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Abstract: The Internet of Medical Things (IoMT) is a bio-network of associated medical devices,
which is slowly improving the healthcare industry by focusing its abilities on enhancing personal
healthcare benefits with medical data. Moreover, the IoMT tries to deliver sufficient and more
suitable medical services at a low cost. With the rapid growth of technology, medical instruments
that are widely used anywhere are likely to increase security issues and create safe data transmission
issues through resource limitations and available connectivity. Moreover, the patients probably
face the risk of different forms of physical harm because of IoMT device attacks. In this paper, we
present a secure environment for IoMT devices against cyber-attacks for patient medical data using a
new IoMT framework with a hybrid genetic algorithm-based random forest (GA-RF) model. The
proposed algorithm achieved better results in terms of accuracy (99.999%), precision, and recall (100%,
respectively) to detect cyber-attacks based on two NSL-KDD and UNSW_2018_IoT_Botnet data sets
than the other machine learning algorithms.

Keywords: Internet of Medical Things (IoMT); intrusion detection system; machine learning; random
forest; genetic algorithm

1. Introduction

Currently, cyber–physical systems (CPS) are famous systems whose architectural
paradigm, combined with communication technologies and pervasive sensing, deliver
numerous economic and societal advantages. These systems have become essential for com-
plicated infrastructures, such as transportation, healthcare, energy, and the smart grid [1].
They perform with Internet of Things (IoT) instruments that develop massive volumes of
data for communication [2]. A CPS is commonly preferred among the recent inventions
of computing technology, such as cloud computing, wireless sensor networks (WSNs),
medical sensors, and the Internet of Medical Things (IoMT), to achieve advantages in
clinical applications such as home patient care and healthcare processes. These applications
deliver many advantages and suitable results for better medicines due to the continued
monitoring of patients from remote sites [3,4].

Occurring or facing security problems in IoMT networks and their systems can gen-
erate disorder in the disease diagnosis process, cause a delay in communication between
patients and clinical staff, and result in the patients’ private information and clinical history
data going missing [5]. Because of all of these important issues, it is critical to determine
any types of unauthorized attacks and suspected activities in the IoMT systems as early
as possible. By using a powerful intrusion detection system (IDS) [6], due to its advan-
tages and benefits, it becomes a little easier and more practical to recognize an attack by
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analyzing and examining system parameters, values, and various other variables or by
catching variations from normal and usual behavior [7]. All of these security problems have
a deep and maybe long-lasting effect on the IoMT systems and their clients. Therefore, this
issue highlights the need for designing and developing an accurate and strong IDS for the
IoMT network and systems [8]. New models and frameworks based on machine learning
(ML) algorithms can be used at both the network and host levels of IDS systems. Models
and frameworks prepared with ML algorithms can recognize and discover unpredictable
activities and classify them as already-detected suspected and abnormal activities [9,10].

In this paper, a novel ML-based prediction model with a feature selection approach
is presented and explained for effectively identifying intrusions that are malicious in the
IoMT environment. Sensitive medical and healthcare information will be protected by the
proposed ML-based prediction model against attacks, malware, and suspicious threats.
The main contributions of this study are mentioned below:

• A newly designed and optimized genetic algorithm-based random forest (GA-RF)
model was developed to recognize and analyze malicious movements and cyber-
attacks in IoMT devices and their environment.

• The hybrid GA-RF algorithm was applied to two real data sets, NSL-KDD [1] and
UNSW_2018_IoT_Botnet, to discover and recognize the effect and result of security
standards and measure them in a cyber-security scenario.

• A performance evaluation of the proposed GA-RF model was completed and the
results were analyzed and compared with other ML algorithms.

This paper is organized as follows. Section 2 explains the related works. The ML-based
proposed model, with a GA-RF algorithm, is explained in Section 3. The experimental
results are presented in Section 4. Finally, the conclusion is presented in Section 5.

2. Related Works

In this section, we examine some studies that deal with the security issues of IoMT
network-based devices. In the first study, the authors [8] proposed a new deep learning-
based framework incorporating an effective IDS into IoMT systems. First, the feature
selection process was carried out by applying a genetic algorithm. Next, the data set was
normalized, and finally, a deep learning algorithm was applied to the proposed normalized
data set to obtain an effective classification process. The whole-test results proved that the
proposed framework performed better than the other ML algorithms in terms of accuracy
and F-score. Moreover, this framework can prepare a secure way for data transfer methods
in IoMT systems. The authors of [9] proposed a novel IDS system using ML algorithms for
detecting IoT network attacks by applying ML-supervised algorithms. First, a Min–Max
normalization process and feature selection processes were carried out on the proposed
data set, and dimensionality reduction was performed. At the simulation level, the authors
used six ML algorithms for the analysis procedure. The simulation results showed that
the proposed frameworks and applied ML algorithms achieved sufficient values in terms
of accuracy, precision, and F-score evaluation parameters. This study proved that ML
techniques can successfully detect anomalies and unexpected attacks using the proposed
data set in the IoT environment.

In another study, RM, Maddikunta [11] proposed a new deep neural network (DNN)-
based framework to develop IDS in the IoMT network, aiming to predict unexpected
attacks at the first step and dynamically classify them at the next step in both the network
and host side. The feature selection method was used for all of the network parameters. The
pre-processed optimization process was carried out on the proposed data set using a genetic
algorithm and so in the results it was expected that the execution time would decrease.
The authors analyzed the experimental results compared with other ML algorithms. It
was confirmed that the proposed framework achieved better results compared to other ML
algorithms in terms of accuracy, and time complexity. Nandy, Adhikari [12] presented a
new hybrid IDS model for the IoMT network focusing on patients’ health data analysis
gathered from different wearable sensors and predicting unexpected attacks at the edge
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of the network using a genetic algorithm to satisfy and respond to security and privacy
concerns. The experimental results determined the attacks that were occurring through
data transmission in the network with higher accuracy and precision over the ToN-IoT
data set.

In another paper, Thamilarasu, Odesile [13] designed a scalable IDS system to prepare
the secure area for the IoMT network using five ML algorithms. In this study, the authors
used sensor data gathered from wireless body sensors and other connected medical devices
to detect anomalies, attacks, and malicious activities at the device level. The simulation
results were extracted from OMNeT that show the proposed IDS system obtained less
overhead and a higher accuracy of up to 99.9% using the decision trees algorithm more
effectively than the other four ML algorithms. Manimurugan, Al-Mutairi [14] proposed
a new model for the IDS system to determine any type of anomalies and attacks such as
botnet attacks, DoS/DDoS attacks, and web attacks in the IoMT network by analyzing
the CICIDS 2017 data set and applying a deep belief network. The experimental results
extracted from MATLAB by applying a deep learning algorithm showed that the proposed
method was able to achieve suitable results in terms of accuracy of up to 99.96% in the four
above-mentioned different type of attacks.

In another piece of research, Saheed and Arowolo [15] presented a new IDS model in
the IoMT network for three important steps including detecting, classifying, and predicting
unpredictable attacks using a deep learning algorithm and four supervised ML algorithms.
In this paper, the applied data set was normalized (all values are between 0 and 1); then,
by applying a genetic algorithm, the feature selection process was completed. Simulation
results proved that the random forest algorithm combined with particle swarm optimization
(PSO) achieved better results in terms of accuracy, precision, and recall than the other ML
algorithms. Liaqat, Akhunzada [16] proposed a hybrid DL-based model for the SDN
environment to detect botnet attacks in the IoMT network. The authors used the Bot-IoT
data set for the evaluation of unpredictable attacks in the proposed model. In the first
step, data transformation and data normalization were performed in the proposed data
set. Evaluation metrics such as accuracy and precision were observed and measured in
the proposed model. The experimental results proved the efficiency and scalability of the
proposed model. This model using a hybrid DL algorithm provides higher accuracy and
precision than the other algorithms.

Finally, Khan, Moustafa [17] proposed a new attack detection method in the IoMT
network using a deep learning algorithm. The authors suggested a solution for the van-
ishing gradient problem to rapidly perform the training process. The simulation results
demonstrate that the proposed model provides optimal results in terms of evaluation
parameters such as accuracy, precision, recall, and f-score and higher detection rates with
less computational cost using the recurrent neural networks (RNN) algorithm.

The main ideas, data sets, simulation environments, and the proposed prediction
approaches in related studies are shown in Table 1.

Table 1. Main ideas and the prediction approaches of the related works in the fields of ML-based IDS
systems for the IoMT network.

Ref Main Idea Data Set Simulation
Environment Prediction Approach

Gupta, Shar-ma [8]

A tree classifier-based
IDS model using DL

algorithms in the IoMT
network.

Benchmarked data set
Simulated in a

restricted network
environment

Random forest (RF),
GridSearchCV, best

estimator,
Logistic regression,

decision tree, extremely
randomized tree.
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Table 1. Cont.

Ref Main Idea Data Set Simulation
Environment Prediction Approach

Saheed, Abio-dun [9]
An ML-based IDS

system in the IoMT
network.

UNSW-NB15 Simulated network
traffic

XGBoost, CatBoost,
k-nearest neighbors

(KNN), support vector
machine (SVM),

quadratic discriminant
analysis (QDA), and

naive Bayes (NB).

RM, Maddikunta [11]
A DNN-based model to

develop IDS in the
IoMT network.

Benchmarked data set Rigorous testing

Feedforward deep
neural networks

(FFDNN), filter-based
feature selection

algorithm (FBFSA).

Nandy, Adhikari [12]

A hybrid IDS system
for the IoMT network

using a genetic
algorithm.

ToN-IoT Python programming

Swarm neural network,
KNN, decision tree,

SVM, logistic
regression.

Thamilarasu, Odesile
[13]

An IDS system based
on ML algorithm for
the IoMT network.

Benchmarked data set OMNeT-based Castalia-
3.2 simulator

SVM, Decision Trees,
NB, KNN, and RF.

Manimuru-gan,
Al-Mutairi [14]

A new deep
learning-based model
for IDS system in the

IoMT network.

CICIDS 2017 MATLAB Deep belief network
(DBN) algorithm.

Saheed and Arowolo
[15]

An IDS system based
on the DL algorithm for

the IoMT network.
NSL-KDD -

PSO, SVM, RF, NB,
KNN, ridge classifier,
and recurrent neural

network.

Liaqat, Akhunzada [16]

A new botnet detection
hybrid model based on
DL algorithm in SDN
environment for IoMT

network.

Bot-IoT Keras with
Python

Convolutional neural
network algorithm.

Khan, Moustafa [17]

A new attack detection
method using a DL

algorithm in the IoMT
network.

ToN_IoT Keras and TensorFlow Recurrent neural
networks algorithm.

Proposed method
Hybrid genetic-based

random forest
prediction model

UNSW_2018_IoT_Botnet
and NSL-KDD WEKA

Genetic
algorithm-random

forest, SVM, decision
trees, NB, Bayesian

network and RF.

3. Proposed System

With the rapid development of communication and computing technologies along
with more extraordinary computing abilities and power communications, the potential of
the IoT in the medical fields should be taken into consideration, which is why it is now
named the Internet of Medical Things (IoMT). IoMT includes the related infrastructure
of many medical instruments and various related pieces of software to communicate and
share healthcare data with different healthcare information systems. By using several smart
sensors, especially wearable sensors, medical staff and medical professionals can acquire,
gather, and save real-time health data related to their patients. As a result, medical pro-
fessionals can analyze clinical decision making based on healthcare data and information.
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IoMT is developed to respond to important health problems and concerns and presents
many useful services and benefits in the IoMT medical areas, as described in Figure 1.
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Figure 1. IoMT services and benefits.

Today, IoMT development and data/device management methods have caused se-
curity concerns and cyber-security problems. Valid/invalid authentication methods, safe
logging, safe data transmission processes, and designing secure interfaces are important
challenges in any IoMT system. It is critical to design a proper framework for IoMT systems
to respond to all the security concerns and be able to manage complexities, face unexpected
attacks, and fend off malicious activities. In the IoMT systems, real-time data are gath-
ered from the wearable sensors of the users in the first step. In the next step, all of the
sensed data from different sensors are transmitted to the cloud via Wi-Fi or Bluetooth using
smart applications.

As shown in Figure 2, all of the healthcare records of the smart surgery, gathered
from wearable sensors and medical devices, are stored in a cloud storage center. There
are always some attackers/hackers or malware that try to find gaps to acquire or change
data. Unfortunately, the data can be maliciously updated in the cloud. In the first step,
pre-processing is applied to the health data set; then, we apply the train and test processes
to the data set using ML algorithms. We achieve the intrusion categorization from the
result of the test process. Here, there are two statuses as “normal” or “anomaly” detection
activities based on the existing protocols with guest login status and the server error rate. If
the status is normal, the data are safe, there is no change in the data and so the health data
are sent to medical staff for further control. But, if the status is an anomaly, some required
security protection policies should be performed to detect the intrusion.
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In this work, a novel model is developed for efficient anomaly detection in an IoMT
framework using genetic algorithm–random forest (GA-RF) algorithm in comparison to
other machine learning algorithms such as support vector machine (SVM), naive Bayes,
Bayes net, J48, and random forest algorithms. The random forest algorithm is one of the
most famous and commonly used supervised ML algorithms for classification purposes
and regression issues. When the number of trees increases in a forest, the forest will be
more powerful. Likewise, many numbers of trees in a random forest algorithm causes the
algorithm to achieve higher accuracy. This algorithm creates decision trees on different
models and considers their high value for classification and average value in regression. By
using the random forest algorithm, we can build our model to achieve intrusion catego-
rization purposes with the highest accuracy and precision, rather than the other applied
ML algorithms. Implementation of the optimized random forest algorithm using a genetic
algorithm as a hybrid GA-RF algorithm was presented [19] to determine an optimal sub
forest from a random forest algorithm [20]. For the proposed model, decision random
forest sets as initial points are applied for the training method. The number of iterations
and population size are initiated. Then, crossover for elitist operator is generated. After the
crossover method, the mutation procedure is applied. Then, chromosome selection for a
new population is applied, with the setting “elitist operations”. Finally, refinement of the
chromosome to select an optimal solution is applied.

4. Experimental Set Up and Result Analysis

In this section, we illustrate the training and testing environments and set up the
data sets, simulation tools, and evaluation processes of the suggested framework based on
the ML algorithms to recognize malicious activities and movements in the IoMT device
and environment.

4.1. Data Set and Simulation Tool

In this paper, we applied two real data sets for our experiments. In the first case study,
the NSL-KDD, https://www.unb.ca/cic/datasets/nsl.html (accessed on 8 May 2023), data
set [10,21] is used, consisting of 42 features with a total of 148,517 instances. NSL-KDD
is a data set to solve some of the inherent difficulties of the KDD’99 data set. This data
set classifies existing instances into two main categories as “Anomaly” and “Normal”
labels [22]. For the second case study, UNSW_2018_IoT_Botnet, https://www.unb.ca/cic/

https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html


Appl. Sci. 2023, 13, 11145 7 of 14

datasets/nsl.html (accessed on 8 May 2023), Refs. [23–26] data set is applied to evaluate
prediction factors for the proposed GA-RF algorithm in IoMT environment [27,28]. This
data set has 19 features for a total of 3,668,522 instances. This data set categorizes all
instances into five main classes including DoS, DDoS, Reconnaissance, Theft, and Normal
labels. We completed the simulation process using a laptop with the Windows 10 Pro
64-bit, Processor type AMD Ryzen 9 PRO 5945 12-Core 3.00 GHz and 32 GB RAM for
experimentation. Further, the WEKA tool was used for the implementation of prediction
algorithms. Table 2 shows a brief illustration of NSL-KDD and UNSW_2018_IoT_Botnet
data sets with the number of instances, type of attacks, and number of existing attributes
for the prediction phase. For implementing the proposed GA-RF algorithm in WEKA tool,
Table 3 shows a brief illustration of specific parameters for this algorithm that was used
during the experiments and the prediction process.

Table 2. Information of existing data sets based on number of instances for training and testing
procedures.

Data Set Type Train Test

NSL-KDD
Anomaly 58,630 12,833

Normal 67,343 9711

UNSW_2018_IoT_Botnet

DDoS 1,541,315 330,112

DoS 1,320,148 385,309

Reconnaissance 72,919 18,163

Theft 65 14

Normal 370 107

Table 3. The specific parameters of the GA-RF algorithm in WEKA for prediction process.

Parameters Value

Batch Size 100

Number of Iterations 100

Random Seed 1

Size of Population 20

4.2. Evaluation Parameters

The proposed model performance was tested using the ML algorithms and evaluated
and analyzed by the WEKA tool. For analyzing the WEKA outcomes, we used the eval-
uation parameters accuracy, precision, recall, F1-Score, MAE (mean absolute error), and
RMSE (root mean square error) as defined below:

(1) Accuracy illustrates the number of correctly classified anomalous behaviors in all
predicted instances:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

(2) The precision factor shows anomalous behaviors with respect to the number of
correctly classified positive instances:

Precision =
TP

TP + FP
(2)

(3) The recall factor shows the percentage of all correctly classified anomalous behaviors:

Recall =
TP

TP + FN
(3)

https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
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(4) The F1-score is calculated by a set of weighted factors from precision and recall:

F1 − Score =
2 × precision × recall

precision + recall
(4)

(5) MAE and RMSE measures the average volume of the errors and the implemen-
tation and performance of a forecast model in a set of predictions, without assuming
their direction.

4.3. Experimental Results

To confirm the efficacy of the proposed framework, ML algorithms have been consid-
ered as part of the experimentation. In this paper, a complete comparative examination
of the evaluation parameters operated to consider all the ML methods and techniques
together with the proposed framework is shown in Figure 3. The WEKA simulation results
demonstrate that the performance of the proposed GA-RF algorithm according to the preci-
sion, recall, F1 score, and accuracy parameters are higher than the other ML algorithms
in the NSL-KDD data set. The GA-RF algorithm achieved 99.999% for accuracy, 100% for
recall and 99.99% for precision. In contrast, the naive Bayes algorithm could not achieve
suitable results. The main advantage of our proposed GA-RF algorithm is that this model
can select an optimal population for training procedure as an initial categorization of the
forest to predict cyber-attacks. The random forest algorithm achieved 99.917% for accuracy
and 99.8% for precision and recall.
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Moreover, Figure 3 displays that the performance of the J48 algorithm according to
the precision, recall, F1 score, and accuracy parameters are 99.881%, 99.8%, 99.8%, and
99.8%, respectively. Moreover, the performance of the Bayes Net algorithm according to the
precision, recall, F1 score, and accuracy parameters are 97.17%, 95.5%, 99.7%, and 97.4%,
respectively. The performance of the naive Bayes algorithm in terms of the precision, recall,
F1 score, and accuracy parameters are 90.381, 89, 93.6, and 91.2, respectively. Finally, the
performance of the SMV algorithm according to the precision, recall, F1 score, and accuracy
parameters are 97.405%, 96.7%, 98.6%, and 97.6%, respectively.

Also, Figure 4 shows a comparative analysis of mean absolute error (MAE) and root
mean square error (RMSE) among all models. The proposed GA-RF algorithm received
minimum MAE with 0.0027 and RMSE with 0.0284. The random forest algorithm has the
second lowest error rates for 0.0029 MAE and 0.0285 RMSE. It means that the average
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volume of the errors in a set of detected malicious activities is the lowest in the GA-RF
algorithm for the proposed data set.
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For the UNSW_2018_IoT_Botnet data set, Figure 5 illustrates a comparison of results
of intrusion detection for applied GA-RF and other machine learning algorithms. The
GA-RF algorithm achieved 99.999% accuracy, 100% precision, and 100% recall. Also,
Figure 5 displays that the performance of the random forest algorithm according to the
precision, recall, F1 score, and accuracy parameters are 99.85%, 99.88%, 99.88%, and 99.88%,
respectively. Moreover, the performance of the Bayes Net algorithm according to the
precision, recall, F1 score, and accuracy parameters are 99.89%, 97.7%, 97.7%, and 97.7%,
respectively. The performance of the naive Bayes algorithm in terms of the precision, recall,
F1 score, and accuracy parameters are 99.79%, 96%, 96% and 96%, respectively. Finally, the
performance of the SVM algorithm according to the precision, recall, F1 score, and accuracy
parameters are 99.74%, 89.4%, 89.4%, and 89.4%, respectively.
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Also, Figure 6 shows experimental results of MAE and RMSE factors for
UNSW_2018_IoT_Botnet data set in all algorithms. The proposed GA-RF algorithm re-
ceived the minimum MAE with 0.0001 as near to zero and RMSE with 0.0021 rate. The
random forest algorithm has the second lowest error rates of 0.005 MAE and 0.0027 RMSE.
It means that the average volume of the errors in a set of detected cyber-attacks is the lowest
using the GA-RF algorithm in UNSW_2018_IoT_Botnet data set.
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Figure 7 illustrates existing classifications of normal activities with blue color or anoma-
lous activities with red color for guest login status in the medical or healthcare networks.
Topically, all existing attacks based on guest login accounts have applied malicious ac-
tivities on the transmission control protocol (TCP). On the other hand, the number of
detected anomalous activities by existing attacks based on the personal login account in the
internet control message protocol (ICMP) is higher than other protocols. Also, the number
of detected anomalous activities by existing attacks based on the personal login account for
the TCP is higher than the number of predicted anomalous activities for the user datagram
protocol (UDP).

Figure 8 shows a prediction analysis of anomalous activities identified with a red
color based on server error rates in the existing protocols. When the server error rate is
increased in TCP, the number of anomalous activities is increased. In other words, the TCP
provides a safe status to protect against attacks and malicious activities in the intrusion
detection system. On the other hand, when the server error rate of TCP is decreased to
zero, the proposed intrusion detection model based on the GA-RF algorithm correctly finds
normal and anomalous activities. When the server error rate of UDP is increased up to
one, the proposed intrusion detection model based on the GA-RF algorithm correctly finds
some anomalous activities in the IoMT. Finally, in ICMP, most of the detected anomalous
activities using the GA-RF algorithm occurred in server error rate of zero.

Figure 9 shows a technical analysis of anomaly detection activities based on five
main protocols in the UNSW_2018_IoT_Botnet data set. It is observed that DoS and DDoS
attacks were applied on two main UDP and TCP protocols. Also, we can observe that the
IPv6 protocol is a safe protocol with existing cyber-attacks in the UNSW_2018_IoT_Botnet
data set.

Finally, to show efficiency of the proposed GA-RF algorithm to detect anomalous
behaviors in the IoMT, we compared our simulation results with other case studies that have
investigated their prediction approaches using NSL-KDD and BoTNet_IoT data sets. Table 4
illustrates the performance of the GA-RF algorithm in comparison with particle swarm
optimization–recurrent neural network (PSO-RNN) algorithm, PSO–random forest (PSO-



Appl. Sci. 2023, 13, 11145 11 of 14

RF) algorithm, PSO–k-nearest neighbors (PSO-KNN) algorithm, RF–synthetic minority
oversampling technique (RF-SMOTE), enhanced genetic algorithm–PSO (EGA-PSO) and a
hybrid convolutional neural network–Cuda deep neural network long short-term memory
(CNN-cuDNNLSTM) algorithm.
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Table 4. Comparison results for intrusion detection with the proposed method and other case studies.

Algorithm Accuracy Precision Recall

PSO-RNN [15] 96.08% 85.63% 85.63%

RF-SMOTE [29] 98.31% 98.61% 98.41%

PSO-KNN [15] 98.9% 98.89% 92.33%

EGA-PSO [30] 98.97% 99.84% 96.12%

PSO-RF [15] 99.76% 99.75 96.45

CNN-cuDNNLSTM [16] 99.99% 99.83% 99.33%

The proposed GA-RF 99.999% 100% 100%

5. Conclusions

With the rapid growth of technology, medical instruments that are widely used any-
where should increase security policies through resource limitations. Moreover, the patients
probably face risks of different forms of physical harm because of the IoMT device attacks.
In this study, we presented a novel IoMT framework with machine learning for intrusion
detection based on GA-RF algorithm. We provided our model using the GA-RF algorithm
to achieve intrusion categorization based on the existing protocols as guest login status and
the server error rate with the highest accuracy in comparison with the other applied ML
algorithms. The simulation results using the WEKA tool showed that the performance of
the GA-RF algorithm according to the precision, recall, F1-score, and accuracy parameters
is higher than the other ML algorithms. The GA-RF algorithm achieved 99.999% accuracy
and 99.9% precision. Moreover, the random forest algorithm obtained 100% recall and a
99.9% F1-score. Also, the GA-RF algorithm obtained minimum error rates of 0.0027 MAE
rate and 0.0284 RMSE rate for the NSL-KDD data set. It means that the average volume
of the errors in a set of detected malicious activities is the lowest in the GA-RF algorithm
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for the proposed data set. Finally, the GA-RF algorithm achieved 99.999% accuracy, 100%
precision, and 100% recall for the UNSW_2018_IoT_Botnet data set.
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