282 63.763 61.836 6.260 14.825
SBMR-RidgeCV-W0-trend-D5-BG 121.146 67.777 61.386 81.091 63.431 62.849 5.928 15.386
SBMR-RidgeCV-W0-trend-D6-BG 135.884 60.460 54.292 80.885 62.658 62.774 5.674 14.681
SBMR-RidgeCV-W0-trend-D6-UG 23.037 47.292 42.238 72.090 54.201 54.692 3.789 12.554

Appl. Sci. 2024, 14, 689 22 of 25

Table A9. Accuracy using ridge regression classifier with different windows’ configurations.

Dataset Crop FordA FordB HandOutlines NonInvasiveFetalECGThorax1 NonInvasiveFetalECGThorax2 PhalangesOutlinesCorrect TwoPatterns
Algorithm

SBMR-RidgeCV-W11-trend-D6-BG 0.750 0.944 0.821 0.941 0.922 0.944 0.790 0.941
SBMR-RidgeCV-W11-trend-D0-BG 0.729 0.938 0.817 0.743 0.885 0.903 0.812 0.924
SBMR-RidgeCV-W11-trend-D0-UG 0.704 0.932 0.810 0.714 0.868 0.884 0.779 0.930
SBMR-RidgeCV-W14-trend-D6-BG 0.729 0.942 0.820 0.927 0.920 0.940 0.819 0.956
SBMR-RidgeCV-W15-trend-D6-BG 0.741 0.938 0.794 0.935 0.912 0.929 0.817 0.906
SBMR-RidgeCV-W15-trend-BG 0.721 0.931 0.807 0.754 0.869 0.897 0.775 0.895
SBMR-RidgeCV-W8-trend-D6-BG 0.747 0.939 0.810 0.938 0.936 0.955 0.830 0.984
SBMR-RidgeCV-W0-trend-D6-BG 0.699 0.924 0.741 0.832 0.907 0.926 0.788 0.936

Table A10. Total execution time using ridge regression classifier with different windows’ configurations.

Dataset Crop FordA FordB HandOutlines NonInvasiveFetalECGThorax1 NonInvasiveFetalECGThorax2 PhalangesOutlinesCorrect TwoPatterns
Algorithm

SBMR-RidgeCV-W11-trend-D6-BG 259.304 139.684 128.264 164.312 137.236 135.372 12.777 55.314
SBMR-RidgeCV-W11-trend-D0-BG 134.422 68.572 62.969 82.938 64.841 64.785 6.752 22.797
SBMR-RidgeCV-W11-trend-D0-UG 35.636 52.451 48.510 76.236 59.065 58.964 5.114 13.579
SBMR-RidgeCV-W14-trend-D6-BG 247.075 179.955 164.707 237.269 190.337 189.244 16.639 58.201
SBMR-RidgeCV-W15-trend-D6-BG 200.779 80.733 75.727 80.190 72.676 72.613 7.627 41.114
SBMR-RidgeCV-W15-trend-D0-BG 112.878 41.061 38.141 41.757 34.921 35.401 4.238 16.034
SBMR-RidgeCV-W8-trend-D6-BG 577.872 604.649 545.924 845.690 664.549 665.130 52.951 183.486
SBMR-RidgeCV-W0-trend-D6-BG 158.734 71.131 64.672 91.027 76.762 75.718 6.973 16.592

Table A11. Accuracy of state-of-the-art algorithms.

Dataset Crop FordA FordB HandOutlines NonInvasiveFetalECGThorax1 NonInvasiveFetalECGThorax2 PhalangesOutlinesCorrect TwoPatterns
Algorithm

MRSQM_nsax0_nsfa1 0.652 0.944 0.815 0.927 0.903 0.929 0.733 0.989
MRSQM_nsax0_nsfa5 0.703 0.948 0.816 0.943 0.935 0.950 0.816 0.999
MRSQM_nsax1_nsfa0 0.623 0.874 0.736 0.911 0.901 0.919 0.759 0.987
MRSQM_nsax1_nsfa1 0.679 0.942 0.812 0.954 0.916 0.933 0.786 0.998
MiniRocket 0.748 0.948 0.819 0.943 0.949 0.965 0.834 0.998
Rocket 0.753 0.943 0.805 0.949 0.951 0.968 0.838 1.000
WEASEL_V2 0.760 0.961 0.840 0.959 0.927 0.955 0.832 0.997

Appl. Sci. 2024, 14, 689 23 of 25

Table A12. Total execution time of state-of-the-art algorithms.

Dataset Crop FordA FordB HandOutlines NonInvasiveFetalECGThorax1 NonInvasiveFetalECGThorax2 PhalangesOutlinesCorrect TwoPatterns
Algorithm

MRSQM_nsax0_nsfa1 264.978 104.805 90.142 138.350 153.971 153.768 9.630 22.638
MRSQM_nsax0_nsfa5 689.978 380.430 360.333 669.216 584.349 562.895 38.789 65.097
MRSQM_nsax1_nsfa0 211.168 104.785 100.683 137.459 121.358 120.781 11.651 25.750
MRSQM_nsax1_nsfa1 306.893 158.834 149.386 277.161 235.267 234.790 15.556 32.008
MiniRocket 70.201 18.755 18.277 11.860 11.730 12.059 3.624 3.249
Rocket 221.754 368.653 347.407 555.628 444.713 411.419 35.938 89.637
WEASEL_V2 251.385 420.989 389.773 651.314 445.368 433.097 35.586 90.074

Appl. Sci. 2024, 14, 689 24 of 25

References
1. Chaovalitwongse, W.A.; Prokopyev, O.A.; Pardalos, P.M. Electroencephalogram (EEG) time series classification: Applications in

epilepsy. Ann. Oper. Res. 2006, 148, 227–250. [CrossRef]
2. Arul, M.; Kareem, A. Applications of shapelet transform to time series classification of earthquake, wind and wave data. Eng.

Struct. 2021, 228, 111564. [CrossRef]
3. Potamitis, I. Classifying insects on the fly. Ecol. Inform. 2014, 21, 40–49. [CrossRef]
4. Susto, G.A.; Cenedese, A.; Terzi, M. Chapter 9—Time-Series Classification Methods: Review and Applications to Power Systems

Data. In Big Data Application in Power Systems; Arghandeh, R., Zhou, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2018;
pp. 179–220. [CrossRef]

5. Schäfer, P. Scalable time series classification. Data Min. Knowl. Discov. 2016, 30, 1273–1298. [CrossRef]
6. Shifaz, A.; Pelletier, C.; Petitjean, F.; Webb, G.I. TS-CHIEF: A scalable and accurate forest algorithm for time series classification.

Data Min. Knowl. Discov. 2020, 34, 742–775. [CrossRef]
7. Dempster, A.; Petitjean, F.; Webb, G.I. ROCKET: Exceptionally fast and accurate time series classification using random

convolutional kernels. Data Min. Knowl. Discov. 2020, 34, 1454–1495. [CrossRef]
8. Dempster, A.; Schmidt, D.F.; Webb, G.I. Minirocket: A very fast (almost) deterministic transform for time series classification. In

Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 14–18 August 2021;
pp. 248–257.

9. Glenis, A.; Vouros, G.A. SCALE-BOSS: A framework for scalable time-series classification using symbolic representations. In
Proceedings of the 12th Hellenic Conference on Artificial Intelligence, Corfu, Greece, 7–9 September 2022; pp. 1–9.

10. Tan, C.W.; Dempster, A.; Bergmeir, C.; Webb, G.I. MultiRocket: Multiple pooling operators and transformations for fast and
effective time series classification. Data Min. Knowl. Discov. 2022, 36, 1623–1646. [CrossRef]

11. Schäfer, P.; Leser, U. WEASEL 2.0—A Random Dilated Dictionary Transform for Fast, Accurate and Memory Constrained Time
Series Classification. arXiv 2023, arXiv:2301.10194.

12. Senin, P.; Malinchik, S. Sax-vsm: Interpretable time series classification using sax and vector space model. In Proceedings of the
2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; pp. 1175–1180.

13. Schäfer, P. The BOSS is concerned with time series classification in the presence of noise. Data Min. Knowl. Discov. 2015,
29, 1505–1530. [CrossRef]

14. Schäfer, P.; Högqvist, M. SFA: A symbolic fourier approximation and index for similarity search in high dimensional datasets.
In Proceedings of the 15th International Conference on Extending Database Technology, Berlin, Germany, 27–30 March 2012;
pp. 516–527.

15. Glenis, A.; Vouros, G.A. Balancing between scalability and accuracy in time-series classification for stream and batch settings. In
Proceedings of the International Conference on Discovery Science, Thessaloniki, Greece, 19–21 October 2020; pp. 265–279.

16. Middlehurst, M.; Vickers, W.; Bagnall, A. Scalable dictionary classifiers for time series classification. In Proceedings of the
International Conference on Intelligent Data Engineering and Automated Learning, Manchester, UK, 14–16 November 2019;
pp. 11–19.

17. Large, J.; Bagnall, A.; Malinowski, S.; Tavenard, R. On time series classification with dictionary-based classifiers. Intell. Data Anal.
2019, 23, 1073–1089. [CrossRef]

18. Schäfer, P.; Leser, U. Fast and accurate time series classification with weasel. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 637–646.

19. Nguyen, T.L.; Ifrim, G. MrSQM: Fast time series classification with symbolic representations. arXiv 2021, arXiv:2109.01036.
20. Nguyen, T.L.; Ifrim, G. Fast time series classification with random symbolic subsequences. In Proceedings of the International

Workshop on Advanced Analytics and Learning on Temporal Data, Grenoble, France, 19–23 September 2022; pp. 50–65.
21. Middlehurst, M.; Large, J.; Cawley, G.; Bagnall, A. The temporal dictionary ensemble (TDE) classifier for time series classification.

In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Ghent, Belgium,
14–18 September 2020; pp. 660–676.

22. Bostrom, A.; Bagnall, A. Binary shapelet transform for multiclass time series classification. In Transactions on Large-Scale Data-and
Knowledge-Centered Systems XXXII; Springer: Berlin/Heidelberg, Germany, 2017; pp. 24–46.

23. Lucas, B.; Shifaz, A.; Pelletier, C.; O’Neill, L.; Zaidi, N.; Goethals, B.; Petitjean, F.; Webb, G.I. Proximity forest: An effective and
scalable distance-based classifier for time series. Data Min. Knowl. Discov. 2019, 33, 607–635. [CrossRef]

24. Mahato, V.; O’Reilly, M.; Cunningham, P. A Comparison of k-NN Methods for Time Series Classification and Regression. In
Proceedings of the AICS, Dublin, Ireland, 6–7 December 2018; pp. 102–113.

25. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the kdd, Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231.

26. Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN.
ACM Trans. Database Syst. 2017, 42, 1–21. [CrossRef]

27. Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: An efficient data clustering method for very large databases. ACM Sigmod Rec.
1996, 25, 103–114. [CrossRef]

28. Sculley, D. Web-scale k-means clustering. In Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC,
USA, 26–30 April 2010; pp. 1177–1178.

http://doi.org/10.1007/s10479-006-0076-x
http://dx.doi.org/10.1016/j.engstruct.2020.111564
http://dx.doi.org/10.1016/j.ecoinf.2013.11.005
http://dx.doi.org/10.1016/B978-0-12-811968-6.00009-7
http://dx.doi.org/10.1007/s10618-015-0441-y
http://dx.doi.org/10.1007/s10618-020-00679-8
http://dx.doi.org/10.1007/s10618-020-00701-z
http://dx.doi.org/10.1007/s10618-022-00844-1
http://dx.doi.org/10.1007/s10618-014-0377-7
http://dx.doi.org/10.3233/IDA-184333
http://dx.doi.org/10.1007/s10618-019-00617-3
http://dx.doi.org/10.1145/3068335
http://dx.doi.org/10.1145/235968.233324

Appl. Sci. 2024, 14, 689 25 of 25

29. Park, H.S.; Jun, C.H. A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 2009, 36, 3336–3341. [CrossRef]
30. Faouzi, J.; Janati, H. pyts: A Python Package for Time Series Classification. J. Mach. Learn. Res. 2020, 21, 1–6.
31. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
32. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.

Apache spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.eswa.2008.01.039
http://dx.doi.org/10.1145/2934664

	Introduction
	Literature Review
	Framework Description: From SCALE-BOSS to SCALE-BOSS-MR
	Evaluation
	Evaluation of SBMR with D0 and W0 Configurations
	Evaluation of SBMR-RF with Multiple Windows and Dilation Configuration
	Evaluation of SBMR with the Ridge Regression with Cross-Validation Classifier
	Comparison with the State-of-the-Art Algorithms

	Conclusions
	Appendix A
	References

