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Abstract: The Unmanned Aerial Vehicle (UAV) attitude stabilization problem has been dealt with
in many previous works through applying a vast range of philosophies of control strategies. In
this paper, a discrete controller based on a Linear Quadratic Regulator (LQR) plus integral action is
synthesized to stabilize the attitude and altitude of a quadrotor helicopter. This kind of control strategy
allows us to reduce the energy consumption rate, and the desired UAV behavior is properly achieved.
Experimental tests are conducted with external disturbances such as crosswinds deliberately added
to affect the performance of the aerial vehicle. This provides experimental evidence that the integral
part considered in the proposed control strategy contributes to improving the performance of the
vehicle under external disturbances. In fact, a comparative analysis of potential and kinetic energy
consumption is developed between the Optimal Integral Controller (OIC) and a Proportional Integral
Derivative Controller (PID), allowing us to determine the level of improvement of the closed-loop
system when the discrete Integral Optimal Controller is applied.

Keywords: optimal controller; energy consumption; stabilization; quadcopter

1. Introduction

In recent years, several works have been reported in the literature addressing the
application of optimal control of quadrotors [1,2]. However, this issue remains interesting
to the scientific community because it represents a current challenge from the point of view
of control theory and engineering (mainly its real-time applications). Many techniques
related to optimal control philosophy have been applied to UAVs, but this paper proposes
to add an integral action to Linear Quadratic Regulator, in order to improve the perfor-
mance of the closed-loop system. Moreover, both the mathematical model and synthesized
control strategy are obtained in discrete time domain, ensuring a better representation to
be programmed in a microcontroller such that Rabbit 4300. In this sens, recent reported
works have demonstrated that it is possible to ensure the stability in discrete-time do-
main for multi-input-multi-output (MIMO) systems. This has been achieved through a
generalization of the Letov formula, as mentioned in [3].

A typical control strategy with integral action is the Proportional-Integral-Derivative
(PID) controller, which is widely used in industrial processes and devices because it can
be heuristically tuned independently of the mathematical model of the system and can
be used in both linear and nonlinear systems. However, there also exist many graphical
and theoretical methods to tune it considering the dynamical behavior or the mathematical
model of system.

It is well known that the integral action of a PID controller provides a correction for
steady-state tracking error even in the presence of uncertainties [4], providing some degree
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of robustness to the control loop. Although this three-action controller is a powerful idea,
sometimes it is not efficient or appropriate for a specific tasks. Then, it can be improved by
modifying the control parameters with an adaptive scheme or by adding a nonlinear part.

This contribution uses the advantages of the integral action of the PID controller
combined with modern control techniques through regulation via optimal control in order
to improve the performance of a quadrotor when it executes an attitude and altitude
stabilization task. Integral control applied to Unmanned Aerial Vehicles has been explored
in some reported works. An integral predictive and nonlinear robust control strategy was
synthesized in [5], wherein the authors solve the path-following problem for a quadrotor
helicopter. The proposed control structure has a hierarchical scheme consisting of a model
predictive controller to track the reference trajectory together with a nonlinear H∞ controller
to stabilize the rotational movements of the considered vehicle; satisfactory simulation
results were presented. In [6], an Integral Backstepping controller and motion planning are
combined to stabilize the helicopter using point-to-point steering stabilization. Simulation
results were presented to test the performance of the closed-loop system and its robustness.
The same technique was presented in [7]: the goal of this work was to stabilize the attitude,
altitude, and position of the vehicle. Satisfactory results for autonomous take-off, hover,
landing and collision-avoidance tasks were presented, and all were validated on the OS4
simulation platform.

In addition, a comparison between PID, Linear Quadratic Regulator (LQR) and nonlin-
ear controllers (Adaptive Integral Backstepping Controller) was exposed in [8]. A nonlinear
control approach was proposed based on a recursive Lyapunov methodology using the
Backstepping technique and an adaptive scheme. Satisfactory simulations and real-time
experiments were conducted. In [9], LQR continuous control was used to stabilize the atti-
tude and altitude of an Octocopter. Numerical simulations demonstrated the effectiveness
of the control strategy under nominal conditions, and the authors improved the LQR by
adding integral action to the altitude controller. In [10], once again an LQR methodology
and integral state augmentation were adopted to achieve the desired performance of the
control system. The unmeasured state variables were estimated by means of a reduced-
order observer. Satisfactory simulation results for the UAV helicopter were presented.
Toledo et al. [11] conducted similar work in which they used a control scheme based on
Integral Backstepping with sliding modes applied to a multi-rotor vehicle. This control
methodology was experimentally tested using the vision system Optitrack. Results were
reported for the altitude z and displacement on the x- and y-axes. However, no analysis of
energy consumption was presented, nor were real-time tests with external disturbances
conducted and reported. In [12], Elkhatem published LQR and LQR-PI controllers that are
applied to a quadcopter. The high performance and robustness of the Linear Quadratic
Regulator controllers ensure the ability to reduce deviations in state trajectories with mini-
mal control effort. In this work, the weighting matrices are automatically adjusted through
a novel method using the full state of the flying robot. Feasibility and performance of the
closed-loop system is only tested by simulation routines.

In the literature, it is possible to find documents in which the LQR technique is
combined with other types of controllers, such as fuzzy controllers. For example, in [13],
Malik presents the development of a longitudinal controller design for an autonomous
unmanned aerial vehicle (UAV). In this work, the researchers proposed a dual-loop (inner–
outer loop) control method based on intelligent algorithms. The inner feedback loop of
controller uses a Linear Quadratic Regulator (LQR) to ensure adaptive stability. Meanwhile,
the outer loop controller employs a Fuzzy-PID algorithm for deal with the trajectory
tracking task.

Moreover, neuro-fuzzy controllers have also been recently used for the control of
UAVs. In [14], Jinjun Rao et al. developed a position control approach for a quadrotor using
a cascade Fuzzy Neural Network (FNN). This approach requires offline neural network
training, combining the benefits of fuzzy systems and neural networks. According to
authors, this fuzzy control strategy demonstrated its ability to minimize the overshoot and
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the settling time. This was tested by conducting flight simulations and real-time flights
using a DJI Tello quadrotor UAV, showing an acceptable position control performance.
In fact, one of advantages of neuro-fuzzy controllers is their ability to handle nonlinear
systems, which offers better adaptability. Particularly, the controller architecture proposed
in that work allows to optimize the use of the robot’s energy resources and also providing
robustness to the control loop. Also, this produces a balance between adaptability and
efficiency, making it particularly useful for UAV applications where energy efficiency and
robust control are crucial. That type of controller can also be used in other fields such as
the study of seismic structural control. In this field, the contributions reported works by
Abbas and his collaborators in [15–17] should also be mentioned, they use neuro-fuzzy
controllers and a PID controllers to tackle both stabilization and trajectory tracking task for
aerial robots.

In this contribution, UAV stabilization is tackled using a controller that combines
an optimal strategy (LQR) with the integral action. A difference from other reported
works such as [5,9,10,12] is that this optimal synthesized controller is tested in a real-time
setting, providing experimental results for the altitude stabilization problem in a four-
rotor helicopter. To control the position and orientation of the vehicle, the system was
subdivided into four subsystems, as was proposed in [18], and the integral action is added
as an additional state variable [4] in the four subsystems. A previous exact linearization was
performed on the dynamical model in order to remove the Coriolis terms and transform
the rotational dynamics in the second-order differential equation depending on external
torque inputs. So for control of the altitude and attitude of the UAV, four optimal controls
with integral action are proposed: one for each subsystem. The controllers for rotational
dynamics are synthesized using the assumption that pitch, roll and yaw are inside a
bounded region around the origin, which is an equilibrium point for this aerial vehicle.
The proposed optimal control strategy assumes that all state variables are available. Our
proposal is experimentally tested in takeoff and altitude stabilization tasks. An Optitrack
vision system is used to obtain the whole state of the vehicle, and satisfactory results are
obtained when the optimal discretized controller with integral action is applied.

So the main contributions of this work are:

1. Synthesis, analysis and implementation of Optimal Integral Control (OIC) tuned
under the QR approach and applied to trajectory tracking of takeoff and hover flight
of UAVs.

2. Experimental validation of the OIC by real-time tests in the presence of induced
crosswind disturbances applied during the trajectory tracking of takeoff and hover
flight of a UAV, allowing the analysis of the robustness of the closed loop with the
proposed control scheme.

3. Comparison of the kinetic and potential energy between the PID and the Optimal
Integral Control when a trajectory tracking task is executed for the take-off and
hover-flight phases of the UAV in the presence of induced crosswind.

The paper is organized as follows: The nomenclature and symbols used throughout
this document are presented in Section “Nomenclature”, while the introduction is reported
in Section 1. Moreover, Section 2 is devoted to showing the mathematical model of the
UAV together with the synthesis of the proposed control law. In Section 3, the experimental
platform is shown. Real-time experimental results are displayed in Section 4, and finally,
the conclusion and discussion are reported in Section 5.

2. Control Strategy

In this section, we synthesize the proposed optimal controller with integral action
added. Firstly, some basic concepts about integral control are briefly recalled in order to set
up a discrete time control strategy to be applied to a quadcopter.

2.1. Integral Control

Consider the nonlinear system:



Appl. Sci. 2023, 13, 9293 4 of 20

.
x = f (x, u)

y = h(x),

where the state x ∈Rn, and the vector control u ∈Rp. The variables f and h are continuously
differentiable functions in a domain Dx × Du ⊂ Rn × Rp, and y ∈ Rp is the controlled
output. Let yR ∈ Rp be a constant reference; the integral control is a feedback state such that

y(t)→ yR, t→ ∞

Assume that the controlled output y can be measured. Note that for our case y = x
because when using the Optitrack vision system, the complete state is measurable and
therefore available. The regulation task will be achieved by stabilizing the system at an
equilibrium point where y = yR. In order to maintain it in that equilibrium condition, there
exists a pair (xss, uss) ∈ Dx × Du such that:

0 = f (xss, uss),

0 = h(xss)− yR.

Assume that these equations have a unique solution (xss, uss). Now, the integral
action is included as follows: consider the tracking error e = y− yR. Then, the following
equivalence is defined

.
σ = e = y− yR,

So control will be obtained as a feedback function of x and σ such that in the closed loop
there is an equilibrium point (x, σ) with x = xss. Assuming that the system is linearizable
around xss, σ, uss, it follows that:

.
ξ =

[
A 0
C 0

]
ξ +

[
B
0

]
v , Aξ + Bv, (1)

with

ξ =

[
x− xss
σ− σ

]
v = u− uss where:

A =
∂ f
∂x

∣∣∣∣
(x,u)=(xss ,uss)

, B =
∂ f
∂u

∣∣∣∣
(x,u)=(xss ,uss)

,

C =
∂h
∂x

∣∣∣∣
x=xss

Assume that the pair (A, B) is controllable and

rank
[

A B
C 0

]
= n + p.

Then (A,B) is controllable [4]. Then, design a matrix K such that A+ BK is Hur-
witz [4]. Consider the partition for the matrix K as [K1 K2]. The control signal is then
defined by:

u = K1(x− xss) +K2(σ− σ) + uss.

It is not difficult to verify that the closed-loop nonlinear system has a unique equi-
librium point (xss, σss) [4]. As is demonstrated in [4], the equilibrium point (xss, σss) is
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exponentially stable, and all solutions starting close enough to this equilibrium point
approach it as t tends to infinity. Then y(t)− yR → 0 as t → ∞. Following these ideas,
in this contribution, the matrix K is designed using the optimal control approach. For
altitude, we take advantage of the fact that in the mathematical model for the altitude of
the quadrotor, it can be stabilized by exact linearization, and then, it is not necessary to
linearize the nonlinear dynamics. The integral action is used to minimize the effects of
external disturbances on vehicle performance. Figure 1 shows the basic scheme for the
control of integral action.

+- + +
.ò .ò

Figure 1. Integral control scheme [4].

2.2. Mathematical Model of the Quadrotor

The following assumptions are considered in this paper to obtain a simplified version
of the mathematical model of a vehicle [7,18]

1. The quadcopter is a rigid and symmetric body.
2. The center of gravity of the vehicle coincides with the origin of the body frame.
3. The propellers are rigid and have a fixed pitch.
4. At low velocities, aerodynamic effects can be neglected.
5. The angles are restricted: −π/2 < φ < π/2,−π/2 < θ < π/2 and ψ = 0.

The dynamical model considered is that reported in [19,20] with the following
structure:

m
..
x = −u sin θ

m
..
y = u cos θ sin φ

m
..
z = u cos θ cos φ−mg

..
φ = τφ..
θ = τθ..

ψ = τψ,

(2)

where x and y are the displacements in the horizontal plane, z is the vertical position, ψ
is the yaw angle around the z-axis, θ is the pitch angle relative to the y-axis, and φ is the
roll angle around the x-axis. The control inputs are: u, τφ, τθ , and τψ, with u the collective
throttle generated by the four motors to lift the UAV; τφ, τθ , and τψ are the torques generated
around the axes x, y, and z, respectively.

Here, the authors have assumed that there exists a previous controller τ̃ = C(η, η̇)η̇ + Jτ
(see the mathematical model given by Equations (2.4) and (2.5), p. 34 of [18]), where
η = (φ, θ, ψ)T is the angular position vector, C(η, η̇) is the Coriolis terms matrix, and J is
the inertia matrix. With this control, we arrive at the last three equations of the mathemat-
ical model given by (2), which define the resulting rotational dynamics τ̃ = (τφ, τθ , τψ)T .
Figure 2 shows a schematic representation of the positions and angles of the quadrotor.
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Figure 2. Positions and angles of the UAV.

Now, in order to obtain a discrete space state representation of the mathematical model
of a flying robot, the following state variables are defined:

x1 = x, x2 = ẋ, x3 = y, x4 = ẏ,

x5 = z, x6 = ż, x7 = φ, x8 = φ̇,

x9 = θ, x10 = θ̇, x11 = ψ, x12 = ψ̇,

and discretizing the related continuous model by applying the Euler approximation consid-
ering a sampled period T, it becomes:

x1(k + 1) = Tx2(k) + x1(k)
x2(k + 1) = − T

m u(k) sin(x9(k)) + x2(k)
x3(k + 1) = Tx4(k) + x3(k)
x4(k + 1) = T

m u(k) cos(x9(k)) sin(x7(k)) + x4(k)− Tg
x5(k + 1) = Tx6(k) + x5(k)
x6(k + 1) = T

m u(k) cos(x9(k)) cos(x7(k)) + x6(k)− Tg
x7(k + 1) = Tx8(k) + x7(k)
x8(k + 1) = Tτφ(k) + x8(k)
x9(k + 1) = Tx10(k) + x9(k)
x10(k + 1) = Tτθ(k) + x10(k)
x11(k + 1) = Tx12(k) + x11(k)
x12(k + 1) = Tτψ(k) + x12(k)

All of the above was performed in order to apply a digital version of a synthesized
optimal controller with integral action to a quadrotor helicopter.
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2.3. Discrete Model and Integral Control

As mentioned previously, the mathematical model can be subdivided into four sub-
systems: subsystem z(k), ψ(k), x(k) − θ(k) and y(k) − φ(k). For subsystem z(k), we have:

x5(k + 1) = Tx6(k) + x5(k),

x6(k + 1) = T
[

u(k)
m

cos(x9(k)) cos(x7(k))− g
]
+ x6(k)

Now, we use an exact linearization as follows:

u(k) = m(u1(k) + g)(cos(x9(k)) cos(x7(k)))−1,

with these control laws for each subsystem, which are linear and are defined as:[
x1z(k + 1)
x2z(k + 1)

]
=

[
1 T
0 1

]
︸ ︷︷ ︸

Az

[
x1z(k)
x2z(k)

]
+

[
0
T

]
︸ ︷︷ ︸

Bz

[u1(k)],

where x5(k) , x1z(k) and x6(k) , x2z(k). Define e1z(k) = x1z(k)− x1zR(k), and e2z(k) ,
x2z(k)− x2zR(k); these are the errors for x1z(k) and x2z(k), respectively, and x1zR(k) and
x2zR(k) are the references. The augmented system for the subsystem z(k) is:

ξz(k + 1) =
[

Az 0
Cz I2

]
︸ ︷︷ ︸

Az

ξz(k) +
[

Bz
0

]
︸ ︷︷ ︸
Bz

u1(k)

where ξz(k) = [x1z(k) x2z(k) σ1z(k) σ2z(k)]
T and Cz = TI2. It is not a difficult task to

verify that the pair (Az,Bz) is controllable in a finite number of steps. Define the following
performance index:

Jz =
∞

∑
k=1

(ξT
z (k)Qzξz(k) + u2

1(k)Rz),

where Qz is a semidefinite positive matrix of appropriate dimensions and Rz is a real
positive number. As the pair (Az,Bz) is controllable, there exists an unique solution to the
Riccati equation given by:

Pz = AT
z PzAz −AT

z PzBz(Rz + BT
z PzBz)

−1BT
z + Qz,

and the solution Pz describes the optimal control for the subsystem z(k) given by:

u∗
1
(k) = −(Rz + BT

z PzBz)
−1BT

z PzAzξ∗z (k).

The discrete model for ψ(k) is given by:

x11(k + 1) = Tx12(k) + x11(k),

x12(k + 1) = Tτψ(k) + x12(k),

Let x11(k) , x1ψ(k) and x12(k) , x2ψ(k); then, the subsystem ψ(k) can be rewritten as:

[
x1ψ(k + 1)
x2ψ(k + 1)

]
=

[
1 T
0 1

]
︸ ︷︷ ︸

Aψ

[
x1ψ(k)
x2ψ(k)

]
+

[
0
T

]
︸ ︷︷ ︸

Bψ

τψ(k)

Define e1ψ(k) , x1ψ(k)− x1ψR(k) and e2ψ(k) , x2ψ(k)− x2ψR(k), where x1ψR(k) and
x2ψR(k) are the given references for the variables x1ψ(k), x2ψ(k), respectively. Then, the
augmented vector for the subsystem ψ(k):
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ξψ(k)(k) = [x1ψ(k) x2ψ(k) σ1ψ(k) σ2ψ(k)]T .

The space state representation of the augmented system is:

ξψ(k)(k + 1) = Aψξψ(k) + Bψτψ(k)

where:

Aψ =

[
Aψ 0
Cψ I2

]
, Bψ =

[
Bψ

0

]
, Cψ = TI2,

Consider the performance index:

Jψ =
∞

∑
k=1

(xT
ψ(k)Qψxψ(k) + τ2

ψ(k)Rψ)

with an appropriate dimension matrix Qψ ≥ 0 and a real Rψ > 0. As the pair (Aψ,Bψ)
is controllable in a finite number of steps, the optimal control law with integral action is
given by:

τ∗
ψ
(k) = −(Rψ + BT

ψPψBψ)
−1BT

ψPψAψx∗ψ(k),

where matrix Pψ is the unique solution to the algebraic equation:

Pψ = AT
ψPψAψ −AT

ψPψBψ(Rψ + BT
ψPψBψ)

−1BT
ψ +Qψ.

For the subsystem y-φ(k):

x3(k + 1) = Tx4(k) + x3(k),

x4(k + 1) = T
[

u(k)
m

cos(x9(k)) sin(x7(k))
]
+ x4(k),

x7(k + 1) = Tx8(k) + x7(k)
x8(k + 1) = Tτφ(k) + x8(k)

The control u(k) was defined as an exact linearization, and the optimal control u∗1(k);
then, the second equation is given by

x4(k + 1) = T(u∗1(k) + g) tan x7(k) + x4(k),

but u∗1(k) tends to zero when k tends to infinity. Then, there exists n ∈ Z+ such that for all
k ≥ nT,

∣∣u∗1(k)∣∣ is bounded and neglected; it follows that:

x4(k + 1) = gT tan x7(k) + x4(k).

Let there be a control law τφ(k) that guarantees that tan x7(k) ≈ x7(k); therefore,
x4(k + 1) = gTx7(k) + x4(k). Having this idea in mind, consider the following definition:

x3(k) , x1y(k), x4(k) , x2y(k)

x7(k) , x3φ(k), x8(k) , x4φ(k),

with this definition, the space state representation of the linearized system is:
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x1y(k + 1)
x2y(k + 1)
x3φ(k + 1)
x4φ(k + 1)

 =


1 T 0 0
0 1 gT 0
0 0 1 T
0 0 0 1


︸ ︷︷ ︸

Ayφ


x1y(k)
x2y(k)
x3φ(k)
x4φ(k)



+


0
0
0
T


︸ ︷︷ ︸

Byφ

τφ(k)

In order to use the discrete integral control, define the errors:

e1y(k) , x1y(k)− x1yR(k)

e2y(k) , x2y(k)− x2yR(k)

e3φ(k) , x3φ(k)− x3φR(k)

e4φ(k) , x4φ(k)− x4φR(k)

where x1yR(k), x2yR(k), x3φR(k) and x4φR(k) are the references for the variables x1y(k),
x2y(k), x3φ(k) and x4φ(k), respectively. Then, the augmented state vector for the subsystem
y-φ is given by:

ξyφ(k) =
[

x1y(k) x2y(k) x3φ(k) x4φ(k) σ1y(k) σ2y(k) σ3φ(k) σ4φ(k)
]T

ξyφ(k)(k + 1) =
[

Ayφ 0
Cyφ I2

]
︸ ︷︷ ︸

Ayφ

ξyφ(k)(k) +
[

Byφ

0

]
︸ ︷︷ ︸
Byφ

τφ(k)

where Cyφ = TI2. As the pair (Ayφ,Byφ) is controllable, there exists an optimal control
law τ∗φ (k)

τ∗yφ
(k) = −(Ryφ + BT

yφPyφByφ)
−1BT

yφPyφAyφx∗yφ(k)

which minimizes:

Jyφ =
∞

∑
k=1

(xT
yφ(k)Qyφxyφ(k) + τ2

yφ(k)Ryφ)

where matrix Qyφ ≥ 0 has appropriate dimensions and the realRyφ > 0. The matrix Pyφ is
the unique solution to the algebraic equation:

Pψ = AT
ψPψAψ −AT

ψPψBψ(Rψ + BT
ψPψBψ)

−1BT
ψ +Qψ.

A similar procedure is used to obtain the optimal control τ∗
xθ
(k) for the subsystem x-θ:

τ∗
xθ
(k) = −(Rxθ + BT

xθPxθBxθ)
−1BT

xθPxθAxθξ∗xθ(k)

where:

x1(k)
∆
= x1x(k), x2(k)

∆
= x2x(k),

x9(k)
∆
= x3θ(k), x10(k)

∆
= x4θ(k),

e1x(k)
∆
= x1x(k)− x1xR(k), e2x(k)

∆
= x2x(k)− x2xR(k),

e3θ(k)
∆
= x3θ(k)− x3θR(k), e4θ(k)

∆
= x4θ(k)− x4θR(k).
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The augmented vector is:

ξxθ(k) =
[

x1x(k) x2x(k) x3θ(k) x4θ(k) σ1x(k) σ2x(k) σ3θ(k) σ4θ(k)
]T ,

and the following performance index is minimized:

Jxθ =
∞

∑
k=1

(ξT
xθ(k)Qxθξxθ(k) + τ2

xθ(k)Rxθ)

where Qxθ ≥ 0,Rxθ > 0 and Pxθ is the solution to the algebraic Riccati equation:

Pxθ = AT
xθPxθAxθ −AT

xθPxθBxθ(Rxθ + BT
xθPxθBxθ)

−1BT
xθ +Qxθ

where

Ax−θ =

[
Axθ 0
Cxθ I2

]
, Bxθ =

[
Bxθ

0

]
and

Axθ =


1 T 0 0
0 1 −gT 0
0 0 1 T
0 0 0 1

, Bxθ =


0
0
0
T

,

Cxθ = TI2.

These controllers were tested on an experimental platform described in the next section.

Remark 1. The OIC strategy combines two advantages of the PID and LQR control approaches:
the integral part of the error and the penalization of the energy consumption and convergence of the
state, respectively. In contrast to the suboptimal nonlinear discrete control approach [21], which
penalizes the energy consumption and convergence of the state with state feedback plus an offset, the
OIC substitutes the offset part by the integral part, which provides more robustness in a closed loop
in the presence of external disturbances.

3. Experimental Platform

As shown in Figure 3, the experimental platform setup uses an Optitrack Flex 3 vision
system to compute the UAV’s position and orientation. The UAV has 6 markers, which
are looked at by 12 cameras; the information generated by the cameras is sent to Motive
software using the USB protocol. This information is sent to Visual C++ software from
Motive software using sockets; it allows to compute in C++ lenguage the integral control
laws applied to stabilize the UAV at hover. The PC and UAV are communicated via RS-232
wireless protocol through two Xbee Pro S1 modems at 38,400 bits per second. Furthermore,
a Futaba RF radio control is used for manual wireless control of the quadcopter, acting as
emergency control if a risk situation occurs in the UAV.

Figures 3 and 4 show how a Parrot’s frame was used to build the platform’s quadrotor.
The UAV has an embedded Rabbit module RCM4300, one inertial measurement unit
(IMU)3DM-GX3 from MicroStrain, one radio receiver and one Xbee Pro S1 modem.

The vision system obtains the position and orientation of the UAV: x(k), y(k), z(k),
θ(k), φ(k) and ψ(k). The velocity of each variable is estimated using Visual C++. Integral
control laws are computed in the same way: uPC(k) (height control computed by the PC),
τφPC(k) (roll control computed by the PC) and τθPC(k) (pitch control computed by the PC);
these control signals are sent from the PC to the Rabbit microcontroller via RS232 wireless
protocol using Xbee modems. The Futaba RF radio generates calibration signals uc(k),
τφc(k), τθc(k) and τψc(k); the first one gives an offset of the z(k) position to compensate for
gravity; the last ones give orientation offsets of the UAV’s θ(k), φ(k) and ψ(k), respectively.
In this way, the UAV’s orientation and height position are calibrated. RF radio signals are



Appl. Sci. 2023, 13, 9293 11 of 20

fixed and are only used to compensate for measurement errors caused by the IMU or the
vision system.

Cameras

PC Xbee mx odem

Radio

UAV

RF

RF

RF RS232

RF RS232

USB

USB

Figure 3. Experimental platform scheme.

Marker

IMU 3DM-GX3 Rabbit
RCM4300

Xbee Pro S1

Parrot 's Frame 

Radio Receiver

Figure 4. Quadrotor vehicle.

The UAV radio receiver sends the calibration signals to the Rabbit microcontroller
using the I2C protocol. The Rabbit microcontroller reads angular orientation from the IMU
(θIMU(k), φIMU(k) and ψIMU(k)) by the I2C protocol. The information generated by the
IMU produces computer orientation control signals in a direct way because noise affects
the vision system, causing errors in orientation measurement to the PC, so control signals
used for orientation are computed directly in the microcontroller. PC control signals, radio
calibration signals and the control signals computed in the microcontroller are added to
the calculation of u(k), τφ(k), τθ(k) and τψ(k), which allow generation of the PWM signals
applied to the four motors of the UAV (see Figure 5).
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Figure 5. System variable block diagram.

4. Experimental Results

Two experiments were conducted: The first considers the trajectory tracking problem
during takeoff and hover flight using an OIC controller in the UAV. The second one
addresses the trajectory tracking problem during takeoff and hover flight by applying the
PID and OIC controllers and incorporating crosswind disturbances to the UAV.

4.1. Implementation of Optimal Integral Control Algorithm in the UAV

By combining the Linear Quadratic Regulator (LQR) controller and the Integral Con-
troller (IC), which is the main idea presented in this research work, an Optimal Integral
Controller (OIC) is generated. The aforementioned is possible by applying an exact lin-
earization to the model of the Unmanned Aerial Vehicle (UAV) presented in [20]. The
process corresponding to this step is described in detail separately in Section 2.3 from a
mathematical perspective. As can be seen, a discrete representation of the model is required
for each subsystem of the aerial robot.

The mathematical model of the robot described in Section 2.2 is divided into four
subsystems. For each of these subsystems z(k), ψ(k), x(k) − θ(k) and y(k) − φ(k), the
integral control structure shown in Section 2.3 is applied, and the Riccati-type algebraic
equation is numerically solved for every discretized subsystem. This is done considering
the augmented penalty matrices Q andR, which have been assigned as bellow.

For the system z(k), the two matrices are defined by

Qz =


50 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, Rz = [490]

while matrices used to penalize the subsystem ψ(t) are chosen as:

Qψ =


18 0 0 0
0 171 0 0
0 0 0.1 0
0 0 0 1

, Rψ = [180]

For the subsystems y-φ and x-θ, the penalization matrices are:
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Qyφ = Qxθ =



9 0 0 0 0 0 0 0
0 9 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0
0 0 0 0 0 10 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Rxθ = [40], Ryφ = [31]

To test the OIC (Integral Optimal Control) algorithm, it is applied in a controlled
environment to the UAV. Tracking a takeoff trajectory and maintaining hover flight with the
UAV is described by the following conditions: The experiments consider a sampling period
of T = 50 ms, set points of translation positions are selected at xre f (t) = yre f (t) = 0 m,
and altitude |z(t)| is chosen as zre f = 0.45t until 0.3 m; once this altitude value is
reached, the helicopter then remains there. Set points related to orientation are fixed at
θre f = φre f = ψre f = 0 deg.

The figures shown below were obtained from the real-time experimentation. Firstly,
Figure 6 shows the translational position x(t), y(t), z(t) behavior versus their respectively
set points when the Integral Optimal Controller is applied to the quadrotor helicopter.
Errors in those translational variables are shown in Figure 7. Moreover, the translational
velocities related to each of the axes are shown in Figure 8.
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Figure 6. Numerical approximations of x(t), y(t), |z(t)| and position references of the UAV when the
OIC was used.
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Figure 7. Numerical approximations of the position errors ex(t), ey(t), ez(t) when the OIC was
applied to the UAV.
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Figure 8. Numerical approximations of ẋ(t), ẏ(t), ż(t) from UAV when the OIC was used.

The pitch, roll and yaw orientations are shown in Figure 9; angular rates for all
orientation variables are shown in Figure 10.
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Figure 9. Numerical approximations of pitch, roll and yaw angles of the UAV when using the OIC.
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Figure 10. Numerical approximations of pitch, roll and yaw angular velocities of the UAV when
applying the OIC.

The torque control signals are shown in Figure 11, the force control signal is shown in
Figure 12, and these control signals are calculated using the integral control algorithm in
the discrete quadcopter model.
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Figure 11. Numerical approximations of torque control signals using the OIC.
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Figure 12. Numerical approximation of force control signal u(t) using the OIC.

The quadrotor trajectory is shown in Figure 13; this trajectory was subdivided into
three trajectories for takeoff, flight and landing of the UAV. In the blue line, one can observe
the UAV’s takeoff, while the hover flight of the robot is represented in dark green, and the
landing phase is visualized in light green. Each set of points signifies the division of the
overall trajectory into these three phases: takeoff, flight, and landing.
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Figure 13. Full 3D path of the UAV using the OIC.

4.2. Robustness Test under Crosswind Conditions

Additional experiments were conducted to test the robustness of the integral control
strategy. This experiment allows to evaluate how the robustness provided by the integral
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action affects the UAV’s flight performance. So, a fan is used to apply a crosswind to
aerial platform with a velocity of 4.3 m/s (at 19 ◦C). This external disturbance was sup-
plied to the system from 50 to 150 s. These conditions were used for both PID and OIC
controllers. Figure 14 shows the translational position behavior of the vehicle under this
crosswind condition.

Moreover, Figure 15 shows the position errors experienced by the four-rotor rotorcraft,
and Figure 16 depicts the control signals applied in real time. The magnitude of the control
signals shows the feasibility of integral control. Finally, Figure17 shows the force generated
by the control signal u(t) (corresponding to the collective throttle) when the flying platform
was subjected to wind disturbances.
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Figure 14. Numerical approximations of set-points and positions x(t), y(t), |z(t)| of the quadcopter
when a crosswind was applied.
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Figure 15. Numerical approximations of position errors of the quadcopter when it was disturbed.
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Figure 16. Numerical approximations of torque control signals using the OIC when the quadcopter
was disturbed.
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Figure 17. Force control signal u(t) using the OIC applied when the quadcopter was disturbed.

4.3. Comparative Analysis of Energy Consumption between OIC and Conventional PID Controller

This experimental protocol enables a detailed evaluation of the efficacy of the integral
control algorithm within an LQR control system applied to UAVs, providing empirical
evidence of its performance, robustness and energy efficiency compared to a conventional
PID controller. Total energy consumption was computed using potential and kinetic
energies. This calculation was performed for both the tuned heuristic PID controller and
the OIC optimal controller proposed in this research work. The total energy behavior for
each scenario is illustrated in Figure 18. Furthermore, Table 1 presents the electrical energy
savings comparison between the controllers. These data were derived from a series of
30 experiments.

As evident in Table 1, the OIC (Optimal Integral Controller) improved the electrical
energy consumption by 53.05% compared to a conventional PID controller. This proves
that the use of a LQR (Linear Quadratic Regulator) controller in conjunction with integral
action can save energy in a four-rotor aerial robot. In addition, it provides robustness
to the control loop, enabling it to absorb unmodeled dynamics or external disturbances,
as has been demonstrated in Section 4.2. Although these experiments were conducted
in a controlled environment, it is clear that the control algorithm will work efficiently in
outdoor flights, proving that the robot state approximation is accurate and the robot model
is correctly parameterized.
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Figure 18. Total energy consumption comparison using a PID controller and the OIC.

Table 1. Energy saving.

Controller Total Energy (kJ) Saved Energy %

Proportional Integral
Derivative 3.3718 0

Optimal Integral Controller 1.7888 53.0514

5. Conclusions

Satisfactory experimental results using integral control are obtained. So, can be stated
that the Optimal Integral Controller (OIC) improves the LQR controller behavior, because
it includes an integral term. Moreover, the tuning of integral action can be optimally
conducted by solving the discrete Riccati Algebraic Equation associated to LQR problem, al-
lowing to penalize the energy consumption and the convergence rate of the state. According
to optimal control theory, the exact linearization applied to the altitude and yaw subsystems
allows for stability of the closed loop, and then it is guaranteed. For the subsystems y-φ
and x-θ, although the optimal control obtained was synthesized using a linearized model,
the experimental tests show the robustness of the controller, and the real-time results show
an important energy savings rate. So using this strategy, it is possible to achieve proper
UAV stabilization for both attitude and position. As future work, it is intended to apply
this control strategy in external environments to verify the robustness and efficiency of the
algorithm in outdoor flights. This will be carried out on a UAV with the same configuration
as proposed in this investigation. Other future work includes experiments in a wind tunnel
to evaluate the discharge time of the battery in order to compare the performance of the
controllers more accurately.
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Abbreviations

The following abbreviations are used in this manuscript:
FNN Fuzzy Neural Network
IMU Inertial Measurement Unit
LQR Linear Quadratic Regulator
OIC Optimal Integral Controller
PC Personal Computer
PID Proportional Integral Derivative Controller
PWM Pulse Width Modulation
RF Radio Frequency
UAV Unmanned Aerial Vehicle

Nomenclature

Table of variables, concepts, and units for UAV dynamics:
Variable Concept Units
x Horizontal displacement in the x-axis Meters (m)
y Horizontal displacement in the y-axis Meters (m)
z Vertical position in the z-axis Meters (m)
ψ Yaw angle, rotation around the z-axis Degrees (deg)
θ Pitch angle, rotation around the y-axis Degrees (deg)
φ Roll angle, rotation around the x-axis Degrees (deg)

u
Thrust force generated by the motors to
lift the UAV

Newtons (N)

τφ Torque generated around the x-axis Newton meters (Nm)
τθ Torque generated around the y-axis Newton meters (Nm)
τψ Torque generated around the z-axis Newton meters (Nm)
m Mass Kilograms (kg)
g Gravity Newton (N)
x System state Depends on the system
u System control Depends on the system
y Controlled output Depends on the system
yR Output reference Depends on the system
Dx State variable domain Depends on the system
Du Control variable domain Depends on the system
f State function Depends on the system
h Output function Depends on the system
xss Steady-state Depends on the system
uss Steady-state control Depends on the system
e Tracking error Depends on the system
σ Accumulated error Depends on the system
A, B, C State, control and output matrices Depends on the system
ξ Adjusted state Depends on the system
v Adjusted control Depends on the system
K Control gain matrix Depends on the system
xn State variable Depends on the system
xn(k) Discrete state variable at step k Depends on the system
xn(k + 1) Discrete state variable one step ahead Depends on the system
ξz(k) Adjusted state at step k Depends on the system

Am,Bm, Cm
State, control and output matrices of the
m system

Depends on the system

Jm Performance index of the m system Depends on the system

Qm
Weighting matrix for state of the m
system

Depends on the system

Rm
Weighting factor for control input for
the m system

Depends on the system

um(k) Control input at step k of the m system Depends on the system

Pm
Solution to the Riccati equation of the m
system

Depends on the system
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