
Citation: Bastidas Fuertes, A.;

Pérez, M.; Meza, J. Transpiler-Based

Architecture Design Model for

Back-End Layers in Software

Development. Appl. Sci. 2023, 13,

11371. https://doi.org/10.3390/

app132011371

Academic Editors: Robertas

Damaševičius, Sanjay Misra

and Bharti Suri

Received: 19 September 2023

Revised: 5 October 2023

Accepted: 8 October 2023

Published: 17 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Transpiler-Based Architecture Design Model for Back-End
Layers in Software Development
Andrés Bastidas Fuertes 1,* , María Pérez 1 and Jaime Meza 2

1 Facultad de Ingeniería en Sistemas, Escuela Politécnica Nacional, Quito 170525, Ecuador;
maria.perez@epn.edu.ec

2 Facultad de Ciencias Informáticas, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador;
jaime.meza@utm.edu.ec

* Correspondence: andres.bastidas02@epn.edu.ec or andres.bastidas@smartwork.com.ec

Abstract: The utilization of software architectures and designs is widespread in software develop-
ment, offering conceptual frameworks to address recurring challenges. A transpiler is a tool that
automatically converts source code from one high-level programming language to another, ensuring
algorithmic equivalence. This study introduces an innovative software architecture design model
that integrates transpilers into the back-end layer, enabling the automatic transformation of business
logic and back-end components from a single source code (the coding artifact) into diverse equiva-
lent versions using distinct programming languages (the automatically produced code). This work
encompasses both abstract and detailed design aspects, covering the proposal, automated processes,
layered design, development environment, nest implementations, and cross-cutting components. In
addition, it defines the main target audiences, discusses pros and cons, examines their relationships
with prevalent design paradigms, addresses considerations about compatibility and debugging,
and emphasizes the pivotal role of the transpiler. An empirical experiment involving the practical
application of this model was conducted by implementing a collaborative to-do list application. This
paper comprehensively outlines the relevant methodological approach, strategic planning, precise
execution, observed outcomes, and insightful reflections while underscoring the the model’s prag-
matic viability and highlighting its relevance across various software development contexts. Our
contribution aims to enrich the field of software architecture design by introducing a new way of
designing multi-programming-language software.

Keywords: back-end layers; design model; source-to-source transformations; software architecture;
software development; transpiler

1. Introduction

Software architectural design is an essential aspect of software development. Soft-
ware architectures provide a high-level view of a system by defining its components, their
interactions, and the principles that guide their design and evolution. The architecture
of a software system determines its quality attributes, such as compatibility, scalability,
reliability, maintainability, and performance. Therefore, choosing the correct architecture
for a software system is crucial to its success [1]. Structural models perceive software
architectures as a composition of components interconnected by additional aspects such as
configuration, style, constraints, and semantics [2]. These models are pivotal for capturing
and presenting architectural designs, for which formal languages called Architectural De-
scription Languages (ADLs) are used. ADLs simplify the depiction of system components
and connections, often using a graphical syntax that resembles “box and line” representa-
tions to specify and link components. The adoption of structural models as design models
originates from their capability to comprehensively encompass architectural elements and
relationships. This promotes efficient communication and analysis of a system design
by stakeholders [3].

Appl. Sci. 2023, 13, 11371. https://doi.org/10.3390/app132011371 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132011371
https://doi.org/10.3390/app132011371
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8648-7865
https://orcid.org/0000-0001-9628-2767
https://orcid.org/0000-0002-8279-5630
https://doi.org/10.3390/app132011371
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132011371?type=check_update&version=2

Appl. Sci. 2023, 13, 11371 2 of 49

Software architecture design models are a collection of reusable abstract solutions to
commonly occurring software development concerns. They facilitate the development of
software components that are dependable, adaptable, and easy-to-manage. These design
structures are not specific to any particular programming language or technology; rather,
they provide standard design concepts to address recurring problems in software develop-
ment. The effectiveness of these designs in addressing software development challenges
has led to their increasing popularity in recent years. Consequently, various software
design models, design patterns, and architectural styles have emerged, including model-
view-controller (MVC) [4], service-oriented architecture (SOA) [5], and microservices [6].

Predefined design models offer several benefits to software developers and architects [7].
First, they provide a common language for developers to communicate with each other.
By using shared vocabulary, developers can quickly understand each other’s ideas, which
leads to faster development and better collaboration. Second, software architecture designs
reduce the development time and cost. Because these designs are proven solutions to
common problems, developers do not need to reinvent the wheel every time they encounter
a problem. Instead, existing solutions can be used to build better software systems quickly.
Third, software architecture designs improve software quality. By following these designs,
developers can build reliable, sustainable, and scalable software systems. These designs
ensure that the resulting software system satisfies these requirements. Software systems
are becoming increasingly complex and difficult to manage without the set of guidelines
and principles provided by common software architecture designs.

Despite the myriad software designs available, the practice of software design remains
intricate and often results in suboptimal solutions [8], underscoring the need for novel
designs that are tailored to specific objectives.

In the domain of enterprise transactional software, initiating such a project requires
comprehensive considerations around software architecture. Conceptual and logical layers,
including user interface implementation, business logic, and database connectors, must
be meticulously designed. To achieve project milestones, architects must select various
technologies for each layer, spanning programming languages to execution platforms,
services, and database engines [9]. These choices profoundly influence the software’s
development trajectory and behavior in production environments. Altering these decisions
after development is often an insurmountable challenge. The selection of a specific brands
and tools often inadvertently constrains the exploration of other possibilities in the future.
This limitation can impede the flexibility and adaptability that large-scale projects demand
in their lifecycle. Ideally, decisions regarding the choice of development tools and the
associated runtime contexts should operate independently [10].

While selecting specific technologies is a common practice and long-standing de-
pendencies are seldom questioned, there are cases in which such dependencies prove
suboptimal. Such cases require flexibility, allowing for modifications to foundational tech-
nologies even during maintenance phases. Addressing these dependencies necessitates a
shift in software architectural paradigms, allowing technological decisions and deployment
platform choices to be made after the development phase. In a regular context, this could
entail redeveloping the entire software in a different programming language.

Additionally, certain scenarios demand multifaceted programming solutions. This is
evident in software projects for product builders, government agencies, business associ-
ations, open-source projects, and others in which diverse deployment scenarios require
the same software to be developed in multiple programming languages in parallel or by
combining multiple programming languages in a single solution [11]. In this scenario,
the entire software may need to be redeveloped in different programming languages, one
for each platform to be supported. While this can enhance adaptability across multiple
platforms and collaborative development environments [12–14], it represents a solution
that requires a great deal of effort.

The adoption of such a multi-faceted approach primarily stems from the urge to
reuse extant code to ensure that the requisite functionalities are met. Moreover, exploit-

Appl. Sci. 2023, 13, 11371 3 of 49

ing the strengths of specific programming languages augments the implementation of
distinctive features, caters to diverse software quality demands, and elevates overall
developmental efficiency.

To address these needs, a multi-programming-language software solution is needed
in which identical front-end and back-end systems are developed concurrently in multi-
ple programming languages. However, the effort to have the same software developed
in several programming languages is very expensive and error-prone [15]. This multi-
programming-language (MPL) paradigm is gaining traction, especially in the wake of
recent technological advancements [16].

Therefore, a novel approach is introduced that allows development teams to utilize a
single unified and transformable programming language. This provide developers with
the opportunity to write the software once and subsequently convert it to a different
programming language automatically, even during production or maintenance stages,
with minimal effort, thereby delivering parallel versions of the same software made with
different languages.

Contemporary works in software engineering have led to the advent of transpilers.
A transpiler is a tool designed to automatically transform source code made up of a source
high-level programming language into another source code made up of a different target
high-level programming language, which should be algorithmically equivalent [17].

Beyond their myriad other applications [18], transpilers have found success in front-end
web development, empowering developers to employ languages such as TypeScript [19],
then subsequently transpile to JavaScript for browser compatibility or even to native mobile
platform code. With algorithmic equivalence between source and target languages, tran-
spilers offer a promising avenue for multi-programming-language development, permitting
language transformations at any juncture.

Although front-end technologies such as HTML, CSS, and JavaScript are inherently
multi-platform-compatible, a comparable solution for the back-end layers remains elusive.

While transpilers primarily handle syntax translation, ensuring that the resulting
artifacts run consistently across diverse technologies and platforms requires a more com-
prehensive approach than merely translating the code. This demands a robust architectural
design encompassing the introduction of a development framework, platform-specific
artifacts, auxiliary source code generators, and specialized layer designs, among other
components. Thus, this research focuses on the role of transpilers as the pivotal element
in a novel software architecture design model specifically for back-end layers. In this
study, we propose a method to centralize the coding process within a new architectural
paradigm for transactional software with the aim of automatically producing multiple
implementations of identical software in various programming languages suitable for
diverse deployment scenarios.

An empirical experiment was conducted to handle validation for the proposed design,
culminating in the development of full-fledged transactional software that embodies the
suggested concepts. These artifacts act as a benchmark for gauging the applicability of the
proposal and its initial validity. The overarching goal is to pioneer this methodology within
emerging software ecosystems, thereby facilitating wide-ranging evaluations in various
contexts. This endeavor is poised to collate foundational empirical evidence, bolstering the
proposed solution’s relevance and suitability for the intended audience.

The objectives for this work are defined as follows:

• Expose sufficient elements about the conforming components of the architecture
design model in such a way that they can be consumed by other users as a basis for
their own implementations.

• Explain the target audience of this approach in detail.
• Present a comparison with other commonly used architectural designs.
• Identification of future work, especially focusing on ways to increase the external

validation of the proposal.

To support the scope of this research, the following research questions were formulated:

Appl. Sci. 2023, 13, 11371 4 of 49

• RQ1: What elements should be considered in the software design process when using
this new conceptual model incorporating a transpiler as the central development
technology for the back-end layer?

• RQ2: Which target scenarios are applicable to software designs that use the new
conceptual model that incorporates a transpiler as the core element of the back-
end layer?

• RQ3: What are the benefits and challenges associated with implementing a software
design model that uses a transpiler in the back-end layer?

• RQ4: How can the effectiveness and validity of the proposed conceptual model be
evaluated for software designs using a transpiler in the back-end layer?

• RQ5: How does the proposed conceptual model compare with other software archi-
tecture design models?

While we use the term “transpiler” in this paper, there are multiple other terms
associated with the same concept that all essentially mean the same thing, including
transpiler, transcompiler, source-to-source compiler, s2s compiler, and cross-compiler.
Throughout the various sections of this paper, the term “translation” is used to refer
to syntax transformations. However, it should be noted that this term is not formally
considered a synonym by itself, as it can be ambiguous and confused with other non-
computer science fields such as linguistics and education [17].

Although automatic code generation techniques, template-based code generation,
domain-specific languages, and even software generation based on artificial intelligence
methods may produce multiple programming language outputs, in this article we only
cover the application of a transpiler as the core component of our proposal for a new
software architecture design model. Future work could include or combine the application
of these techniques in order to refine the presented design model.

This study did not involve the creation of a new transpiler or look deeply into the
source code translation process. Instead, the focus was on defining design elements to
determine the benefit of having a transpiler inside the coding process and the execution
pipeline of a transactional application.

As described in this document, the term multi-programming-language software refers
to the practice of developing software using multiple programming languages simultane-
ously during the software development process.

The remainder of this paper is organized as follows. The Section 1 presents an intro-
duction that details the relevant background, problems, objectives, and research questions.
Section 2 presents the State of Art and a literature review related to the proposal. Section 3
focuses on the software architecture design proposal, and target usage scenarios. Section 4
presents an empirical experiment that puts the proposal into practice. Section 5 presents a
discussion, and Section 6 presents the conclusions and future work.

2. State-of-the-Art

Prior to conducting this study, a review of the relevant literature was conducted [20].
This review aimed to confirm whether any other articles have used the same approach
or methods related to the proposed design model. In conducting this initial review, the
primary goal was to determine whether there have been any previously published articles
that utilize transpilers in the design patterns or in the implementation of back-end layers.

To conduct this review, we utilized the scientific databases Scopus, IEEE Xplore,
and ACM. The search criteria included the following conceptual query string: (“transpiler”
or “transcompiler” or “source to source” or “source-to-source” or “S2S”) and (“design
pattern” or “back-end”), filtered only to articles published since 2013. The criteria were
oriented to identify articles that were directly related to design patterns or back-end
implementations using transpilers in order to determine whether there were any works
with an equivalent or similar scope or approach.

The obtained results are presented in the following:

• Scopus: 13 articles

Appl. Sci. 2023, 13, 11371 5 of 49

• IEEE Xplore: 9 articles
• ACM: 44 articles

A total of 66 articles were obtained from the three scientific databases. Through reading
of the titles and abstracts, we specifically sought to identify any works that could be directly
related to the objectives of the present work or that implemented another type of transpiler-
based design. A statistical summary of the literature review results is shown in Figure 1.

Figure 1. Literature review results.

When we had obtained all relevant articles from the rapid literature review, we
carefully evaluated each article to identify those that best aligned with the primary objective
of our study. After this literature review, to the best of our knowledge, no other article has
followed the same approach and objectives as the current work, opening up the possibility
of this being a novel research area, specifically around the proposal of the design model
presented in this document.

Several previous authors have highlighted the need for research on multi-language
programming. Grichi et al. [21] noted that developers often use multiple programming
languages to exploit their strengths and reuse code. However, dependency analysis
across multi-language systems is more challenging than across mono-language systems.
Vraný et al. [22] suggested that the development of multi-language applications tends to be
more expensive in terms of both development and maintenance costs.

Neitsch [23] referenced anecdotal evidence suggesting that single programming lan-
guages often do not effectively address the complexities of building multi-language soft-
ware. Vinoski [24] highlighted that multilingual programmers can leverage the diversity of
programming languages to tackle different integration problems, resulting in higher quality
solutions that are faster, easier, and less expensive to develop, maintain, and enhance.
Mayer et al. [25] noted that programming in multiple programming languages is common
in open-source projects.

Transpilers have been used for various types of applications; however, there were no
identifiable applications of transpilers for the back-end layers of transactional software [17].
This finding highlights the need for new approaches to facilitate the development of
such solutions.

Taken together, the results of our literature review suggest that research on software
architecture design in multi-language programming remains necessary and that several
complexities exist in the process. In particular, the back-end layer of transactional software
presents a unique challenge in the preparation of multi-language software. Addressing this
challenge requires the development of new approaches that consider the use of multiple

Appl. Sci. 2023, 13, 11371 6 of 49

programming languages along with the inherent complexities of software development
and maintenance.

As theoretical and conceptual references for software architectures and design pat-
terns, see Gamma et al. [26], Buschmann et al. [7], Clements et al. [27], Bass et al. [28],
Brown et al. [29], Garlan et al. [30], Kruchten [31], Alti et al. [32,33], and Fowler [34].

3. Transpiler-Based Design Model for Back-End Layers
3.1. Design Model

A software architecture design model is a structured and conceptual representation of
the organization and function of a software system. It serves as an abstraction that describes
the key components of the system, their interactions, design decisions, and the constraints
that guide software construction. The software architecture design model provides a
high-level view of the system and establishes a foundation for software development and
implementation. It acts as a guide for developers and software architects, enabling them to
understand the system structure, communicate effectively, and make informed decisions
throughout the development process [2].

3.2. Design Fundamentals

A design model is a general repeatable solution for commonly occurring problems
in software design. It provides a template for solving problems that can be adapted
to satisfy specific requirements [3]. The concept of architecture designs was first intro-
duced in the book “Design Patterns: Elements of Reusable Object-Oriented Software” by
Gamma et al. [26]. The book presents 23 design patterns categorized into three groups: cre-
ational, structural, and behavioral patterns. Each pattern describes a problem, its solution,
and the consequences of using that solution. Design patterns have become essential tool for
software engineers, providing proven and efficient solutions to common design problems.

Al-Hawari [35] presented a comprehensive example of software architecture designs
applied to web information systems. Al-Hawari defined architecture design as a univer-
sally applicable and reusable approach for effectively addressing the common challenges
encountered in software design. The identification of common patterns in design offers
several benefits: (1) accelerating feature development by enhancing the understanding
of design details; (2) yielding reusable and reliable classes that can enhance software
dependability and reduce development costs; (3) fostering code readability and maintain-
ability by adhering to well-documented design blueprints that are comprehensible to all
developers; (4) promoting consistency in the behavior and layout of software modules
through the adoption of the same design for recurring visual features, thereby enhancing
user-friendliness; and (5) facilitating the creation of more flexible, efficient, and robust
software modules, provided that the expected outcomes align with the desired software
quality attributes.

Software architecture design typically consists of several key elements [36]. First,
the design problem, solutions, and consequences are succinctly described in a single line.
The name increases the design vocabulary and allows for higher-level abstraction. Second,
the problem describes when to apply the design and explains the problem and its context.
Third, the solution describes the abstract elements that make up the design along with its
relationships, responsibilities, and collaborations, though not a specific implementation.
Finally, the consequences are the results and trade-offs of applying the design, which
often concern space and time trade-offs that can impact a system’s flexibility, extensibility,
or portability. By explicitly listing these consequences, developers can understand and
evaluate them better in order to make informed design decisions. Thus, the key elements
of the proposed method are as follows:

1. Design Model Name: “Transpiler-Based Design Pattern for Back-End Layers”
2. Problem:

When there are several benefits of implementing the same software in multiple pro-
gramming languages simultaneously, developing each one separately in different

Appl. Sci. 2023, 13, 11371 7 of 49

programming languages is costly and error-prone. The problem addressed by this
design is the complexity and overhead of developing and maintaining back-end
layers in various programming languages, frameworks, and platforms. Traditional
approaches require developers to manually write and maintain separate back-end
implementations for each platform, leading to high development costs and reduced
productivity. In addition, maintaining consistency and ensuring equivalence across
multiple implementations can be challenging.

3. Solution:
The proposed solution aims to simplify this process by using transpilable program-
ming languages to write a single implementation of the back-end logic which can
then be automatically translated into different target programming languages, plat-
forms, and frameworks. This approach streamlines the development process, reduces
development costs, and ensures consistency and equivalence across multiple imple-
mentations. The design is intended to be a general-purpose schema, not a domain-
specific one, and to benefit a range of scenarios, including software product creators,
government agencies, software-as-a-service projects, and open-source initiatives.

4. Expected Consequences:
The proposed design is expected to have advantages and disadvantages depending
on the specific requirements and needs of a software project.
On the one hand, this approach could offer benefits such as increased productivity
and a common coding environment, as well as potentially improved performance,
compatibility, and scalability. A single software project can produce several equivalent
versions of the same software without any significant effort. This could allow the
implementation to be changed to other programming languages and platforms at any
time in the future, even when software is in the production stage, thereby reducing
dependence on base technologies. In addition, it could allow developers to learn and
work in a single programming language while producing code that can run natively
on different platforms.
Potential drawbacks include increased complexity of the build and deployment pro-
cesses. There may be additional costs associated with maintaining and updating the
software compared to a single-programming-language solution. The learning curve
for a new programming language and the associated technologies related to transpiler-
based architectural elements should be considered as well. Depending on the quality
of the selected transpiler, it nay be difficult to ensure that the generated code for each
programming language always produces equivalent results when running on each
native platform. Certain libraries are not compatible with all transpiler-supported
target languages, meaning that certain commonly available imports cannot be used
or may need to be implemented from scratch. Documentation and coding references
can be difficult to find, as occurs with any emerging technology. Debugging solutions
could be challenging because of increased technological diversity.
Therefore, experimentation should seek to refine and confirm the results presented
herein. The decision to use this approach should be based on a careful consideration
of the specific requirements and constraints of the specific software project under
consideration. Overall, as this design can be considered for use in any kind of software
project and there are no proposed limits, architects may consider using this design
when flexibility and language interoperability are high priorities and when the benefits
outweigh the potential costs and drawbacks.

The following subsections describe the internal design and its elements.

3.3. Abstract Design

The proposed design is based on the use of transpilers to generate different layers of
software applications automatically. This approach simplifies and accelerates the devel-
opment process, allowing developers to focus on the application’s specific business logic.

Appl. Sci. 2023, 13, 11371 8 of 49

This section presents the study design in a simple and abstract manner, highlighting its
primary characteristics.

Figure 2 presents the abstract design, including relationships between the internal
elements. For better understanding, the following subsections detail the sequential process
and the events that need to occur in order to achieve a multi-programming-language
software implementation using the proposed design.

Figure 2. Abstract design.

1. During the development stage, the back-end developer writes the business objects,
business logic, and data access layers in the transpiler language, focusing only on
functionality and flow logic.

2. During the preparation stage, a transpiler is used to transform the code into differ-
ent supported programming languages. Code generation, service generator, code
injection, and other techniques are used to adapt the transpiler output and obtain
the prepared source code. The obtained code is compiled using native compilers
depending on the selected programming language.

3. During the usage stage, the obtained compiled artifact should be deployed over the
execution services available for each target platform (nest implementations) such
that they can be online as a service. The front-end developer uses proxy classes to
connect to the deployed implementation and develop user interface interactions with
the back-end.

The process is then repeated such that target programming languages and execution
technologies are required.

3.4. Detailed Design

In this section, we present the proposed design model for a software architecture
based on transpilers in detail. This design is intended to be a guide for software develop-
ment teams that want to implement a multi-programming-language solution. The design
involves the use of a transpiler, allowing for the automatic generation of different language
implementations from single-source code. The design is presented in the form of Archi-
tectural Description Language (ADL) [3] and is composed of several layers, each with a
specific purpose and set of components. By following this design, developers can create
applications that are easily maintained and adaptable to future technological changes [32].

Model-Driven Development (MDD) is a cornerstone in modern software engineer-
ing. It emphasizes the utilization of abstracted high-level models to drive the entire
software development process. Rather than manually coding software from scratch, MDD
leverages tools and frameworks that can automatically generate parts of the software

Appl. Sci. 2023, 13, 11371 9 of 49

from these abstract models. This approach not only fosters increased productivity and
consistency, it enhances the software’s agility and adaptability. When integrated into a
well-structured architectural framework, MDD can synergize with other methodologies,
including transpiler-based approaches, offering a comprehensive solution that addresses
both the structural and behavioral facets of software systems [32,33,37]. We considered
MDD to be our base conceptual methodology when designing this proposal, as it presents
a model over which parts of the software are generated from abstract models.

3.4.1. The Proposal

A new application design is proposed in which a software developer can build the
back-end of a business platform or information system using a transpilable programming
language with the objective of being the means by which the business logic, methods
of connection to the database, business objects, and others are required for the specific
solution. After the transformation process, different versions of the source code produced
in the target programming languages must be prepared, integrated, and merged with
the components of each platform and their execution services. Finally, they are compiled
into their own native forms of execution for each language, as in .net to DLLs or Java to
JAR or WAR files; these components can be deployed in the chosen application servers
as any native application to finally expose it as a web endpoint. With this, it can operate
and meet the requests invoked from the front-end. To ease this process, a communication
layer is automatically generated as a proxy library, which is developed in the front-end
programming language. Each transpiled version should operate in an equivalent manner
to ensure that the front-end can point to any of the published endpoints while always
expecting the same result.

The objective of the transpiler in this design is to translate an origin source code
into another or other destination code. However, making it applicable in the operating
environment of a business platform requires several elements to make it usable for a
development team. To achieve these objectives, the implementation of certain instruments
is proposed to provide greater applicability on the part of the proposed design. Figure 3
presents the design and definition of the instruments needed in each phase to accomplish
the expected results.

Below, we provide conceptual details on the different instruments involved.

• The development stage includes the components of the “Development Kit”, consisting
of following the main instruments, which are detailed later in the study:

– Common: a library for implementing standard functions that back-end develop-
ers use as a unified layer for development.

– Security: a library that implements standard algorithms for providing developers
with methods for encryption/decryption, best practices applicable to the back-
end, and others.

– ORM: a library that allows connecting to databases and enables registering
transactions in a simplified way, leveraging developers to only work with a
single language most of the time.

– Runtime services: a library for providing developers with methods needed for
configuration, service execution, call flow control, and others.

• The preparation stage includes the components required for the automated process.
The following are the main instruments used in this stage, and are detailed later in
the paper:

– Code generators: tools that take the transpiled code and use reflection and
other techniques to generate missing layers, service preparation, code injection,
and others to prepare the code for the execution-specific platform. They prepare
the final code for native compilation and generation of executable artifacts.

Appl. Sci. 2023, 13, 11371 10 of 49

– Native compilers: the native compilers available for each programming lan-
guage. Automation calls allow these compilers to obtain the required artifacts
compatible with nest implementations.

– Configuration: the tools needed to configure the server-side solution during the
preparation and execution phases.

– Deployment: tools for deploying artifacts produced in runtime technologies.

• The usage stage encompasses the components necessary for the client-side library. Al-
though this proposal primarily targets back-end layers, a front-end layer is integrated
into the approach as well. This integration ensures that front-end developers have a
dedicated communication layer, which can facilitate their consumption of the methods
provided by the back-end. The process predominantly entails the generation of service
class code, with an emphasis on the parameters and return values of the disclosed
methods. Moreover, methods for invoking services are exposed, enabling front-end
developers to utilize them without the need to craft a separate communication layer.
Subsequent sections of this document delve deeper into the primary tools employed
in this stage:

– Proxy classes: automatic code generation in the front-end language, used only
for those business objects that are used in business logic methods as parameters
or outputs to enable front-end developers to easily call business logic methods.

– Configuration: the tools needed for the client-side configuration to establish the
correct parameters for calling the back-end.

– Security: a front-end library that implements standard algorithms to provide
front-end developers with their usage and compatibility when calling back-
end methods.

– Helpers: a front-end library proposed by back-end developers, with the same
processing methods on both sides.

Figure 3. Design instrumentation.

Appl. Sci. 2023, 13, 11371 11 of 49

3.4.2. Architecture Design

In this section, all the elements that constitute the proposed design are presented in
detail as an autonomous and generic design in such a way that it serves as a high-level
functional description that relates to the operating principle of each component, allowing
it to be replicated in other scenarios depending on the implementation decisions and
technology selection.

The architectural model we propose is outlined in Figure 4; it is based on a layered de-
sign conceptualized both as a monolithic application and within the framework of an SOA
(Service-Oriented Architecture). This structured approach clarifies our proposal, metic-
ulously outlining the essential components required for its implementation and clearly
demarcating the responsibilities and roles of each component while depicting their intercon-
nections. At this initial stage, in order to further emphasize the core concept of transpilation
within an application we have opted not to integrate a microservice architecture into the
design concept. However, it is worth noting that the primary components are designed
envisioning potential compatibility with such an architecture [38], even if our current focus
does not underscore this aspect.

Figure 4. Transpiled-based software architecture design.

Referring to Figure 5, the layouts of the layers and components are as follows:

• Development environment
• Data layer
• Business layer
• Nest implementations
• Presentation layer
• Transversal components

The following sections present the technical specifications of each of these layers.

Appl. Sci. 2023, 13, 11371 12 of 49

Figure 5. Layered design.

3.4.3. Development Kit

In order for a developer to build the back-end layer using the compiler language, it
is necessary to have a base library, as described previously, as instruments are required
during the development stage. Therefore, the availability of a development kit that enables
the required architectural processes is considered.

This is a programming library that must contain common methods and objects devel-
oped in the transpiler language such that all implementations use them as the basis for
the development of business logic. Within this layer, there is a definition of common data

Appl. Sci. 2023, 13, 11371 13 of 49

types, serialization methods, exception handling methods, methods for handling the ap-
plication configuration, implementation of an ORM for connection to relational databases,
and methods for message processing.

This library can be used for the development of logic and business objects. The devel-
oper takes advantage of this programming layer to accelerate the programming process.
This library must be considered together with the developed business logic during the
transpilation process in order to act as a single set. At the end of the transpilation process,
it is expected that both the development framework and business logic will be translated
into the target source code, making them compatible for the following stages and for the
native compilation of each target technology performed by the following components.

When the solution is already developed, built, and deployed online over the near-
est implementations, it is expected that the environment will be compatible throughout
the pipeline. This library is responsible for this state of affairs, which is why the nest
implementations must consider this library when allowing any transpiled artifact to run.

3.4.4. Automated Process

In Figure 6, it is possible to see the elements of the automated process proposed for
each of the operationalization and instrumentation stages of the architecture approach.

Figure 6. Automated process diagram.

This is designed as a plug-in utility that is executed immediately after the transpiler
completes the code translation process. The objective is to prepare the transpiled source
code to adapt it to the execution models and compile it in order to make it ready for de-
ployment. This processing is necessary because the source code produced by the transpiler
is not directly usable as a standard back-end service, and requires the following three steps:

• Preparation Process
Starting from the raw transpiled source code, this process executes cleanup processes,
splits the code into separate components, generates source code for native service
frameworks, prepares for configuration file support, and handles special source code
cases and other requirements specific to each supported target programming language.
The detailed process is explained in Figure 7. The implementer should consider all
post-transpilation processing required to obtain the final code. This code is then
automatically compiled by calling the native compilers of each technology to obtain
the final artifacts usable on the target platform with all its deployment elements.

Appl. Sci. 2023, 13, 11371 14 of 49

Figure 7. Detailed preparation process.

• Nest Implementation Placement
The transpiled source code, having passed the preparation process and runtime arti-
facts, must be placed inside a generic solution that has specific elements of the target
technology and supported architecture design. This generic solution is prepared to re-
ceive the transpiled code, and is characterized by being compatible with development
kit libraries. Finally, the code is automatically moved to the development application
server, allowing the developer to begin the testing stage. These native solutions are
called “Nest Implementations”; the greater the number of these solutions that exist in
the framework, the greater the diversity of ways to generate native artifacts starting
from the same business logic. After this stage, the back-end layer is ready for de-
ployment and execution. The final product consists of native artifacts compiled from
different programming languages and prepared for different execution technologies.

• Back-End Proxies
Although the back-end layer of the application was already built in the previous step
and is operational, and although the development of the front-end layer is not the
main focus of this proposal, it is nonetheless necessary to generate the source code of
the service consumption layer. This allows for a reduction in the front-end developer
programming time. During this process, business logic objects corresponding to
data transport and business logic invocation methods that are exposed should be
automatically generated. In addition, this process must incorporate a base library
that encapsulates the call methods and support components. A proxy layer must be
generated for each supported front-end technology. The generated back-end proxies
are considered the “Client Side Library”.

3.4.5. Development Environment

To facilitate the development of an enterprise platform or information system using
a transpiler, it is necessary to have a library that contains the common elements required
by developers, similar to what is available when developing a specific language. These
elements must be developed using transpiler language to ensure availability across all
supported technologies. Although many elements can be included in such a library,
the most important are outlined below:

• ORM and Database Connectors

Appl. Sci. 2023, 13, 11371 15 of 49

An enterprise platform or information system cannot exist without the ability to con-
nect to a relational database management system (RDBMS). The provision and storage
of data are vital in order for the architecture model to be usable in real implementation
scenarios and to permit interaction between the users of the IT solution. Each target
platform has its own database connection technology; however, in this case a unified
schema is required.
For this purpose, the implementation of native connectors is required for each sup-
ported transactional database and target platform in such a way that specific methods
are activated according to the development technology and database chosen for the
execution of the software.
The use of the SQL language directly within business logic in the form of string
concatenation is not recommended, as this factor can generate problems with security
(e.g., SQL injection [39]) and maintainability. Therefore, it is suggested that a high-level
connection library be provided to connect to the database.
The implementation of ORM (Object–Relational Mapping) is suggested, preferably
developed in the transpiler programming language in such a way that the database
objects (e.g., tables, views, procedures) can be mapped with their equivalent business
objects. This can be used in a simple way in the construction of the business logic,
and in the end can be translated into any of the target languages [40]. This approach
increases the support of execution technologies by using multiple supported databases.
The business logic is database-agnostic when writing the source code. It is not expected
that native database connection technologies would be used directly; rather, a single
library should serve equally for all technologies.
Database-specific connectors and drivers should be incorporated into the solution us-
ing code injection, which occurs during the execution of the post-build utility as part of
the preparation stage. These connectors allow for the execution of database sentences
directly to the database engines, thereby conforming to the configuration performed at
runtime. The connection strings to the databases must be placed in the configuration
files using the corresponding configuration components, as is explained later.
For greater independence, support for DDL statements can be incorporated in such a
way that the database objects can be auto-generated, permitting support for different
modes such as model-first or code-first; this is inspired by the Entity concept in the
.net framework [41]. This can be useful for programming stored procedures that can
be translated into specific languages of the databases.

• Security
For any platform built using transpilation, it is important to consider the potential
risks posed by third-party attacks. Owing to the technological diversity inherent in
such platforms, it is essential to provide cross-cutting methods or mechanisms to
mitigate these risks. One approach is to centralize the encryption/decryption meth-
ods, authentication management, and authorization of service consumption, as well
as input data validators or cleaners for known vulnerabilities, injection mitigation,
and similar elements. While this layer is available, the development team is respon-
sible for incorporating these elements into their development planning, particularly
with regard to sensitive data exposure validation or access control cases.

• Common Methods
In software development, various techniques and practices are essential for the devel-
opment teams. These include serialization methods, compound data types, generic
methods that can be employed in business logic, and structured objects that aid in-
formation management. The integration of these methods is crucial for the smooth
functioning of software and efficient management of data throughout the system.

• Settings
In order for the platform to operate effectively, a configuration mechanism that can set
parameters to initiate its operation is required. Although the connection string to the
database is a common parameter, other configuration properties may be required for

Appl. Sci. 2023, 13, 11371 16 of 49

IT solutions, such as file directory paths, monitoring and logging schemes, connection
parameters with external servers, session-opening parameters in external resources,
and global business logic parameters. To address this issue, a uniform configuration
mechanism that can be reused across different technologies, such as a group of text-
based configuration files, can be placed in a base folder. This folder can be shared
through multiple parallel deployments, and the files can be encrypted to prevent
unauthorized access or changes.

• Exception Control and Logging
Exception handling can vary on different platforms. Therefore, it is important to have
a unified control and logging scheme for all platforms. To achieve this, exception
handling must be implemented in the transpiler language, and common objects for
exception control should be defined in this layer. The logging mechanism must record
exceptions in detail, including the execution stack, messages, lines of code, or other
relevant data. This is particularly useful for analyzing technical events in production
or test environments and identifying problems or areas for improvement. To ensure
compatibility with different execution platforms, logs should be saved as files in a
destination folder, with each file named with unique code for traceability purposes.
Informative exceptions should be used for differentiation between business errors and
other errors.

• Runtime Methods
To ensure compatibility and standardization across all platforms, base and attribute
classes are necessary for business logic methods, which can then be unified using a
single invocation method through external exposure services. Additionally, a router
that serves as a gateway for external invocations should be incorporated to manage
input and output serialization and dynamically invoke methods centrally with their
respective parameters and return objects. This allows nest implementations to cus-
tomize their invocation based on the input and output flows provided by standard
communication while ensuring compatibility with back-end proxies.

3.4.6. Data Layer

In this layer, the developer should implement the data access logic that will later
serve to encapsulate the data access mechanisms in the development of the business logic.
The considered components are shown below.

Within this layer, developers must implement their data access logic, which is crucial
for encapsulating data access mechanisms when building the business logic. The following
components are deemed essential for this layer:

• Database Engine
The proposed architecture aims to provide compatibility with various transactional
database engines, allowing users to select the engine that best suits their requirements.
These engines store and process information using objects such as tables, views,
procedures, functions, and types, which can be utilized in business logic programming.
The data access layer is responsible for optimizing the use of these resources, making
them readily available in easy-to-use form for programmers.
As depicted in Figure 8, the database engine’s compatibility hinges on the support pro-
vided by the nest implementations. Connector classes are to be provided during the
preparation stage, allowing the ORM library to effectively process database calls using
a corresponding driver that aligns with the specified programming language. The in-
terplay between the connectors and programming languages informs the selection
of possible execution technologies, all derived from a single source code. While the
RDBMS engines shown in the figure serve as examples to clarify the schema, it is worth
noting that any database engine can be incorporated into the nest implementation
without design constraints.
It is crucial to acknowledge that developers might embed business logic directly
into databases via stored procedures or custom functions. This can pose a challenge,

Appl. Sci. 2023, 13, 11371 17 of 49

as not every element can be effortlessly transferred between database engines. Conse-
quently, it is advisable to confine the utilization of stored procedures to specialized
tasks within the database, reducing the effort required during engine migration.
As an alternative, ORM can support DDL, allowing it to generate these database
logic objects directly in the respective languages of each database all from a singular
transpiler implementation.

• Business Data Access
In this layer, programming objects that correspond to the database objects are added,
particularly for the representation of tables and views. The columns represent fields
with data types translated into their programming equivalents. The relationships are
interpreted as an array of related tables. These objects inherit base classes, have query
methods and parameters for query operations, and are linked to the standard ORM
query methods. This allows data from the transactional database to be represented in
these objects, and their combination can lead to more complex queries.

Figure 8. Database engine support.

3.4.7. Business Layer

This layer is dedicated to the implementation of solution-specific methods by the
developers. This is the only layer in which developers have direct involvement and can
incorporate their source code. The following components are involved in this layer:

• Business Logic
This layer serves as the core of the architecture, and is where software developers can
customize and integrate the necessary algorithms for the operation of an enterprise
platform or information system. It is responsible for processing and determining
business rules and conditions based on business objects and the data access layer.
The implementation of business logic is achieved through methods that are specifically
marked to be exposed to the front-end. The development team should primarily focus
on this layer; as the other layers are automatically generated, this will lead to reduced
development time.

Appl. Sci. 2023, 13, 11371 18 of 49

Figure 9 depicts the sequence for exposing a method. The sequence begins with
a single transpilable business logic method during the coding stage, which is then
transformed into multiple logic method libraries, each in a different programming
language. The post-build utilities and preparation processes ready these artifacts
for native exposure as well as to facilitate automatic method exposure in various
service exposure types, such as SOAP XML web services, API Rest, TCP, or even
cloud-based exposures. Ultimately, based on exposure compatibility and technology
considerations, the service endpoints can be deployed across different application
servers, allowing the developed business logic methods to be invoked as HTTP-based
methods. The exposures, programming languages, and application servers shown in
the diagram are representative examples to aid comprehension; additional languages,
exposure types, or servers can be incorporated without limitations depending on the
scope of nest implementation.

• Business Objects
Business logic methods use input and output parameters. The parameters can be
directly taken from the reference to auto-generate objects in the business data access
layer. However, in several scenarios it is necessary to generate custom objects that
are designed to be a composition of other objects or to extend existing object. These
types of custom objects serve to process information in business logic or as a way to
transport complex input or output parameters. The development team carries out
the component.

• Business Services
This layer is responsible for automatically generating the method exposure marked
in the business logic that is to be included in the nest implementations. It acts as
the central point where calls are received, and supports routing and request man-
agement throughout their lifecycle. This creates a single connection point for the
nest implementation.

Figure 9. Business logic method exposures.

3.4.8. Nest Implementations

The target technologies may have many different ways of exposing the back-end
functionality to the front-end. Each way of exposing these transpiled functionalities through
executable artifacts is referred to as a nest implementation.

Appl. Sci. 2023, 13, 11371 19 of 49

Multiple nest implementations can be developed to run the same compiled artifacts
in different scenarios [42]. For example, the C# language can later expose service meth-
ods through XML Web Services, WCF, Remoting, WebApi Controllers, REST Services,
and others. If there were a nest implementation for each of these forms, one or several of
these technologies could be chosen for deployment at any time without any extra effort
being required. Each artifact deployed over a nest implementations has business logic
equivalence with the others, even when they are made using different base technologies.

The greater the number of nest implementations incorporated, the greater the capacity
of the developed software to support new operating platforms. Even if the transpiler
supports a new programming language in the future and particular nest implementations
for that technology are incorporated at that time, the existing source code can be recompiled
into the new technology directly without major programming efforts.

It might be thought that nest implementation focuses only on the compilation of HTTP
communication artifacts or on a particular architectural design; however, it is possible to
find them from other natures. For example, nest implementations for the deployment of
asynchronous batch processes run business logic methods based on schedules. The re-
maining implementations may be considered for generating communication via the TCP.
A different nest implementation could focus on building and deploying cloud functions
such as Azure Functions or AWS Lambda in a serverless schema.

3.4.9. Presentation Layer

The usage stage encompasses components vital for the client-side library, streamlining
integration between the front-end and back-end layers. This design allows front-end devel-
opers to effortlessly access back-end methods without needing a distinct communication
layer. Although the proposed design mainly concentrates on constructing back-end layers,
it is necessary to consider certain aspects of the front-end layers in this design model, which
are detailed below.

• Proxy Objects
This layer focuses on the front-end functionality of the architecture. This requires the
implementation of an invocation library that enables the same serialization, message
packaging, exception control, and service invocation technology as exposed back-end
services. In addition, it involves generating invocation methods that correspond to the
business logic methods marked for exposure at the front-end. These methods should
allow for simple invocation and the use of business objects and data-access objects
as input and output parameters. The objects must be developed in the programming
language of the user interface, and different built versions of the proxy are necessary
to support various front-end technologies.

• User Interface
This layer is the responsibility of the front-end developers, who implement the presen-
tation and data manipulation logic for user interaction. The developer uses proxy meth-
ods to present data and execute transactions, resulting in a fully integrated schema.

3.4.10. Transversal Components

• Post-Build Utility
The post-build utility plays a crucial role in compiling technology-specific artifacts for
each execution environment. It is an essential element that runs across the entire back-
end layer and follows the process established in the design proposal. The tool executes
the preparation stage in sequence, deploys nest implementations, and generates back-
end proxies.

• DB Gen
If the database-first strategy is employed, wherein the database is designed prior to
programming, the DB Gen component should be considered. It can automatically
read the structure of tables and views in the database, then generate the programming
of this layer in a comprehensive manner that is compatible with the generated ORM.

Appl. Sci. 2023, 13, 11371 20 of 49

A DB Gen version is necessary for each database engine brand supported in the
generation process.

3.4.11. Behavioural Aspects

Behavioural aspects of the proposal compared with a component view are considered
in Figure 10.

Figure 10. Behavioural aspects vs. components.

3.5. Target Audiences

The proposed architecture design based on transpilers is aimed at software developers
and architects seeking a robust and efficient solution for building enterprise applications.
The proposed design is particularly relevant for those who work with multiple program-
ming languages and platforms, who must ensure that their applications can seamlessly
integrate with different technologies. In addition, it is ideal for teams that need to reduce
development times while maintaining a high level of quality and consistency in their code.
The possible scenarios that can take advantage of this proposed architectural approach,
specifically in the realm of building back-end layers of software, are presented in detail in
this section.

3.5.1. Software Product Builders

This refers to companies that create standard wide-ranging software products or
platforms aimed at solving common problems. For example, the creators of ERP, BPM,
CRM, SCM, DMS, and other software specialize in specific industries (banking core sys-
tems, insurance, production, automotive, etc.) designed for multiple clients who use the
same solution.

During the design stage of this type of product, a software architect must choose a
programming language and the associated technologies. This is an important challenge
that seeks to identify the technologies that are most similar to potential customers and the
knowledge of the technical team. In this context analysis, analysis subvariables are normally

Appl. Sci. 2023, 13, 11371 21 of 49

considered; for example, the platform may be the one with the lowest operating cost for the
client, there may be greater support from specialized companies, the learning curve for the
development teams and support may be minor, permanent patches and improvements may
be necessary, and there may be an active technical community, among many other aspects.

Regardless of the technology chosen by the software architect, there is always a
possibility that the chosen platforms are incompatible with what the customer wants or
that there is a better option, reducing the chances of product placement or adoption.

It is common that by the time the builder presents their solution to the market or makes
a commercial offer, the client has already adopted the technologies that are considered
the most convenient for his line of business and investments have been made in licensing,
infrastructure, training, contracts with suppliers, support, maintenance, and improvements.
Thus, it is probable that the construction base technology of the offered product (operating
system, application server, languages, database, and components) will be incompatible
with the available technologies of the client.

Even if the software product has the best functional concept and years of valuable
experience in the business line, there is a possibility that the client will not finally adopt
it because of its incompatibility or the recommendations of the technology or financial
managers, as the Total Cost of Ownership (TCO) might have to include new licensing,
infrastructure, training, and support, enhancement, and maintenance strategies alongside
previously adopted technologies. This could be in addition to the increased complexity of
managing technological assets by supporting several technologies simultaneously.

In practice, owing to this restriction, the software producer cannot always adequately
reach all customers, which is why it represents the problem of expansion and placement of
the product [43]. One possible solution is to invest in developing the product in several
programming languages and on several platforms simultaneously in order to present a
range of compatible technology options to the client. In this way, each client can choose the
one that best suits them. Although this is possible, it is an inefficient and very expensive
strategy that multiplies production time and is prone to approval errors, as it is difficult to
ensure that all versions work equally in different languages. However, at present there is
no viable alternative to consistently address this problem.

3.5.2. Government Software Projects

Owing to the regulations and scope of responsibility and independence of the different
entities of the central government and sectional governments, each decides on and incorpo-
rates different technologies and base platforms as standards for their operation [44]. They
invest in licensing, infrastructure, training, contracts with suppliers, support, maintenance,
and improvement.

It must be considered that there are common needs and regulations that any public
entity must comply with at its different levels, such as those related to the management of
the public budget, compliance with generalized human resources regulations, tax manage-
ment, control and auditing, land management, and compliance with generally applicable
laws and regulations. Although these functionalities are common to all entities, in many
cases it is necessary to customize and adapt them to relevant local regulations.

For this reason, it is common for centralized and unified software projects to be pro-
posed and executed by public entities specializing in the provision of software applications,
associations, or external providers specializing in the provision or sale of solutions for the
government, who seek to develop generic IT solutions that can be used by many public
entities simultaneously for the same need in order to prevent each entity from investing on
its own in software projects that ultimately, to a large extent, have common requirements
and functionalities.

Finally, the solutions intended to be adopted by different entities may not be adopted
or used, or may be discarded early. A key factor in this problem is incompatibility with
the technologies that institutions already have, which may make it difficult for them to
adopt, integrate, and maintain a solution. A second factor is that applying customization

Appl. Sci. 2023, 13, 11371 22 of 49

to unique software can break the chain of updating the base platform, giving rise to many
different versions of the same product. These elements constitute a barrier to the adoption
and maintenance of the proposed generic technologies. No specific methodology provides
the possibility of efficiently handling this scenario.

3.5.3. Business Associations

Many companies offer custom software development in consultancy mode. In general,
in these cases, a single language and technology are chosen for execution. However,
there are certain scenarios in which a consultancy is required to deliver software made in
many programming languages simultaneously. This occurs when the contracting party
is an association, chamber, or business conglomerate that wishes to jointly finance the
development of a specialized solution for its vertical market which is unique, generic,
and applicable to all its business members. Because each business member may have its
own pre-standardized technologies, the business association prefers to give its partners the
ability to select the desired technologies from the built product, and all benefit from a single
software development effort. In practice, if this were possible everyone could choose the
languages in which they wanted to use the developed software and its source code. At the
moment, there is no alternative except to build the software many times with different
languages, which is not efficient in either time and cost. Therefore, the most common
outcome is that the software is proposed in a single language and companies are required
to adapt when this language is not necessarily the most efficient.

3.5.4. Software Projects in Scientific Research

Certain scientific publications or research projects exist, mainly in the fields of engineer-
ing, mathematics, artificial intelligence, data science, and similar fields, which, in addition
to their scientific contributions published in journals or conferences, include reference soft-
ware implementations as examples of experimentation or implementation of the proposals
presented. Several of these are considered examples of long-lived scientific software [45].

It is normal that the intention of a researcher following the scientific method is that
the generated tools can be used for replication of their experiments or for practical imple-
mentation of the research results in industry or academic fields.

During the execution of a research project, the researcher must choose a programming
language and base platform, which is usually the one closest to their knowledge and
experience. The problem is that if the consumers of the resulting software want to use it in
another technology, programming language, or platform, or to integrate it into an existing
product already built upon other base technologies, there are restrictions that in many cases
force them to create long source code transfer processes or forced integration modes.

This results in additional effort, cost, and desynchronization with elements resulting
from functional evolution later proposed by the researcher or long-term operation or
maintenance problems. The researcher does not have the objective of developing his
experimentation instruments multiple times; they only want to use a single programming
language and basic technologies. Nonetheless, other researchers or users can make other
compatible solutions without much additional effort. Currently, no approach can handle
this scenario efficiently.

3.5.5. Creators of Software-as-a-Service

Creators of Software-as-a-Service (SaaS) solutions offer their software on a unique com-
mon platform, in many cases paid for by consumption or low-cost monthly payments [46].
This means that customers have no backbone infrastructure to maintain or license. This
notably increases the speed of adoption of IT solutions, overcoming basic infrastructure
and even compatibility problems. Many companies opt for solutions under this scheme in
order to avoid compatibility, licensing, maintenance, support, and evolutionary concerns.
This is common for solutions that may have a high level of genericity and require minimal
customization. However, unlike the consumer, the story differs for the developer of the

Appl. Sci. 2023, 13, 11371 23 of 49

SaaS solution. A critical success factor for the creator of a SaaS solution is to find the
integral cost efficiency that makes it possible to offer low prices for each client due to
economies of scale without detriment to operating efficiency. This is especially noticeable
when dealing with a very crowded multi-tenant solution where there is service provision
to many countries or globally and operating costs have begun to grow significantly.

If the software producer initially builds the tool by choosing a single programming
language, database, and other base platform elements, this generates a direct dependency
on those technologies and their inherent costs, even if these change over time or there is an
increase in costs due to vertical or horizontal growth. In this case, the ability to adapt and
search for better costs is lesser, being restricted only to searching for alternatives within
the same or other cloud providers that handle the initially chosen technologies. This can
be limited if it occurs after a few years of platform operation and the technologies evolve.
An example of this is when the .net framework is chosen with an Oracle database and it
later becomes necessary to run the solution under serverless schemes based on Linux and
MariaDB owing to cost efficiency and stability. It would be very expensive to transfer a
solution from one technology to another. There is no viable alternative for direct transfer
between technologies; however, if available, they would have remarkable independence.

Another factor that comes into play in SaaS-type applications is the desire to make
commercial agreements with creators of extensions, integrators, or customizers whose
capabilities include working with programming languages other than those used for the de-
velopment of the application. base platform. In this case, it is common to propose API-type
schemes using HTTP calls to ensure interoperability and use of communication standards;
however, advanced integrations that require fusion of platform code and extensions to en-
sure efficiency under high loads are required. The software must run on different platforms
simultaneously to take advantage of the code added to particular languages. The software
needs to be made in several languages at the same time and executed in parallel on several
support platforms. This is an aspect that is difficult to achieve in other scenarios.

3.5.6. Open-Source Projects

In the world of open-source solutions, countless business applications of all types can
be adopted by customers without distinction. Thus, it is possible to find solutions such as
ERP, CRM, LMS, and CMS, including those specific to certain lines of business [47].

For each open-source project, the project’s constitution usually selects the base tech-
nologies and platforms on which its development and improvements will work. From that
point onwards, there will be a dependency on these technologies. When a solution is func-
tional and becomes popular, there are often projects that port solutions to other languages
and technologies so that they work within other execution scopes as well. This is the
case for SugarCRM, SplendidCRM, Hibernate, and NHibernate, to name a few examples.
Migration projects cannot keep up with the evolution of the original solution, creating gaps
in operations, updates, and improvements.

Although the objective of these projects is not the sale of licensing, the benefit for their
builders is normally in the service of implementations, customizations, and sometimes
in the reputation obtained. Therefore, they seek a solution that is widely adopted in the
largest number of possible scenarios. Many companies do not adopt certain open-source
software solutions because of the base platform and programming languages with which
they were built, as these are different from those that the company has available, even
knowing that they are functionally adequate and free. It is preferable to consider solutions
that are compatible with previously standardized technologies to move forward. It is of
interest both for developers of software projects and for the people or companies that
consume them to have a wide range of options for compatible technologies for their use.
To obtain a solution that offers this possibility, it would be necessary to program with
multiple languages simultaneously, which makes it unfeasible for this type of project.

Appl. Sci. 2023, 13, 11371 24 of 49

3.5.7. Long-Time-Use Software

Although software cannot be considered to age in the same way as occurs with physical
products, there are parameters by which its possible aging can be measured. One originates
from the use of programming languages or old technologies which have not been able to
keep up with the evolution of technological tools, which may continue to operate for many
years even when the brands themselves have stopped supporting and maintaining them.
These systems are often referred to as legacy systems.

As these are stable tools in terms of their development and original business logic,
users can handle them with solvency and generally solve the functional aspects required
by companies, and there is no strong business incentive to promptly migrate to new
technologies. Maintenance, improvement, and evolution costs tend to increase. Companies
are motivated to migrate because of the high costs or time that improvements take, or
because of incompatibilities that are difficult to overcome when it becomes desirable to
integrate with other types of solutions based on new technologies.

It must be considered that when the architecture of such applications was initially
proposed the most current technologies available at that time were probably used, and
that they finally became legacy systems after a useful lifetime. Therefore, the same can
happen today with the selection process of programming languages and base technologies
carried out by software architects. There is a chance that certain newly built applications
with the best current technologies will within a few years become legacy systems, as well as
that this process may become increasingly faster, resulting in an endless cycle. Companies
do not see this positively because they feel they should invest in the construction of new
software every time there is obsolescence of the base platforms or new technologies, and not
necessarily because of the evolution of their business logic when it is stable over time.

There are many scenarios in which companies want their software to be long-lasting
in terms of technological validity, stability, and evolution over time without the need
to rewrite it every time there are changes in the underlying technology [45]. Currently,
there is no method that allows software to exchange its basic operating technologies or
programming languages when it has already been built and begun operating.

3.6. Pros and Cons

During the formulation of the proposed design, a number of benefits and disadvan-
tages were identified that should be considered when evaluating its adoption. While this
architecture proposes a method to allow the same software to be developed in different
languages at the same time, it has several restrictions that could make it unsuitable for
different types of projects. In this section, we analyze these in detail.

3.6.1. Pros

• Single Codebase, Multiple Back-End Implementations:
One advantage of using the proposed design is that it allows for the automatic gen-
eration of code for multiple back-end technologies, which can significantly reduce
development time and effort. This means that developers can focus on the business
logic and front-end layers while the back-end layers are generated automatically us-
ing transpilers. This approach can improve the maintainability of the codebase by
reducing the amount of manual code that needs to be written and updated.
The proposed design allows a high degree of flexibility and adaptability during the
development process. By separating the layers and automating much of the code
generation process, developers can easily make changes and modifications without
having to rewrite large portions of the code. In addition, the use of transpilers means
that the code can be easily ported to different platforms and technologies, allowing
for greater versatility in the final product.

• Single Programming Language:
Another advantage of using the proposed design is that it allows developers to learn
and work with a single programming language throughout the development process,

Appl. Sci. 2023, 13, 11371 25 of 49

including the business logic and presentation layers. This can significantly reduce the
learning curve for new developers joining the project, and can lead to more efficient
development and maintenance of the system over time. In addition, the use of a single
language can facilitate communication and collaboration between the different teams
and stakeholders involved in the development process.

• Extended Lifetime:
Programming languages frequently propose new versions of products and services.
The same is true for the database and application servers. On the other hand, and un-
der different temporalities, business logic algorithms tend to have different evolution
cycles, which can potentially be very fast or very slow depending on the rate of
evolution of the functionalities required by companies and their users.
The evolution of basic technologies may present the effect of obsolescence over time
owing to the age of the technology and not to the inapplicability of the algorithms.
In certain cases, it is necessary to carry out migration projects from a previous version
to a new one by transferring all of the previously developed algorithms solely to take
advantage of the new versions of the base technology, for instance due to limitations
in the support of the brand, use of related benefits, compatibility with other running
products, etc.
In the proposed architecture design, the business logic is implemented using a tran-
spiler programming language. This makes the layers in which the business logic is
implemented agnostic to the temporality of the underlying technology. After time
has passed and new versions have advanced, a new nest implementation and its re-
lated services can be generated targeting the current technologies at the time, and the
solution can be compiled again without the need to rewrite the back-end code. This
offers an important benefit to companies and government entities consider software
investment as a long-term asset.

• Software Development Methodology:
From the viewpoint of software development methodology, the proposed design does
not establish any key differences from any other software project. It is possible to work
with agile or traditional methodologies, as well as with their properties and execution
criteria, without any special considerations.

• Reduced Dependency on Base Technologies
A final advantage of using the proposed design based on transpilers is the reduced
dependency on specific base technologies. With this design, the business logic and
data access layers are decoupled from the front-end layer and execution technologies,
allowing multiple nest implementations that can run on different technologies. This
means that the application can be deployed on various platforms without the need
for significant changes, reducing the risk of technological obsolescence or a sudden
change in politics from a brand, ensuring a longer lifecycle for the software.

3.6.2. Cons

• Focus on Target Audiences:
Although design formulation starts from the concept of a general-purpose solution,
the proposed design may not be suitable for every software project. This architecture
is best suited for specific scenarios with well-defined characteristics, and may not be
the ideal choice for all projects. Therefore, it is important for development teams to
carefully evaluate whether the proposed design aligns with the specific requirements
and objectives of their projects before adoption.

• Additional Effort:
Additional effort and resources may be required to create and maintain the transpiler
and its associated components. This could include the development time for the
transpiler itself as well as ongoing updates and maintenance to ensure compatibility
with new target languages and technologies. Additionally, the need to train developers

Appl. Sci. 2023, 13, 11371 26 of 49

in the use of the transpiler and associated tools could add to the overall learning curve
and resource requirements.

• Associated Costs:
Because this approach requires the use of multiple technologies and tools, including
the transpiler, nest implementations, and post-build utility, there may be additional
costs for training, maintenance, and ongoing support. Additionally, the use of this
design may require a development team with specialized skills, which could further
increase costs compared to a single-language software solution.

• New Programming Languages:
The need for developers to learn a new programming language specific to the transpiler
could increase the learning curve, and may require additional training resources that
add to overall development costs. Additionally, developers who are already familiar
with the target language may not be interested in learning a new language, which
could make it difficult to implement the proposed design.

• Lack of Documentation:
Another potential disadvantage of using the proposed design is that it is a relatively
new technology, meaning that there may be a lack of documentation and community
support. Consequently, developers may face challenges around troubleshooting
concerns or finding resources to learn and improve their skills. In addition, a limited
number of experts may be available to assist with complex problems, which could
lead to delays in development and deployment.

• Difficulty in Debugging:
Owing to the complex nature of the transpilation process, the multiple technologies
involved, and the generation of multiple layers of code, it can be challenging to identify
and isolate errors that may arise in the system. This can lead to longer development
and testing times, and may require specialized knowledge and tools to effectively
debug the system.

• Need for Standardized Libraries: There may be a lack of available libraries in the
target languages. Although transpilers can generate code in various programming
languages, not all libraries may be available in these languages, leading to limita-
tions in functionality or additional development efforts being required to recreate or
find alternative solutions. This can add complexity and potentially increase project
costs. Certainly commonly available imports may not be usable, or may need to be
implemented from scratch.

3.7. Relationship with Other Architecture Designs

The proposed architecture design model defines the use of a transpiler as a central
element of business logic programming. However, this does not contradict what is proposed
in other software architecture designs commonly used in the development of enterprise
platforms or information systems.

Conceptually, the proposed software architecture design allows the following precepts
of component subdivision and specialization to achieve high cohesion and low coupling.
Hence, in practice, any design can be used simultaneously, as the conception of the proposal
does not specifically determine the design of layers or levels, only the inherent technologies
needed for transpilation of the business logic layer and to obtain implementations in
multiple target languages.

Because of the way in which the conceptual design and the design of the compo-
nents have been structured, it is closer to service-oriented architecture (SOA), model-view-
controller MVC, or microservices, owing to its characteristic of exposing logic business
methods through services.

One of the benefits of writing the business logic layers in the transpiler language is
that it decouples the algorithms and processing proposed in the business logic methods
from the physical implementation of the architectural layers. This means that the same
source code can produce artifacts that conform to another layering scheme or traversal

Appl. Sci. 2023, 13, 11371 27 of 49

technology using a different nest implementation that follows another schema without the
need to rewrite the core programming.

A detailed analysis of the relationship between the proposed design and other com-
monly used design patterns is provided below.

3.7.1. SOA

The proposed design based on transpilers can be used in conjunction with the Service-
Oriented Architecture (SOA) pattern to enable the development of service-oriented systems.
SOA is an architectural style that emphasizes the use of services to support the require-
ments of business processes. The transpilation process can be used to generate service
implementations for each back-end technology, while front-end developers can use the
generated proxies to consume services [5].

To apply the proposed design to SOA, the system must be divided into service com-
ponents that encapsulate the business logic of the system. These components can be
deployed in different back-end technologies using the transpiler and nest implementation
approaches. The front-end layer can then access these services using the generated proxies,
which abstract the differences between back-end technologies.

The use of a transpilation-based architectural pattern can help to improve the interop-
erability of services by reducing dependence on specific technologies. Together with the
proposed design, SOA can help to enable the development of loosely coupled modular
systems in which services can be updated and replaced independently.

3.7.2. MVC

The proposed design can be used in conjunction with a Model–View–Controller (MVC)
pattern to provide a more robust and scalable architecture. In the MVC pattern, the model
represents the application’s data and business logic, the view represents the presentation
of the data, and the controller handles the user’s input and updates the model and view
accordingly [4].

Using the proposed design, the back-end layer can be designed to provide a stan-
dardized interface for the front-end layer, which can be developed using an MVC pattern.
The transpiled code can be used as the model layer, with the front-end layer acting as
the view and controller layers. The back-end layer can expose the necessary methods to
the front-end layer via nest implementations, allowing the front-end layer to easily access
business logic methods.

The use of this combination provides several benefits, including increased scalability,
modularity, and separation of concerns. It allows for the development of the front-end
layer using a well-established and widely used design while providing a standardized
back-end layer that can be easily updated and modified as needed. This approach promotes
code reusability and reduces the complexity of the overall architecture, making it easier to
maintain and scale the applications.

3.7.3. Microservices

The proposed architecture design based on transpilers can be used in conjunction
with microservice patterns. Microservices are software architecture patterns that involve
breaking down a large monolithic application into smaller independent services that can
be developed, deployed, and scaled independently [6]. The transpiler-based architecture
design can facilitate the development of microservices by providing a unified approach to
exposing back-end functionality to the front-end layers, regardless of the programming
language used in the implementation of each microservice.

In this context, the transpiler can be used to generate the necessary code for each
microservice in the programming language of choice and to expose the corresponding
API to the front-end layers using a consistent approach, helping to ensure consistency and
maintainability across different microservices even if they are implemented using different
programming languages. Additionally, the use of nest implementations can allow the

Appl. Sci. 2023, 13, 11371 28 of 49

deployment of microservices in different technologies, providing flexibility in terms of
supported operating platforms and environments.

However, it is important to note that the use of a transpiler-based architectural de-
sign in conjunction with the microservice pattern may add additional complexity to the
development process. The decomposition of a monolithic application into smaller microser-
vices requires careful planning and coordination, and the use of multiple programming
languages and technologies may require additional training and support. Therefore, it
is important to carefully weigh the benefits and drawbacks of using this combination of
patterns prior to their implementation in software development projects.

4. Empirical Experiment

This section delves into an initial implementation exercise encapsulated in the design
and deployment of a collaborative to-do list application. With its ability to seamlessly
function across C#, Java, and PHP from a singular codebase, this application serves as
a tangible manifestation of the applicability of the design model. This study represents
an initial step into such an architecture; our primary focus is on the validation of the
software architecture design model [48]. The methodology, planning, action, observation,
and reflection are articulated in the subsequent subsections, laying the groundwork for a
comprehensive exploration of this paradigm.

4.1. Methodology

Empirical methodologies offer a robust foundation for understanding and validating
innovative paradigms and architectural frameworks in the intricate domain of software
engineering. These methodologies, grounded in direct observation or firsthand experi-
ence, provide a conduit to gauge concepts beyond mere theory or abstract reasoning [49].
Considering the nuanced intricacies of our transpiler-based architectural design model,
a laboratory-based empirical approach is required. Such an environment allows for con-
trolled evaluation, emphasizing technological intricacies over human variables.

For this endeavor, we chose the Action Research Methodology as our investigative
backbone, with a distinct emphasis on technology-centric laboratory experiments [50].
While action research traditionally merges action with reflection to foster continuous
improvement, our adaptation squarely focuses on the technological facets of our transpiler-
based design. By iterating through the stages of reflection, planning, action, and meticulous
observation within a controlled laboratory setting, we aimed to deploy and evaluate our to-
do-list application while methodically refining the associated architectural model based on
the resulting empirical feedback. This methodological approach promises a comprehensive
assessment of the technical merits and potential refinements of the proposed architecture.

Figure 11 shows the process following the Action Research Methodology used in
this section.

Figure 11. Action Research Methodology process.

Appl. Sci. 2023, 13, 11371 29 of 49

4.2. Planning

This subsection delineates the strategic steps and considerations taken to lay the
groundwork for our transpiler-based architectural design model experiment.

• Experiment Objective: the primary aim of this experiment was to empirically evaluate
the effectiveness of the proposed transpiler-based architectural design model by imple-
menting a to-do-list application as a testbed. Through this application, the experiment
sought to assess the model’s capability to enable code reusability across diverse plat-
forms, with a specific focus on realizing a unified codebase that can cater to distinct
languages such as C#, Java, and PHP. In addition, the experiment aimed to measure the
performance, development efficiency, and compatibility of the constructed software
artifacts under this design paradigm.

• Tool Selection: in light of this objective, transpilers emerged as the most promising
tool, as they allow for the conversion of source code from one programming language
to another, potentially bridging the gap between different platforms.

• Transpiler Selection: considering our objective, it was pivotal to choose an effective
transpiler to serve as the backbone of our approach. After careful consideration,
Haxe (https://www.haxe.org accessed: 12 September 2023, version 4.2.2) was selected
because of its flexibility and ability to convert source code between multiple program-
ming languages. This choice aimed to bridge the gap between different platforms,
ensuring the feasibility of a unified codebase that could be transposed to languages
such as C#, Java, and PHP.

• Implementation Scenario: a controlled laboratory setting was adopted to carry out the
experimental evaluation. Such an environment provides the necessary conditions to
meticulously assess the the performance of design model while ensuring a focused
and unbiased evaluation. The controlled nature of the laboratory setting allowed for
replicable conditions, fostering greater credibility and precision in our findings.

• Framework: we utilized the first version of a transpiler-based framework that encap-
sulates all the concepts outlined in the design model proposed in this paper.

• Model Blueprint: a design model was drafted wherein a singular codebase could be
transpiled into different target languages. This model was designed to be scalable,
allowing for future additions or modifications based on technological advancements.

• To-do-list Application as a Testbed: for practical validation, a decision was made to
design a simple yet comprehensive to-do-list application. This application served
as a testbed, allowing for hands-on evaluation of the proposed model’s efficiency
and robustness.

• Functionality Mapping: functionality was mapped based on the application require-
ments, including user access controls, task management features, advanced catego-
rization, and dynamic task assignment:

– User-specific access controls differentiate the views of supervisors and executor
users.

– Task creation capabilities allow both supervisors and executors can initialize
tasks.

– Advanced categorization means that administrators possess the unique ability
to manage the available task categories.

– User management provides an exclusive feature for administrators to regulate
system users and their credentials.

– Comprehensive task details involve recording the task name, detailed descrip-
tion, category, assigned individual, and completion status.

– Task filtering mechanisms include visual filters based on categories, responsible
individuals, and textual searches.

– Dynamic task assignment grants supervisors the ability to reassign tasks to
different executors.

– Collaborative task visibility provides a centralized system for supervisors to
view, modify, and manage tasks across all executors.

https://www.haxe.org

Appl. Sci. 2023, 13, 11371 30 of 49

• Risk Assessment: potential challenges, such as compatibility issues, code inefficiencies,
and transpiler limitations were anticipated. Contingency plans were established to
address these risks as the implementation phase began.

4.3. Action

During the action phase of our research, we moved from the theoretical realm of
planning into the tangible realm of implementing our transpiler-based architectural design
model. Our selected tool for back-end transpilation was the Haxe transpiler; its inherent
adaptability and flexibility make it an ideal candidate for executing a uniform codebase
across multiple back-end platforms, seamlessly aligning with our research objectives.

A cornerstone of this hands-on phase was the conceptualization and development
of the nest implementations. Serving as intermediaries, these components bridge the gap
between the source code and the desired back-end platforms. Each nest implementation is
crafted with precision and tailored to a specific target technology, guaranteeing faultless in-
tegration and operation of the transpiled code in its designated environment. The necessity
for distinct nest implementations for each back-end platform underlines the modularity and
scalability inherent in our architectural approach, laying a strong foundation for potential
future technology integrations.

The project was not confined to the transpiler and nest implementation; in addition,
a multi-layered model was established incorporating code generators, automated build
programs, and standard libraries specifically designed to interface with databases. This
comprehensive setup ensured that every aspect of the back-end system was optimized and
ready for interaction with the front-end.

The web application, our empirical touchstone, was assembled meticulously. HTML
provided the structural backbone, SCSS lent aesthetic elegance, and TypeScript imbued it
with dynamic and type-safe scripting. Together, this trio deliver an interactive, dynamic,
and intuitive user interface, further underscoring the potential and practicality of our
back-end-focused transpiler model.

With all of these elements harmoniously integrated, we created the to-do-list appli-
cation. It not only showcased consistent behavior across diverse back-end platforms, it
provided robust evidence of the efficiency and versatility conferred by Haxe, our distinct
nest implementations approach, and the comprehensive architectural setup underpinning
it all.

4.4. Observation

Our journey next led us to a detailed observation period characterized by both quantita-
tive metrics and qualitative insights into the capabilities and performance of our transpiler-
based architectural model, with the primary focus on the back-end. The main observation
results are as follows:

Holistic Software Realization: one of the most salient outcomes of our observational
phase was the creation of complete and functional software. From its foundational layers
to its user-facing components, the resulting system was not just a theoretical construct or
a fragmented prototype, but a cohesive software artifact. This underscores the viability
of our approach; not only can our architectural design and transpiler-based methodology
be implemented in practice, it can culminate in a robust end-to-end software solution,
as exemplified by our to-do-list application. The Figures 12–14 show examples of the
software functionality screens.

Appl. Sci. 2023, 13, 11371 31 of 49

Figure 12. Screenshot of the developed to-do list application (Login Screen).

Figure 13. Screenshot of the developed to-do list application (Task List Screen).

Back-end Transpilation via Haxe: Haxe demonstrated remarkable efficacy in back-
end source code transpilation. The measurements highlighted variations in execution
performance across the targeted back-end platforms with an impressive range of 25–60 ms
per service call involving database querying, confirming its efficiency. Figure 15 presents
the results of a load test of 100 requests made to the back-end targeting the method that
retrieves the task list for the connected user. This was performed on a virtual machine with
eight processor threads, 8 gb of RAM, and an SSD unit. The database engine was Microsoft
SQL Server version 2019.

Appl. Sci. 2023, 13, 11371 32 of 49

Figure 14. Screenshot of the developed to-do list application (Task Edit Screen).

Figure 15. Load test.

Efficiency of the “Nest Implementations”: while these components acted as pivotal
mediators for our back-end, they also showed compatibility with diverse infrastructural
bases, such as C# (.net 4.7.2, .net core 3.1, .net core 5.0), Java (versions 8 and 11), and PHP 7.
The seamless integration across these technologies testified to their robust design and
flexibility. Figure 16 shows single codebase and transpiled implementations performed
using different programming languages. The Task_Search method, which is used in the
to-do-list application for listing and filtering the tasks that should be presented depend-
ing on the connected user, uses a single ORM implementation to help in querying the
transactional database.

Appl. Sci. 2023, 13, 11371 33 of 49

Figure 16. Transformed code.

Appl. Sci. 2023, 13, 11371 34 of 49

Layered Model and Supporting Infrastructure: in addition to the sheer functionality,
the efficiency of the development process was notably elevated. Although a precise numer-
ical metric was not established, the integration of code generators allowed development
efforts to be predominantly channeled into business logic and interface implementation,
markedly reducing potential bottlenecks and time wastage. Figure 17 shows the physical
implementation of the proposed design model, which is represented by a source code folder
structure divided into layers. The equivalent component of the design model is shown on
the right side.

Figure 17. Design model implementation.

Appl. Sci. 2023, 13, 11371 35 of 49

Database Connection Objects: the readability and functionality of the objects interfac-
ing with the database were commendable. They were easy to understand and functioned
effectively. However, the insights we gathered hinted at potential areas where these could
be further refined and optimized.

Interactions with the Front-end: the synergy between the developed front-end (HTML,
SCSS, TypeScript) and transpiled back-end was palpable. Furthermore, 100% of the initially
outlined functional specification were achieved without any hitches, accentuating the
robustness of the employed methodology.

System Interoperability and Scalability: one of the core tenets of this research is the
system’s capability to function harmoniously across different back-end platforms. We took
stock of any discrepancies, mainly technical or performance-related, arising due to varying
back-end technologies. The intrinsic modularity of the architecture promises good future
scalability and integration with other technologies. In Figure 18, it is possible to find several
deployment artifacts generated from a single source code.

Figure 18. Deployed artifacts.

This observation period, rooted in both tangible metrics and experiential insights,
provides a multifaceted view of our application in action, elucidating its strengths and
guiding the direction for subsequent iterations and refinements.

4.5. Reflections

Upon culmination of the observation phase, it is indispensable to indulge in a period
of introspection and reflection in order to understand the full spectrum of the obtained
results and experience. Through the lens of iterative development, the research journey
described above presented multiple avenues for improvement and learning.

Comparison with Traditional Approaches: notably, our primary objective was met.
In this experiment, the developers wrote the back-end source code just once, yet multiple
implementations of the same product were produced, each in a different target program-
ming language. In contrast, traditional approaches would typically yield a solution in

Appl. Sci. 2023, 13, 11371 36 of 49

just one technology for the same amount of effort. Furthermore, the time and effort ex-
pended by the developers in this experiment were comparable to what would be required
when working with a single language, delivering a notable enhancement when using the
proposed approach.

Iterative Improvement: one salient realization of this endeavor was the nonlinearity
of the development process. The transpiler-based architectural design model did not
materialize in its entirety in one swift move; rather, it underwent a series of iterations.
Each iterative cycle enriched the source code, refined the layers, and streamlined the
processes, ensuring that the architecture matured over time and was responsive to changing
requirements and insights. Several future iterations should be considered for future work
to ensure that the artifacts can be tested and are reliable.

Challenges in Debugging: one of the most significant hurdles encountered during the
experiment was the complexity involved in debugging. Considering the diversity of tech-
nologies in addition to the transpilation process, isolating and rectifying issues consumed a
disproportionate amount of time, highlighting a critical challenge with this methodology.

Clarifying the Contributions: while the Haxe transpiler played a pivotal role in trans-
lating the source code across platforms, the cornerstone of this research and its principal
contribution revolves around the architectural design model. The layered design, over-
all architecture, and paradigm of our approach form the crux of our innovation; while
transpilation is the mechanism, architectural wisdom is the message.

Documentation and Framework Limitations: venturing into relatively uncharted terri-
tory with Haxe, a less prevalent language, involved its own set of challenges. The scarcity of
exhaustive documentation coupled with a limited set of available frameworks occasionally
hindered our progress and demanded creative problem solving.

Extendibility and Scalability: while the project showcased a relatively compact
functional scope, the foundational structures, methodologies, and layered model en-
sured its scalability. In essence, the architecture we laid down, while nimble for our
immediate needs, is robustly poised to accommodate tools of a significantly higher
transactional magnitude.

Tangible Evidence: this venture serves as a evidence of the application of the pro-
posed architectural design model. It is not just a theoretical construct but a practical and
tangible entity. Although it successfully demystifies the potential of transpiler-based ar-
chitectures, its ubiquitous application across diverse scenarios requires further evolution
and refinement.

Future Scenarios and Applications: the utility of such an architecture is not confined
to its current embodiment; potential scenarios could span the following:

Large-Scale Enterprise Solutions: systems requiring simultaneous operation across
different technological platforms can benefit immensely from this design model.

Collaborative Development Environments: a unified codebase can enhance collabora-
tion between teams operating in different technological silos.

Rapid Prototyping across Platforms: the proposed design model could be useful
for projects that need to be prototyped or tested across different environments without
engaging in redundant development efforts.

Limitations and Opportunities: despite promising outcomes, it must be acknowledged
that additional evaluation spaces and diverse use cases would further solidify the validity
of the proposed approach. This architectural model, while showing immense promise,
remains in its nascent stage. As with all innovations, its widespread adoption across
varying contexts will be the true litmus test.

In retrospect, this reflective phase underscores both the successes and the areas in need
of enhancement, along with potential future applications and the path forward. As pro-
posed and implemented, this transpiler-based architecture serves as a beacon demon-
strating what is feasible today while casting a vision of tomorrow’s software develop-
ment paradigms.

Appl. Sci. 2023, 13, 11371 37 of 49

4.6. Replicability

For replication purposes, the source code of the to-do list application presented in
this paper has been uploaded to GitHub (uploaded: 18 August 2023) (https://github.com/
anfebafu-epn/todolist), including implementations for Haxe, C#, Java, and PHP for the
same software.

5. Discussion
5.1. About the Research Questions

This section discusses the theoretical elements of the proposed design model. A review
of the research questions posed at the beginning of this study follows:

• RQ1. What elements should be considered in the software design process when using
the new conceptual model that incorporates a transpiler as the central development
technology for the back-end layer?
In recent years, transpilers have gained relevance in software development owing
to their ability to provide flexibility in the choice of programming languages used in
different layers of the application. This proposal presents a new software architecture
design that uses transpilers as a central development technology for the back-end
layer. However, the question then arises of what elements should be considered in
the software design process when using this new conceptual model. In this study, we
provide a comprehensive answer to this question. The main elements for consideration
are discussed below.
Layers and Dependencies: one of the main elements to consider in the software
design process using this new model is the definition of layers and their dependencies.
The back-end layer is composed of the business logic and data access layers, whereas
the front-end layer is the presentation layer. In addition, it is important to define the
dependencies between the layers and the technologies used to connect them. This
includes the nest implementations, which allow different technologies to be used to
expose the same business logic methods.
Code Generation: the code-generation process is another important element to con-
sider. The proposed model uses a post-build utility that compiles the artifacts specific
to each execution technology, such as XML Web Services or Windows Communication
Foundation (specific services exposures for .net). In addition, a component called
DB Gen is used when the database-first strategy is used, which automatically gener-
ates the programming of the back-end layer based on the structure of the database.
The code generation process must be properly configured to ensure compatibility of
the generated code and the transpiled target language.
Debugging: debugging is an essential part of software development, and the pro-
posed model introduces new challenges. The use of transpilers may complicate the
debugging process, as the code being debugged is not the same as that written by
the developer. This may require specific tools and techniques for debugging, such as
using source maps to map the generated code to the original code. Therefore, it is
important to consider the potential impacts on debugging when using this new model.
Learning Curve: finally, it is essential to consider the learning curve associated with
the use of transpilers as a central development technology in the back-end layer.
Developers will need to learn new concepts and techniques related to the transpiler
and its associated technologies. This may require additional training and resources
to ensure successful adoption of the new model. It is important to provide adequate
support and resources to facilitate this learning process.
Summary: the use of a transpiler as a central development technology in the back-end
layer introduces new elements to be considered in the software-design process. These
include the definition of layers and their dependencies, code generation, debugging,
and the learning curve associated with the use of new technologies. It is important
to carefully evaluate these elements in order to ensure successful adoption of the

https://github.com/anfebafu-epn/todolist
https://github.com/anfebafu-epn/todolist

Appl. Sci. 2023, 13, 11371 38 of 49

proposed model. By considering these elements, developers can leverage the benefits
of transpilers to provide flexibility and efficiency in software development.

• RQ2: Which target scenarios are applicable to software designs that use the new
conceptual model that incorporates a transpiler as the core element of the back-
end layer?
The proposed software design incorporates a transpiler as the core element of the back-
end layer, and is applicable to a wide range of target scenarios. One of the primary
benefits of using this schema is that it reduces dependency on the base technologies
used for software development. This makes it ideal for software product builders
seeking to deploy software across multiple platforms and technologies. There are
several other relevant scenarios in this context, such as government software projects,
software for business associations, software projects in scientific research, software-as-
a-service projects, open-source projects, and long-time-use software, which can benefit
from this software design pattern. A detailed analysis is presented in the section
entitled “Target Audiences”.

• RQ3: What are the benefits and challenges associated with implementing a software
design model that uses a transpiler in the back-end layer?
For a detailed analysis of the benefits and challenges associated with implementing
a software design model that uses a transpiler in the back-end layer, please refer to
the section titled “Pros and Cons”, which provides a comprehensive overview of the
advantages and disadvantages of the proposed software architectural design model.

• RQ4: How can one evaluate the effectiveness and validity of the proposed conceptual
model for software design using a transpiler in the back-end layer?
To evaluate the effectiveness and validity of the proposed conceptual model for
software design using a transpiler in the back-end layer, it was necessary to perform
a series of tests and evaluations in real-world scenarios. This included testing the
performance, scalability, and reliability of the architecture in different contexts as well
as comparing it with existing software design models to determine its advantages and
disadvantages. Additionally, it was essential to gather feedback from developers and
end users in order to assess the usability and overall user experience of the software
designed using this model.
In the most recent phase of our research, we ventured from theoretical planning to the
tangible implementation of a transpiler-based architectural design model, for which we
used the Haxe transpiler due to its adaptability and flexibility in back-end transpilation.
Central to this phase was the development of the nest implementations which acted as
intermediaries to bridge the source code with various back-end platforms. In addition,
a multi-layered model incorporating code generators, automated build programs,
and standard libraries was established to enhance the back-end system, culminating
in the creation of a to-do list web application as a practical representation of our
design model. This application exhibited consistent behavior across diverse back-end
platforms, highlighting the potential of our architectural setup.
Through our iterative development process, we gained insights into the nonlin-
earity of creating our architectural model, with each cycle refining and maturing
the system. Challenges included complexities in debugging owing to the varied
technologies and transpilation processes and the limitations associated with Haxe’s
documentation and framework availability. Nonetheless, our project showed the
applicability of the transpiler-based architectural model, highlighting its scalability
and adaptability for future applications. Potential use cases include large-scale en-
terprise solutions, collaborative development environments, and rapid prototyping
across platforms.
Reflecting on our research journey, the achievements, challenges, and future potential
of our transpiler-based architecture have become apparent. This research not only
demonstrates the capability of transpiler-based systems, it sets out a vision for future
software development paradigms, laying the foundation for potential widespread

Appl. Sci. 2023, 13, 11371 39 of 49

adoption in various technological contexts. Further details can be found in the “Em-
pirical Experiment” section of this document.
For future work, a case study should be considered to improve on the validity of
our results. In this case, the architecture would be applied to a real-world software
development project that would involve the development of a proof-of-concept pro-
totype using the proposed architecture and testing it in a controlled environment.
The prototype could then be deployed in a production environment and its perfor-
mance and reliability monitored and compared with existing solutions. In addition,
user feedback could be collected in order to evaluate the usability and user experience
of the resulting software.
Another approach could involve benchmarking tests using different software design
models, including the proposed model. This would involve the development of similar
software applications using different architectures, followed by a comparison of their
performance, scalability, and reliability. In this way, the strengths and weaknesses of
each model could be identified in order to determine the effectiveness and validity of
the proposed model.
It is worth noting that while these approaches can provide valuable insights into
the effectiveness and validity of the proposed model, they are beyond the scope
of the present work. Therefore, future work is necessary to gradually increase the
proposed model’s validity. This includes identifying potential limitations and weak-
nesses of the proposed model and proposing solutions to address them. Never-
theless, the proposed model represents a promising approach to software design
with the potential to simplify the development process and improve the quality of
software applications.

• RQ5: How does the proposed conceptual model compare with other software archi-
tecture design models?
To answer this research question, it is necessary to refer to the section of the article
titled “Relationship with Other Architectural Designs”. In this section, a comparison is
made between the proposed design and other designs commonly used in software de-
velopment. This section explains the similarities and differences between the proposed
design and other patterns, including MVC, SOA, and microservices, highlighting the
advantages and disadvantages of each.
A comparative analysis was conducted based on multiple articles related to the pro-
posed research with the objective of examining how the proposed design model
aligns with or differs from the existing literature in the field of software develop-
ment. We performed this analysis to enhance the applicability and potential impact
of the proposed approach as well as to identify potential areas for further research
and development.

5.2. About the Related Articles

A comparative analysis was conducted on multiple articles related to the proposed
research with the objective of examining how the proposed design model aligns with or
differs from the existing literature in the field of software development. We performed this
analysis to enhance the applicability and potential impact of the proposed approach and to
identify potential areas for further research and development.

• SequalsK—A Bidirectional Swift–Kotlin-Transpiler [51]
This scientific article addresses the challenges of developing apps separately for iOS
and Android platforms and the pros and cons of using cross-platform development
frameworks. The authors suggest a native development approach that takes advantage
of the similarities between the Swift and Kotlin programming languages. They propose
bidirectional transpiling of the model part of an app, which enables developers to work
on a shared model using their preferred language. The proposed SequalsK transpiler
supports the critical constructs of both languages and produces correct syntax and
semantics. Through a case study, this article shows that the model part of a board game

Appl. Sci. 2023, 13, 11371 40 of 49

app can be transpiled in both directions without limitations, with little manual effort
required to derive an Android version from a Swift version. The proposed approach
is different from using transpilers for back-end development in that it focuses on the
model part of the app and enables joint development by iOS and Android experts.
This approach does not focus on the back-end.

• FLY: A Domain-Specific Language for Scientific Computing on FaaS [52]
The authors of this article explored the use of Function-as-a-Service (FaaS) in cloud
computing for the development and execution of large-scale scientific computing
applications, proposing a domain-specific language named “FLY” for designing, de-
ploying, and executing such applications using the FaaS service model on different
cloud infrastructures. This paper presents the design and language definition of FLY
on various computing back-ends, and introduces the first FLY source-to-source com-
piler available on GitHub that supports SMP and AWS back-ends. The FLY language
and FaaS service model offer an opportunity for easy development and execution of
large-scale scientific applications with fine-grained application decomposition and
efficient scheduling on cloud provider infrastructure. The use of FLY is different
from a software architecture design that uses transpilers to develop back-end layers,
as FLY employs FaaS and a specialized language designed specifically for scientific
computing applications.

• OP2: An Active Library Framework for Solving Unstructured Mesh-Based Applica-
tions on Multi-Core and Many-Core Architectures [53]
This article discusses the OP2 library, a framework that allows developers to transform
unstructured mesh-based applications into parallel implementations for execution
on different hardware platforms. This paper presents the design and features of
OP2, including its recent extension to the distributed memory clusters of GPUs,
and highlights the main design challenges for parallelizing unstructured mesh-based
applications on heterogeneous platforms. The authors used a CFD application written
using the OP2 framework for benchmarking and performance analysis on various
platforms, demonstrating that OP2 can achieve near-optimal performance without
the intervention of domain-application programmers. It should be noted that OP2
is distinct from a software architecture design that uses transpilers for back-end
development, which focuses on facilitating the development of back-end layers using
transpilers and language interoperability for shared codebase development, whereas
OP2 provides source-to-source translation and compilation framework for execution
on different hardware platforms and is specifically designed for unstructured mesh-
based applications.

• High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Paral-
lel Constructs [54]
This article proposes an automated method to convert programs written in one pro-
gramming model, such as CUDA, to another model, such as CPU threads, using
Polygeist/MLIR, which can achieve performance portability and eliminate the need
for manual application portability. This framework allows compiler transformations
to be applied seamlessly, including parallelism-specific optimizations. The approach
was evaluated by converting and optimizing the CUDA Rodinia benchmark suite for
a multicore CPU, resulting in a 58% speedup compared with handwritten OpenMP
code. Additionally, this article demonstrates how PyTorch CUDA kernels can run
efficiently and scale on a CPU-only supercomputer without user intervention, out-
performing PyTorch’s native CPU back-end. This approach differs from a software
architecture design that uses transpilers for back-end layer development, as it focuses
on automatically translating code from one programming model to another rather
than developing a shared model that can be transpiled to equivalent versions in
different languages.

• Program Transformation Techniques Applied to Languages Used in High-Performance
Computing [55]

Appl. Sci. 2023, 13, 11371 41 of 49

This article presents an approach to improving the quality of software in high-
performance computing (HPC) through meta-programming. Meta-programming
allows for the manipulation and generation of programs in order to extend their
behavior. The authors introduced the OpenFortran and OpenC frameworks, which
enable transparent program transformation for application programmers. In addition,
they suggested a generalized meta-programming framework to allow program trans-
formation for any programming language with the aim of solving concerns related
to efficiency, scalability, and adaptation in HPC software. This approach differs from
a software architecture design that uses transpilers for back-end layer development
in that it emphasizes program transformation and generation in HPC rather than
language translation.

• Multi-Language Static Code Analysis on the LARA Framework [56]
This study proposes a method for enhancing source-code analysis to support multi-
ple languages by utilizing the LARA framework to create a language specification
for object-oriented programming languages. The authors demonstrated that this ap-
proach allows language specifications to be shared between LARA source-to-source
compilers and enables the mapping of a virtual abstract syntax tree over the nodes of
Abstract Syntax Trees (ASTs) provided by different parsers. To evaluate their approach,
the authors implemented a library of eighteen software metrics using the proposed
language specification and applied these metrics to the source code in four program-
ming languages (C, C++, Java, and JavaScript), then compared the results to those
of other tools. This approach is distinct from software architecture design that uses
transpilers for back-end development, as it focuses on abstract syntax tree mapping
and analysis rather than automatic language translation and software architecture
design patterns.

• Beyond @CloudFunction: Powerful Code Annotations to Capture Serverless Runtime
Patterns [57]
This article delves into the importance of simplicity in the development of elasti-
cally scalable applications and addresses how Function-as-a-Service (FaaS), a form of
serverless computing, can alleviate this problem. FaaSification frameworks have been
introduced to simplify the offloading of code methods as cloud functions; however,
as applications become more complex, runtime patterns with background activities
require more complex infrastructure orchestration. To address this challenge, the
authors of this study proposed a novel approach that uses infrastructure-as-code con-
cepts to simplify orchestration patterns through powerful code annotations. The pro-
posed solution was demonstrated using FaaS Fusion, an annotation library, and a
transpiler framework for JavaScript. This approach is distinct from a software ar-
chitecture design that uses transpilers for the development of back-end layers, as it
specifically focuses on simplifying infrastructure orchestration for FaaS applications
through powerful code annotations. This enables more efficient and streamlined
management of complex runtime patterns. By contrast, a software architecture de-
sign pattern that uses transpilers for back-end development can be applied to any
type of application, not just FaaS, and may not necessarily address the problem of
infrastructure orchestration.

5.3. About the Technical Aspects
5.3.1. Compatibility and Debugging

When working with transpilers, it is challenging to ensure the full compatibility
of capabilities across different target programming languages. Consequently, transpilers
define their capabilities using their own source language, which guarantees transformability
to the target languages. However, there may be specific functionalities that developers wish
to incorporate into generic languages. Transpilers often allow the use of external functions
to extend the language through references and additional functions and accommodate
specific elements of a given programming language.

Appl. Sci. 2023, 13, 11371 42 of 49

The challenge with using extended functions is that the equivalent implementation
must be manually carried out for each supported target programming language in order to
maintain broad compatibility with all languages. This means that when utilizing extended
functions developers must meticulously implement the equivalent functionality for each
supported target language while ensuring that the platform maintains compatibility across
all languages.

By carefully managing the use of extended functions and implementing language-
specific counterparts, developers can strike a balance between leveraging the transpiler’s
capabilities and accommodating the particularities of the individual programming lan-
guages. This approach enables the creation of multi-language software systems while
ensuring compatibility and functionality across various target languages.

It is important to note that while transpilers provide a powerful tool for code reuse and
cross-language development, developers should be aware of the limitations and challenges
associated with handling language-specific features while maintaining the overall integrity
and effectiveness of the transpilation process.

Furthermore, it is crucial to consider a scenario in which a developer wishes to edit
the transpiled code directly. If a developer chooses to make direct modifications, they
can achieve a unique and customized level of personalization for their specific target
language. However, it is important to note that this approach is not recommended within
the proposed design model, as the intention is for the code to be transpiled again to any
target language during the maintenance, improvement, and evolution stages.

When the code is transpiled again, the source code is rewritten, potentially elimi-
nating any customizations made specifically for the target language. Therefore, relying
on line-by-line transpilation is not practical or functional within this context. Instead,
utilizing extension functions is the preferred approach. By leveraging extension functions,
developers can extend the capabilities of the transpiler while avoiding the need for manual
language-specific modifications. This ensures that the code can be transpiled efficiently
and maintains compatibility across multiple target languages.

By emphasizing the use of extension functions and avoiding direct modifications to the
transpiled code, the proposed design model aims to strike a balance between customization
and maintainability. It enables efficient transpilation and facilitates seamless evolution and
updates of software while preserving the broad compatibility offered by the transpiler-
based architecture design model.

Another viable alternative is to subdivide back-end programming logic into indepen-
dent layers using interfaces and invocation schemes. This approach allows for combinations
of native and transpiled code. By developing the core of the back-end in the transpiler
language and incorporating direct customizations in the target programming language, it
is possible to deploy them together on the server without mixing them. Through intercom-
munication libraries, these components can be made to work together seamlessly.

By adopting this approach, the core of the product can be developed using the pro-
posed design model while allowing for specific customization in separately developed code.
This ensures that the code is not overwritten during the back-end maintenance process.
Through careful balancing of the transpiled core and customized components, the system
can effectively leverage the advantages of the design model while accommodating the
unique requirements of each target language.

This approach promotes modularity and flexibility, enabling developers to maintain
and enhance the back-end efficiently. By separating the core logic and personalized code,
developers can preserve their respective functionalities and facilitate collaboration between
transpiled and native components.

Debugging presents several challenges in the context of multi-programming-language
software [58]. As the transpilation process involves translating code from a source language
to various target languages, debugging becomes more complex due to potential mismatches
between the original source code and transpiled code in different languages.

Appl. Sci. 2023, 13, 11371 43 of 49

One significant challenge is the potential loss of source-level debugging capabilities
when working with transpiled code. Debuggers are often language-specific and rely on
source-level information for effective debugging. However, when debugging transpiled
code developers may not have access to the same level of source-level information, making
it more challenging to accurately track and diagnose issues.

Furthermore, the presence of language-specific constructs and nuances across differ-
ent target languages can introduce additional complexities into the debugging process.
Debugging in one target language may require a different approach or set of tools com-
pared to another, potentially leading to inconsistencies and difficulties in reproducing and
resolving bugs.

To overcome these challenges, it is essential to establish robust debugging practices
specific to transpilation processes. This may involve implementing language-specific
debugging tools or techniques that can bridge the gap between the original source code
and transpiled code in different languages. Additionally, thorough testing and validation
of the transpiled code in each target language can help to identify and address potential
debugging issues early in the development cycle.

By acknowledging and addressing these challenges, developers can mitigate the com-
plexities associated with debugging in a multi-language transpilation scenario, ensuring
the stability and reliability of the software throughout its lifecycle.

5.3.2. The Role of the Transpiler

Transpiler technology commonly involves the creation of a specific programming
language designed to transform code into other programming languages while adhering
to their respective syntax. Consequently, the programming language introduced by the
transpiler is considered a high-level language. For example, Haxe, a transpiler, introduces
a general-purpose high-level language of the same name capable of translating code into
multiple target languages, all of which are high-level themselves. However, it should be
noted that the transpiler’s language is not limited to high-level languages, and can be
translated into low-level languages if supported by the transpiler.

This research project does not propose a new transpiler; rather, it remains open to the
use of any transpiler that meets the architectural criteria outlined in the article. Therefore,
support for both high-level and low-level programming languages should be viewed
as inherent features of the transpiler itself, rather than being specific to the proposed
design model.

While the general specification throughout the article may mention C#, Java, and PHP
as examples owing to their widespread use, it is important to emphasize that the design
model is not exclusively limited to these languages. The proposed design can accommo-
date various programming languages, both high-level and low-level, depending on the
project requirements.

Before a target language of the transpiler can be considered part of the proposed
development scheme, whether high-level or low-level, a custom implementation must
be developed, particularly focusing on the nest implementation. This entails creating the
necessary architectural mechanisms to enable native compilation and execution frameworks
that are specific to the target language.

Additionally, the comparison between transpilers and interpreters, although not
initially addressed in this article, presents an interesting discussion. Transpilers focus
on translating code from a source programming language to a target language, with the
resulting code compiled in the target language. In contrast, interpreters run code at
runtime, providing dynamic and customizable execution, albeit with potential performance
impacts. It is worth noting that there are examples of transpilable libraries that incorporate
interpreter-like functionality and blend both concepts.

Appl. Sci. 2023, 13, 11371 44 of 49

5.3.3. The Nest Implementation Process

To broaden the proposed solution’s compatibility with emerging technologies and
fully harness the potential of transpilable code, multiple ‘nest’ implementations are re-
quired. Each of these implementations should be tailored for a specific programming
language, targeting a designated application server anticipated to publish endpoints while
taking into account the different versions of foundational technologies as well as the in-
herent compilation tools and database support. The more combinations of these variables
offered in distinct nest implementations, the greater the flexibility in selecting the final
solution artifacts.

To develop new nest implementations, it is necessary to be well acquainted with the
standardized library outputs derived from the transpilation process as well as to possess
deep insight into the target technologies. This ensures that the implementer can deliver the
core infrastructure for the endpoint, database support, and execution services as well as
best practices and any necessary source code generation methods.

In formulating a comprehensive framework that employs this design model, provi-
sions should be made for interfaces and tools that simplify the creation of nest implementa-
tions. This is especially pertinent in light of the expected growth in the number of available
nest implementations.

5.4. About Previously Published Works

The authors of this article have published previous work on earlier partial advances in
the investigation. Below, we describe the relationship of these works to the proposed method:

• Transpiler-Based Architecture for Multi-Platform Web Applications [42]
This article presented our first published research advance on transpiler-based architec-
ture design, directed at building multi-platform web applications that use a transpiler
to write the business logic and service layer for C#, Java, and PHP. An experimental
prototype was developed using the Haxe transpiler to test the main idea. Preliminary
results were presented.

• A systematic review of Transpiler usage for Transaction-Oriented Applications [18]
This article discussed the importance of multi-platform and multi-programming-
language software architecture design for software product builders from the per-
spective of increased flexibility, compatibility, and likelihood of adoption. In this
article, we presented the results of a systematic literature review conducted to identify
current works on transpiler implementations and usage for transaction-oriented appli-
cations, concluding that transpilers have not been previously used for designing multi-
platform transaction-oriented applications, opening this field up for future research.

• Transpilers: A Systematic Mapping Review of Their Usage in Research and Industry [17]
This article presented the results of a systematic mapping review conducted to identify
the use and implementation of transpilers in research studies over the last ten years.
The review identified that the most common uses of transpilers are related to perfor-
mance optimization, parallel programming, embedded systems, compilers, testing,
AI, graphics, and software development. In this article we proposed several future
research areas for the use of transpilers, such as transactional software, migration
strategies for legacy systems, AI, math, multi-platform games and apps, automatic
source code generation, and networking. The goal of this approach was to identify the
extent and impact of research sub-areas related to the use of transpilers, rather than to
provide a specific solution for a software development problem.

6. Conclusions and Future Work
6.1. Conclusions

A transpiler is a tool that converts source code from one programming language to
another while preserving the behavior of the original code. This allows developers to write
code in a single programming language and translate it into different target languages.

Appl. Sci. 2023, 13, 11371 45 of 49

In this article, we introduce a new software design model that uses a transpiler and its
own programming language to write the back-end layers of multi-programming-language
software. The design is modular, scalable, and flexible, allowing developers to write the
business logic and back-end components only once and then easily transform them into
different versions made up of different programming languages. This approach aims to
reduce costs, streamline development, and improve the efficiency of multi-programming-
language platforms. The design is suitable for several scenarios where it may achieve better
results than those that use a single programming technology.

Five research questions were oriented toward the elements needed in a software design
model that incorporates a transpiler as the central development technology of the back-end
layer, considering its elements, applicability, benefits and challenges, effectiveness and
validity, and comparison with other designs.

In the course of this article, sections on design fundamentals, abstract design, detailed
design, target audiences, pros and cons, and their relationship with other commonly used
designs are presented and detailed.

In the discussion section, the research questions and hypotheses are analyzed
and detailed.

Figure 19 shows a generic and simplified sheet presenting the proposed model in
abstract form.

In this study, we have detailed new software architecture design model that uti-
lizes transpilers in the back-end layer. This article discusses the main elements to
be considered when designing software using this new model, including the layers
and dependencies, code generation, debugging, and the learning curve associated
with the use of new technologies. By carefully evaluating these elements, develop-
ers can leverage the benefits of transpilers to provide greater flexibility and efficiency in
software development.

Figure 19. Cont.

Appl. Sci. 2023, 13, 11371 46 of 49

Figure 19. Simplified sheet.

6.2. Future Work

The validation process of this proposal should involve several steps, including internal
testing, case studies, benchmarking, and evaluation. Testing involves verifying correctness
and completeness, whereas benchmarking involves comparing performance with other
solutions. In addition, it is important to validate the proposal in industry, community,
and expert forums. However, this is not a static process; the evolution of our proposal
involves refining the design to make it more effective and adaptable to the defined scenarios.

Possible future work to further evaluate the effectiveness and validity of the proposed
conceptual model for software design using a transpiler in the back-end layer could include
the following:

• Conducting a new laboratory-based experiment with different functional requirements
or approaches.

• Conducting a case study with a larger and more diverse sample size in order to gather
feedback from a wider range of developers and end users.

• Identifying the potential limitations and weaknesses of the proposed model and
proposing solutions to address them.

• Further benchmarking tests conducted using different software design models to
validate the performance, scalability, and reliability of the proposed model.

Appl. Sci. 2023, 13, 11371 47 of 49

• Developing a set of best practices and guidelines for effective use of the proposed
model.

• Exploring the potential of the proposed model in different application domains and
identifying scenarios in which it may be particularly effective.

• Investigating the feasibility of integrating the proposed model with other software
design patterns and techniques.

• Developing tools and frameworks to facilitate the adoption and implementation of
the proposed model.

Author Contributions: Conceptualization, A.B.F.; Methodology, A.B.F.; Software, A.B.F.; Validation,
M.P.; Formal analysis, A.B.F., M.P. and J.M.; Investigation, M.P. and J.M.; Resources, M.P. and J.M.;
Writing—original draft, A.B.F.; Writing—review & editing, A.B.F.; Visualization, M.P. and J.M.;
Supervision, M.P. and J.M.; Project administration, M.P. and J.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was partially funded by Smartwork S.A. company.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that this study received funding from Smartwork S.A.
company. The funder was not involved in the study design, collection, analysis, interpretation of
data, the writing of this article or the decision to submit it for publication.

References
1. Kazman, R.; Klein, M.; Barbacci, M.; Longstaff, T.; Lipson, H.; Carriere, J. The architecture tradeoff analysis method. In

Proceedings of the Fourth IEEE International Conference on Engineering of Complex Computer Systems (Cat. No.98EX193),
Monterey, CA, USA, 14 August 1998 . [CrossRef]

2. Shaw, M.; Garlan, D. Software Architecture: Perspectives on an Emerging Discipline, 1st ed.; Prentice Hall: Hoboken, NJ, USA, 1996.
3. Selić, B. Specifying dynamic software system architectures. Softw. Syst. Model. 2021, 20, 595–605. [CrossRef]
4. Fowler, M. Patterns of Enterprise Application Architecture: Pattern Enterpr Applica Arch; Addison-Wesley: Boston, MA, USA, 2012.
5. Erl, T. SOA Principles of Service Design (the Prentice Hall Service-Oriented Computing Series from Thomas Erl); Prentice Hall PTR:

Hoboken, NJ, USA, 2007.
6. Newman, S. Building Microservices; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2021.
7. Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; Stal, M. Pattern-Oriented Software Architecture: On Patterns and Pattern

Languages; John Wiley & Sons: Hoboken, NJ, USA, 2007.
8. Gahlot, S.; Chhillar, S.C. Design and Implementation of Component based Metric for Software Complexity Measurement. Int. J.

Recent Technol. Eng. 2019, 8, 1093–1098. [CrossRef]
9. Yong, D. Design and Practice of Software Architecture in Agile Development. J. Phys. Conf. Ser. 2021, 2074, 012008. [CrossRef]
10. Blank, D.; Kay, J.S.; Marshall, J.B.; O'Hara, K.; Russo, M. Calico: A multi-programming-language, multi-context framework

designed for computer science education. In Proceedings of the 43rd ACM Technical Symposium on Computer Science Education,
Raleigh, NC, USA, 29 February–3 March 2012. [CrossRef]

11. Mayer, P.; Kirsch, M.; Le, M.A. On multi-language software development, cross-language links and accompanying tools: A
survey of professional software developers. J. Softw. Eng. Res. Dev. 2017, 5, 1. [CrossRef]

12. Kargar, M.; Isazadeh, A.; Izadkhah, H. Improving the modularization quality of heterogeneous multi-programming software
systems by unifying structural and semantic concepts. J. Supercomput. 2019, 76, 87–121. [CrossRef]

13. Kargar, M.; Isazadeh, A.; Izadkhah, H. Multi-programming language software systems modularization. Comput. Electr. Eng.
2019, 80, 106500. [CrossRef]

14. Izadkhah, H.; Kargar, M.; Isazadeh, A. Towards Comprehension of the Multi-Programming Language Software Systems. In
Proceedings of the 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), Tehran, Iran, 28 February–1
March 2019. [CrossRef]

15. Kontogiannis, K.; Linos, P.; Wong, K. Comprehension and Maintenance of Large-Scale Multi-Language Software Applications. In
Proceedings of the 2006 22nd IEEE International Conference on Software Maintenance, Philadelphia, PA, USA, 24–27 September
2006; pp. 497–500. [CrossRef]

16. Li, Z.; Qi, X.; Yu, Q.; Liang, P.; Mo, R.; Yang, C. Multi-Programming-Language Commits in OSS: An Empirical Study on Apache
Projects. In Proceedings of the 2021 IEEE/ACM 29th International Conference on Program Comprehension (ICPC), Madrid,
Spain, 20–21 May 2021. [CrossRef]

http://doi.org/10.1109/iceccs.1998.706657
http://dx.doi.org/10.1007/s10270-021-00875-0
http://dx.doi.org/10.35940/ijrte.C4249.098319
http://dx.doi.org/10.1088/1742-6596/2074/1/012008
http://dx.doi.org/10.1145/2157136.2157158
http://dx.doi.org/10.1186/s40411-017-0035-z
http://dx.doi.org/10.1007/s11227-019-02995-3
http://dx.doi.org/10.1016/j.compeleceng.2019.106500
http://dx.doi.org/10.1109/kbei.2019.8735092
http://dx.doi.org/10.1109/ICSM.2006.20
http://dx.doi.org/10.1109/icpc52881.2021.00029

Appl. Sci. 2023, 13, 11371 48 of 49

17. Bastidas Fuertes, A.; Pérez, M.; Meza Hormaza, J. Transpilers: A Systematic Mapping Review of Their Usage in Research and
Industry. Appl. Sci. 2023, 13, 3667. [CrossRef]

18. Bastidas Fuertes, A.; Perez, M. A systematic review on Transpiler usage for Transaction-Oriented Applications. In Proceedings of
the 2018 IEEE 3rd Ecuador Technical Chapters Meeting ETCM , Cuenca, Ecuador, 15–19 October 2018. [CrossRef]

19. Bierman, G.; Abadi, M.; Torgersen, M. Understanding TypeScript. In ECOOP 2014—Object-Oriented Programming; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 257–281. [CrossRef]

20. Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J.
2009, 26, 91–108. . [CrossRef]

21. Grichi, M.; Abidi, M.; Jaafar, F.; Eghan, E.E.; Adams, B. On the Impact of Interlanguage Dependencies in Multilanguage Systems
Empirical Case Study on Java Native Interface Applications (JNI). IEEE Trans. Reliab. 2021, 70, 428–440. [CrossRef]

22. Vraný, J.; Píše, M. Multilanguage debugger architecture. In SOFSEM 2010: Theory and Practice of Computer Science; Springer:
Berlin/Heidelberg, Germany, 2010; Volume 5901, pp. 731–742. [CrossRef]

23. Neitsch, A.; Wong, K.; Godfrey, M.W. Build system issues in multilanguage software. In Proceedings of the IEEE International
Conference on Software Maintenance, ICSM, Trento, Italy, 23–28 September 2012; pp. 140–149. [CrossRef]

24. Vinoski, S. Multilanguage programming. IEEE Internet Comput. 2008, 12, 83–85. [CrossRef]
25. Mayer, P.; Bauer, A. An empirical analysis of the utilization of multiple programming languages in open source projects. In

Proceedings of the ACM International Conference Proceeding Series, Cape Town, South Africa, 27–29 April 2015. [CrossRef]
26. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.; Patterns, D. Elements of Reusable Object-Oriented Software. Des. Patterns

1995, 293–303 .
27. Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.; Nord, R.; Stafford, J. Documenting Software Architectures: Views

and beyond; Addison-Wesley Professional: Boston, MA, USA, 2010.
28. Bass, L.; Clements, P.; Kazman, R. Software Architecture in Practice; Addison-Wesley Professional: Boston, MA, USA, 2015.
29. Brown, M.; Wilson, A. Fundamentals of Software Architecture: An Engineering Approach; O’Reilly Media: Sebastopol, CA, USA, 2018.
30. Garlan, D.; Shaw, M. Software Architecture; CRC Press: Boca Raton, FL, USA, 2016.
31. Kruchten, P. Software Architecture: A Comprehensive Framework and Guide for Practitioners; Addison-Wesley Professional: Boston,

MA, USA, 2019.
32. Adel, A.; Adel, S. Integration of Architectural Design and Implementation Decisions into the MDA Framework. In Proceedings

of the Third International Conference on Software and Data Technologies 2008, Porto, Portugal, 5–8 July 2008; Volume 1: ICSOFT,
pp. 366–371. [CrossRef]

33. Alti, A.; Boukerram, A.; Roose, P. Context-Aware Quality Model Driven Approach: A New Approach for Quality Control in Perva-
sive Computing Environments. In Proceedings of the Software Architecture: 4th European Conference, ECSA 2010, Copenhagen,
Denmark, 23–26 August 2010; Babar, M.A., Gorton, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 441–448.

34. Fowler, M. Patterns of Enterprise Application Architecture; Addison-Wesley Professional: Boston, MA, USA, 2002.
35. Al-Hawari, F. Software design patterns for data management features in web-based information systems. J. King Saud

Univ. -Comput. Inf. Sci. 2022, 34, 10028–10043. [CrossRef]
36. Cervantes, H.; Kazman, R. Designing Software Architectures: A Practical Approach; Addison-Wesley Professional: Boston, MA,

USA, 2016.
37. Stahl, T.; Völter, M.; Czarnecki, K. Model-Driven Software Development: Technology, Engineering, Management; John Wiley & Sons,

Inc.: Hoboken, NJ, USA, 2006.
38. Velepucha, V.; Flores, P. A Survey on Microservices Architecture: Principles, Patterns and Migration Challenges. IEEE Access

2023, 11, 88339–88358. [CrossRef]
39. Bisson, R. SQL injection. ITNOW 2005, 47, 25–25. [CrossRef]
40. Cabibbo, L.; Carosi, A. Managing Inheritance Hierarchies in Object/Relational Mapping Tools. In Notes on Numerical Fluid

Mechanics and Multidisciplinary Design; Springer International Publishing: Berlin/Heidelberg, Germany, 2005; pp. 135–150.
[CrossRef]

41. Microsoft. Entity Framework. 2022. Available online: https://learn.microsoft.com/en-us/aspnet/entity-framework (accessed
on 2 October 2023).

42. Bastidas Fuertes, A.; Pérez, M. Transpiler-based architecture for multi-platform web applications. In Proceedings of the 2017
IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, Ecuador, 16–20 October 2017; pp. 1–6. [CrossRef]

43. Cusumano, M. Company character and the software business. Commun. ACM 2003, 46, 21–23. [CrossRef]
44. Hemphill, T.A. Government Technology Acquisition Policy: The Case of Proprietary Versus Open Source Software. Bull. Sci.

Technol. Soc. 2005, 25, 484–490. [CrossRef]
45. Ernst, N.A.; Klein, J.; Bartolini, M.; Coles, J.; Rees, N. Architecting complex, long-lived scientific software. J. Syst. Softw. 2023,

204, 111732. [CrossRef]
46. Bennett, K.; Munro, M.; Gold, N.; Layzell, P.; Budgen, D.; Brereton, P. An Architectural model for service-based software with

ultra rapid evolution. In Proceedings of the IEEE International Conference on Software Maintenance, ICSM 2001, Florence, Italy,
7–9 November 2001. [CrossRef]

47. Mathieu, R.G.; May, J.L.; Reif, H.L. Investigating open source software creators through the lens of an entrepreneur. Int. J. Innov.
Learn. 2017, 21, 1. [CrossRef]

http://dx.doi.org/10.3390/app13063667
http://dx.doi.org/10.1109/ETCM.2018.8580312
http://dx.doi.org/10.1007/978-3-662-44202-9_11
http://dx.doi.org/10.1111/j.1471-1842.2009.00848.x
http://dx.doi.org/10.1109/TR.2020.3024873
http://dx.doi.org/10.1007/978-3-642-11266-9_61
http://dx.doi.org/10.1109/ICSM.2012.6405265
http://dx.doi.org/10.1109/MIC.2008.58
http://dx.doi.org/10.1145/2745802.2745805
http://dx.doi.org/10.5220/0001881403660371
http://dx.doi.org/10.1016/j.jksuci.2022.10.003
http://dx.doi.org/10.1109/ACCESS.2023.3305687
http://dx.doi.org/10.1093/itnow/bwi039
http://dx.doi.org/10.1007/11431855_11
https://learn.microsoft.com/en-us/aspnet/entity-framework
http://dx.doi.org/10.1109/ETCM.2017.8247456
http://dx.doi.org/10.1145/944217.944231
http://dx.doi.org/10.1177/0270467605282245
http://dx.doi.org/10.1016/j.jss.2023.111732
http://dx.doi.org/10.1109/icsm.2001.972742
http://dx.doi.org/10.1504/IJIL.2017.080750

Appl. Sci. 2023, 13, 11371 49 of 49

48. Galster, M.; Weyns, D. Empirical research in software architecture—Perceptions of the community. J. Syst. Softw. 2023, 202, 111684.
[CrossRef]

49. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software Engineering; Springer:
Berlin/Heidelberg, Germany, 2012. [CrossRef]

50. Staron, M. Action Research in Software Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2020.
[CrossRef]

51. Schultes, D. SequalsK—A Bidirectional Swift-Kotlin-Transpiler. In Proceedings of the 2021 IEEE/ACM 8th International
Conference on Mobile Software Engineering and Systems, MobileSoft 2021, Madrid, Spain, 17–19 May 2021; pp. 73–83. [CrossRef]

52. Cordasco, G.; D’Auria, M.; Negro, A.; Scarano, V.; Spagnuolo, C. FLY: A Domain-Specific Language for Scientific Computing
on FaaS. In Euro-Par 2019: Parallel Processing Workshops; Lecture Notes in Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2020; Volume 11997, pp. 531–544.
[CrossRef]

53. Mudalige, G.; Giles, M.; Reguly, I.; Bertolli, C.; Kelly, P. OP2: An active library framework for solving unstructured mesh-based
applications on multi-core and many-core architectures. In Proceedings of the 2012 Innovative Parallel Computing (InPar),
San Jose, CA, USA, 13–14 May 2012; pp. 1–12. [CrossRef]

54. Moses, W.S.; Ivanov, I.R.; Domke, J.; Endo, T.; Doerfert, J.; Zinenko, O. High-Performance GPU-to-CPU Transpilation and
Optimization via High-Level Parallel Constructs. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles
and Practice of Parallel Programming, Montreal, QC, Canada, 25 February–1 March 2023; pp. 119–134. [CrossRef]

55. Yue, S. Program Transformation Techniques Applied to Languages Used in High Performance Computing. In Proceedings of the
2013 Companion Publication for Conference on Systems, Programming, & Applications: Software for Humanity, Indianapolis,
IN, USA, 26–31 October 2013; pp. 49–52. [CrossRef]

56. Teixeira, G.; Bispo, J.A.; Correia, F.F. Multi-Language Static Code Analysis on the LARA Framework. In Proceedings of the 10th
ACM SIGPLAN International Workshop on the State of the Art in Program Analysis, Virtual, 22 June 2021; pp. 31–36. [CrossRef]

57. Klingler, R.; Trifunovic, N.; Spillner, J. Beyond @CloudFunction: Powerful Code Annotations to Capture Serverless Runtime
Patterns. In Proceedings of the Seventh International Workshop on Serverless Computing (WoSC7) 2021, Virtual, 6–10 December
2021; pp. 23–28. [CrossRef]

58. Li, Z.; Wang, S.; Wang, W.; Liang, P.; Mo, R.; Li, B. Understanding Bugs in Multi-Language Deep Learning Frameworks. In
Proceedings of the 2023 IEEE/ACM 31st International Conference on Program Comprehension (ICPC), Melbourne, Australia,
15–16 May 2023; pp. 328–338. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jss.2023.111684
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-030-32610-4
http://dx.doi.org/10.1109/MobileSoft52590.2021.00017
http://dx.doi.org/10.1007/978-3-030-48340-1_41
http://dx.doi.org/10.1109/InPar.2012.6339594
http://dx.doi.org/10.1145/3572848.3577475
http://dx.doi.org/10.1145/2508075.2508081
http://dx.doi.org/10.1145/3460946.3464317
http://dx.doi.org/10.1145/3493651.3493669
http://dx.doi.org/10.1109/ICPC58990.2023.00047

	Introduction
	State-of-the-Art
	Transpiler-Based Design Model for Back-End Layers
	Design Model
	Design Fundamentals
	Abstract Design
	Detailed Design
	The Proposal
	Architecture Design
	Development Kit
	Automated Process
	Development Environment
	Data Layer
	Business Layer
	Nest Implementations
	Presentation Layer
	Transversal Components
	Behavioural Aspects

	Target Audiences
	Software Product Builders
	Government Software Projects
	Business Associations
	Software Projects in Scientific Research
	Creators of Software-as-a-Service
	Open-Source Projects
	Long-Time-Use Software

	Pros and Cons
	Pros
	Cons

	Relationship with Other Architecture Designs
	SOA
	MVC
	Microservices

	Empirical Experiment
	Methodology
	Planning
	Action
	Observation
	Reflections
	Replicability

	Discussion
	About the Research Questions
	About the Related Articles
	About the Technical Aspects
	Compatibility and Debugging
	The Role of the Transpiler
	The Nest Implementation Process

	About Previously Published Works

	Conclusions and Future Work
	Conclusions
	Future Work

	References

