
Citation: Boone, J.; Goodin, C.;

Dabbiru, L.; Hudson, C.; Cagle, L.;

Carruth, D. Training Artificial

Intelligence Algorithms with

Automatically Labelled UAV Data

from Physics-Based Simulation

Software. Appl. Sci. 2023, 13, 131.

https://doi.org/10.3390/

app13010131

Academic Editors: M. Jamal Deen,

Subhas Mukhopadhyay,

Yangquan Chen, Simone Morais,

Nunzio Cennamo and Junseop Lee

Received: 28 November 2022

Revised: 13 December 2022

Accepted: 16 December 2022

Published: 22 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Training Artificial Intelligence Algorithms with Automatically
Labelled UAV Data from Physics-Based Simulation Software
Jonathan Boone 1, Christopher Goodin 2 , Lalitha Dabbiru 2, Christopher Hudson 2 , Lucas Cagle 2,*
and Daniel Carruth 2,*

1 Information Technology Laboratory, United States Army Engineer Research and Development Center,
3909 Halls Ferry Road, Vicksburg, MS 39180, USA

2 Center for Advanced Vehicular Systems, Mississippi State University, Box 5405,
Mississippi State, MS 39762, USA

* Correspondence: ldc290@msstate.edu (L.C.); dwc2@cavs.msstate.edu (D.C.)

Abstract: Machine-learning (ML) requires human-labeled “truth” data to train and test. Acquiring
and labeling this data can often be the most time-consuming and expensive part of developing trained
models of convolutional neural networks (CNN). In this work, we show that an automated workflow
using automatically labeled synthetic data can be used to drastically reduce the time and effort
required to train a machine learning algorithm for detecting buildings in aerial imagery acquired
with low-flying unmanned aerial vehicles. The MSU Autonomous Vehicle Simulator (MAVS) was
used in this work, and the process for integrating MAVS into an automated workflow is presented in
this work, along with results for building detection with real and simulated images.

Keywords: artificial intelligence; machine-learning; smart trained models; convolutional neural
networks; simulator; synthetic image data; human-labeled

1. Introduction

Semantic segmentation using neural networks has enabled rapid advances in machine
vision and scene understanding in recent years [1]. Acquiring adequate labeled training
data is often the most significant challenge when using machine learning. Recent work
has shown that using physics-based simulation can increase the amount and diversity
of labeled training data while simultaneously reducing the cost and time required to
collect and semantically label raw data [2]. The problem with current approaches that use
simulation is that it is difficult to automatically create digital assets—synthetic terrains
with desired characteristics—without a human in-the-loop. In this work, we implement a
technique where the digital assets are created automatically and regenerated for different
images, thereby introducing both automation and randomization into the training process.

To address and reduce the substantial labeled data requirements of modern machine
learning techniques, active learning has become an area of intense research. Active learning
in its traditional formulation allows a machine learning algorithm to query an oracle to
label unsupervised data during training [3]. Current research in active learning is directed
towards selecting the most useful sample to label automatically. However, recent work
has reversed the selection problem: instead of selecting the best sample to label from a
pre-generated set, the problem is instead that of selecting a sample to generate. This can
be in the form of moving a drone for novel viewing perspectives [4] or even selecting
simulation parameters used to generate synthetic data batches [5].

More recent work has shown that automated machine-learning can be achieved with-
out human intervention in the model training phase [6]. However, these results were
achieved by using publicly available datasets of cats and dogs (CIFAR-10) and everyday
objects (ImageNet). As these labeled datasets still required a tremendous of time and
manpower to acquire and label, the process is not truly automated. In contrast, this work

Appl. Sci. 2023, 13, 131. https://doi.org/10.3390/app13010131 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010131
https://doi.org/10.3390/app13010131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7763-4464
https://orcid.org/0000-0002-6216-8234
https://orcid.org/0000-0003-0707-9252
https://doi.org/10.3390/app13010131
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010131?type=check_update&version=1

Appl. Sci. 2023, 13, 131 2 of 14

describes a fully automated pipeline for both generation, labeling, and training machine
learning.

Object detection in aerial images is a challenging task as some objects are only a few
pixels wide, some objects are occluded, and some are in the shade. With the cost of drones
decreasing, there is a surge in the amount of aerial data, so it will be useful if models can
extract valuable features from the aerial data. Convolutional neural networks (CNN) are a
very useful tool for machine learning applications [7]. The CNN architecture combines the
benefits obtained by a standard neural network training with the convolution operation to
efficiently classify images. Further, being a neural network, the CNN reduces the images
into a form that is easier to process and scalable for large datasets without losing features
critical towards a good prediction. Pooling layers reduces the spatial size by extracting a
representative value which reduces computational cost. Fully connected layers produce the
final classification with features from the previous layers resulting in the output. Figure 1
shows the schematic diagram of a basic CNN architecture.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 2 of 14

achieved by using publicly available datasets of cats and dogs (CIFAR-10) and everyday
objects (ImageNet). As these labeled datasets still required a tremendous of time and man-
power to acquire and label, the process is not truly automated. In contrast, this work de-
scribes a fully automated pipeline for both generation, labeling, and training machine
learning.

Object detection in aerial images is a challenging task as some objects are only a few
pixels wide, some objects are occluded, and some are in the shade. With the cost of drones
decreasing, there is a surge in the amount of aerial data, so it will be useful if models can
extract valuable features from the aerial data. Convolutional neural networks (CNN) are
a very useful tool for machine learning applications [7]. The CNN architecture combines
the benefits obtained by a standard neural network training with the convolution opera-
tion to efficiently classify images. Further, being a neural network, the CNN reduces the
images into a form that is easier to process and scalable for large datasets without losing
features critical towards a good prediction. Pooling layers reduces the spatial size by ex-
tracting a representative value which reduces computational cost. Fully connected layers
produce the final classification with features from the previous layers resulting in the out-
put. Figure 1 shows the schematic diagram of a basic CNN architecture.

Figure 1. Schematic diagram of a basic convolutional neural network (CNN) architecture [7].

The R-CNN (Region Based Convolutional Neural Network) and faster R-CNN
frameworks deal with the problem of efficient object localization in object detection [7].
These are based on two-stage detection where the first stage generates a sparse set of can-
didate object locations, and the second stage classifies each candidate location as one of
the foreground and background classes using a CNN. As the two-stage detectors are
slower, recent work focuses on one-stage detectors such as You Only Look Once (YOLO)
[8] and single-shot multibox detector (SSD) [9]. The RetinaNet [10] one-stage object detec-
tion models have demonstrated promising results over existing single stage detectors.

In this work, we implemented the RetinaNet framework as its design features an ef-
ficient feature pyramid and uses anchor boxes which the model uses to predict the bound-
ing box for an object. This aids in predicting the relative scale and aspect ratio of specific
object classes. The model works well even with a limited training dataset and gives excel-
lent detection accuracy.

The machine learning pipeline consists of data collection and/or generation, data
preparation, data segregation, model training, and model evaluation. In data collection,
large datasets are compiled that represent the population of classes to be labeled in the
images. To prepare the data, the image features are labeled according to the class of the
feature (e.g., building, vehicle, pedestrian, etc.). The datasets are then separated into a
training dataset, used as input to the machine learning process to train the model, and a

Figure 1. Schematic diagram of a basic convolutional neural network (CNN) architecture [7].

The R-CNN (Region Based Convolutional Neural Network) and faster R-CNN frame-
works deal with the problem of efficient object localization in object detection [7]. These are
based on two-stage detection where the first stage generates a sparse set of candidate object
locations, and the second stage classifies each candidate location as one of the foreground
and background classes using a CNN. As the two-stage detectors are slower, recent work
focuses on one-stage detectors such as You Only Look Once (YOLO) [8] and single-shot
multibox detector (SSD) [9]. The RetinaNet [10] one-stage object detection models have
demonstrated promising results over existing single stage detectors.

In this work, we implemented the RetinaNet framework as its design features an
efficient feature pyramid and uses anchor boxes which the model uses to predict the
bounding box for an object. This aids in predicting the relative scale and aspect ratio of
specific object classes. The model works well even with a limited training dataset and gives
excellent detection accuracy.

The machine learning pipeline consists of data collection and/or generation, data
preparation, data segregation, model training, and model evaluation. In data collection,
large datasets are compiled that represent the population of classes to be labeled in the
images. To prepare the data, the image features are labeled according to the class of the
feature (e.g., building, vehicle, pedestrian, etc.). The datasets are then separated into a
training dataset, used as input to the machine learning process to train the model, and a
test dataset is used to evaluate the trained model’s performance. The model is developed
using machine learning techniques applied to the training dataset.

The resulting model performance is evaluated according to its ability to accurately
label images in the test data. The model’s label outputs are compared to the ground truth
labels associated with the image. If the model is deemed sufficient to produce accurate

Appl. Sci. 2023, 13, 131 3 of 14

predictions with new data, it may be deployed to production. However, if the model
is deficient, it may be improved by improving the training dataset and by adjusting the
parameters of the learning process. Different models will require different thresholds that
are determined on a case-by-case basis.

Each of the steps listed above—data generation, data preparation, and model evaluation
—can be automated. The first step in full automation is the generation of synthetic raw
sensor data, which in turn requires automatically creating digital scenes to render. While [6]
have achieved this to some degree, their empirical process nevertheless relied on field
measurements.

In contrast, in this work the MSU Autonomous Vehicle Simulator (MAVS) [11] is used
to automatically generate and label the training data during the simulation, avoiding the
tedious and time-consuming process of hand-labeling data. Each object in the simulated
scene was assigned a semantic label prior to the simulation. The final step in full automation
is to automate the evaluation of the model. In a single iteration of the process, automation
of the evaluation may simply calculate the Intersection over Union (IoU) to assess the
accuracy of the model’s labels. For an automated improvement process, the evaluation
could assess the failures of the model and generate new training data to iteratively improve
the model.

The process presented in this work is superior to existing approaches because the entire
pipeline, including the scene generation step, is fully automated. The MAVS automatically
generates synthetic scenes with the desired properties—in this case, pasture-like scenes
with sparse vegetation and buildings—and creates truth-label data for training the learning
algorithm.

2. Related Work

Automated machine-learning and data labeling have been used in a wide variety of
processes in recent years. For example, [12] used memetic learning to tackle the capacitated
arc routing problem. Shi et al. [13] used weakly supervised learning with a deep neural
network to detect both rotational and reflectional symmetries. Additionally, Zhou, Wang,
and Wan [14] used transfer learning with a variety of different CNNs to detect ore deposits
in mining excavation.

In recent examples of CNN applications, Lu et al. [15] used a CNN with a cross-
attention mechanism to detect defects in magnetic tiles while Win et al. [16] used a deep-
feature interaction network to discover defects in aircraft engine blades. However, machine
learning can also be used for more “soft-science” applications. For example, Qin et al. [17]
used text extraction features along with deep learning to predict users’ personality traits,
while Shen et al. [18] used type-aware attentive path reasoning to model relation paths for
knowledge graph completion.

Additionally, more theoretical problems can be addressed with deep learning. For
example, Zhao et al. [19] recently used reinforcement learning to develop automated polices
for online 3D bin packing. Furthermore, Zhou et al. [20] used Deconv blocks with CNN to
show that RGB-D images could be used to construct an improved visual attention model.
In contrast, Zhang et al. [21] used a depth-only model with particle filter optimization to
produce 3D reconstruction with fast camera motion.

Deep learning can also be used in other 3D reconstruction processes. Li et al. [22]
developed a novel neural network architecture for the synthesis of different 3D shapes.
Similarly, Ban et al. [23] used multimodal histograms to align images during surgery,
while Yang et al. [24] used a self-supervised stereo reconstruction framework to optimize
deformable soft tissue surfaces. Finally, Huang et al. [25] used a dual-graph attention
convolution network for object classification with 3D point clouds.

3. Automated Data-Generation and Labeling

The MAVS [11] was used to generate synthetic imagery for this work. An open-
source software library for simulating the sensors, environment, and vehicle dynamics

Appl. Sci. 2023, 13, 131 4 of 14

of autonomous ground vehicles (AGV), MAVS was created to provide real-time, physics-
based simulation capability in a modular, customizable architecture that can be integrated
with a variety of other systems and software like the Robotic Operating System (ROS). The
MAVS uses ray-tracing to generate realistic sensor data for Light Detection and Ranging
(lidar) sensors, cameras, and global-positioning system (GPS) [26]. It features a C++ API,
as well as a Python interface to the API that allows for rapid development of simulated
experiments.

MAVS is optimized for simulating AGV operating in off-road environments. Factors
that influence off-road driving include soil type and strength, vegetation type and density,
terrain slope and terrain roughness. The simulator includes physics-based models to
account for all these off-road features. The lidar simulation accurately accounts for beam-
scattering in dense vegetation, while the vehicle simulation accounts for soft-soil and
surface roughness effects. In addition, MAVS can automatically create off-road scenes and
generate semantically labeled lidar point clouds and camera images. It can also account for
weather and environmental affects like rain, snow, dust, fog, and time-of-day, as shown in
Figure 2.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 4 of 14

deformable soft tissue surfaces. Finally, Huang et al. [25] used a dual-graph attention con-
volution network for object classification with 3D point clouds.

3. Automated Data-Generation and Labeling
The MAVS [11] was used to generate synthetic imagery for this work. An open-

source software library for simulating the sensors, environment, and vehicle dynamics of
autonomous ground vehicles (AGV), MAVS was created to provide real-time, physics-
based simulation capability in a modular, customizable architecture that can be integrated
with a variety of other systems and software like the Robotic Operating System (ROS).
The MAVS uses ray-tracing to generate realistic sensor data for Light Detection and Rang-
ing (lidar) sensors, cameras, and global-positioning system (GPS) [26]. It features a C++
API, as well as a Python interface to the API that allows for rapid development of simu-
lated experiments.

MAVS is optimized for simulating AGV operating in off-road environments. Factors
that influence off-road driving include soil type and strength, vegetation type and density,
terrain slope and terrain roughness. The simulator includes physics-based models to ac-
count for all these off-road features. The lidar simulation accurately accounts for beam-
scattering in dense vegetation, while the vehicle simulation accounts for soft-soil and sur-
face roughness effects. In addition, MAVS can automatically create off-road scenes and
generate semantically labeled lidar point clouds and camera images. It can also account
for weather and environmental affects like rain, snow, dust, fog, and time-of-day, as
shown in Figure 2.

Figure 2. Simulation of snow (left), fog (middle), and rain (right) in MAVS. The terrain was created
automatically with MAVS.

MAVS has been used for a variety of applications ranging from developing algo-
rithms for automatically removing rain in images [1], to optimizing the placement and
orientation of lidar sensors on an AGV [27], to assessing the impact of vegetation on au-
tonomous navigation [28]. The past success of MAVS in supporting machine-learning
studies make it a good candidate simulator for this research.

Three primary simulation components are required in order to generate realistic syn-
thetic imagery:
1. Scene Generation–A model of the geometry, texture, and color of the surfaces in the

environment;
2. Radiative Transfer–A model of how light reflects and propagates through the envi-

ronment; and
3. Camera Simulation–A model of how the camera captures and processes light.

For this project we will use physics-based simulation to develop synthetic images. In
this case, physics-based refers to all three phases of the simulation. In the following sec-
tions, each of these three components will be discussed in more detail.

3.1. Scene Generation
For this project, we chose scenes which are primarily off-road and/or rural in nature.

The most prominent features in most outdoor scenes are the terrain slope and roughness
and the type, size, and distribution of vegetation. In MAVS, outdoor scenes are

Figure 2. Simulation of snow (left), fog (middle), and rain (right) in MAVS. The terrain was created
automatically with MAVS.

MAVS has been used for a variety of applications ranging from developing algorithms
for automatically removing rain in images [1], to optimizing the placement and orientation
of lidar sensors on an AGV [27], to assessing the impact of vegetation on autonomous
navigation [28]. The past success of MAVS in supporting machine-learning studies make it
a good candidate simulator for this research.

Three primary simulation components are required in order to generate realistic
synthetic imagery:

1. Scene Generation–A model of the geometry, texture, and color of the surfaces in the
environment;

2. Radiative Transfer–A model of how light reflects and propagates through the environ-
ment; and

3. Camera Simulation–A model of how the camera captures and processes light.

For this project we will use physics-based simulation to develop synthetic images.
In this case, physics-based refers to all three phases of the simulation. In the following
sections, each of these three components will be discussed in more detail.

3.1. Scene Generation

For this project, we chose scenes which are primarily off-road and/or rural in nature.
The most prominent features in most outdoor scenes are the terrain slope and roughness
and the type, size, and distribution of vegetation. In MAVS, outdoor scenes are auto-
matically created using a multi-scale roughness model for the surface and a simulated
growth/competition model for estimating the distribution of the vegetation.

The surface roughness is defined by two decades of Perlin noise [29], a spatially
coherent noise model that is widely used in computer graphics and simulation. The first
decade of noise has a wavelength of 10 m and simulates the appearance of rolling hills in
the terrain. The second decade has a wavelength of 0.3 m and simulates the appearance
and effect of surface roughness on passenger vehicles. In the MAVS software, the user

Appl. Sci. 2023, 13, 131 5 of 14

defines the magnitude of each decade independently, allowing the roughness of the terrain
to be adjusted independently of the rolling hills.

In order to simulate natural-appearing vegetation distributions, MAVS simulates years
of plant growth and competition for the ecosystem being studied. MAVS implements the
competition model described in [30].

MAVS uses an ecosystem definition input file where the user specifies the type of
plants in the ecosystem, their maximum size and lifetime, regeneration rate, and growth
rate. MAVS simulates 10–20 years of growth and competition and saves the resulting scene
file for use in sensor simulations.

3.2. Radiative Transfer

Radiative transfer is the propagation of light (both visible and outside the visible
spectrum) through a scene or environment. In computer graphics, radiative transfer simu-
lations refer the class of techniques used to solve the rendering equation [31]. While many
techniques of varying fidelity have been proposed for radiative transfer, path-tracing [32]
is among the most popular because path-tracing calculations can theoretically converge
upon an exact solution to the rendering equation. MAVS uses path-tracing to simulate the
transport of light and interaction with different surfaces in a scene.

For outdoor scenes, MAVS treats the entire sky as a light source, using the Hosek-
Wilkie sky model to account for the sky color based on the time of day, position of the sun,
and aerosol content in the air [33]. This results in shadows with realistic soft-edges and
appropriate color-tinting based on sky conditions. Path-tracing also gives reduced aliasing
effects when compared to primary raytracing. The primary drawback of path-tracing is the
computational cost. Mitigation techniques for slow image generation will be discussed in
the Section 4 “Methods for Generating Randomized UAV Images”.

3.3. Camera Simulation

The two primary components of a digital camera are the optics (usually a combinations
of lenses) and the sensor at the focal plane array, typically a CCD or CMOS array. In MAVS,
the lens system is simulated using a radial distortion model [34,35]. An example of the
effect of distortion is shown in Figure 3. The corresponding distortion parameters are
shown in Table 1, along with their values in this example.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 5 of 14

automatically created using a multi-scale roughness model for the surface and a simulated
growth/competition model for estimating the distribution of the vegetation.

The surface roughness is defined by two decades of Perlin noise [29], a spatially co-
herent noise model that is widely used in computer graphics and simulation. The first
decade of noise has a wavelength of 10 m and simulates the appearance of rolling hills in
the terrain. The second decade has a wavelength of 0.3 m and simulates the appearance
and effect of surface roughness on passenger vehicles. In the MAVS software, the user
defines the magnitude of each decade independently, allowing the roughness of the ter-
rain to be adjusted independently of the rolling hills.

In order to simulate natural-appearing vegetation distributions, MAVS simulates
years of plant growth and competition for the ecosystem being studied. MAVS imple-
ments the competition model described in [30].

MAVS uses an ecosystem definition input file where the user specifies the type of
plants in the ecosystem, their maximum size and lifetime, regeneration rate, and growth
rate. MAVS simulates 10–20 years of growth and competition and saves the resulting
scene file for use in sensor simulations.

3.2. Radiative Transfer
Radiative transfer is the propagation of light (both visible and outside the visible

spectrum) through a scene or environment. In computer graphics, radiative transfer sim-
ulations refer the class of techniques used to solve the rendering equation [31]. While
many techniques of varying fidelity have been proposed for radiative transfer, path-trac-
ing [32] is among the most popular because path-tracing calculations can theoretically
converge upon an exact solution to the rendering equation. MAVS uses path-tracing to
simulate the transport of light and interaction with different surfaces in a scene.

For outdoor scenes, MAVS treats the entire sky as a light source, using the Hosek-
Wilkie sky model to account for the sky color based on the time of day, position of the
sun, and aerosol content in the air [33]. This results in shadows with realistic soft-edges
and appropriate color-tinting based on sky conditions. Path-tracing also gives reduced
aliasing effects when compared to primary raytracing. The primary drawback of path-
tracing is the computational cost. Mitigation techniques for slow image generation will be
discussed in the Section 4 “Methods for Generating Randomized UAV Images”.

3.3. Camera Simulation
The two primary components of a digital camera are the optics (usually a combina-

tions of lenses) and the sensor at the focal plane array, typically a CCD or CMOS array. In
MAVS, the lens system is simulated using a radial distortion model [34,35]. An example
of the effect of distortion is shown in Figure 3. The corresponding distortion parameters
are shown in Table 1, along with their values in this example.

Figure 3. Example of the effect of distortion in the MAVS camera simulation. (Left) Distorted image.
(Right) Undistorted image.

Appl. Sci. 2023, 13, 131 6 of 14

Table 1. Example parameters in the MAVS camera distortion model.

Parameter Symbol Value (Pixels)

Focal Length (Fu, Fv) (657.30, 647.74)
Principal Point (Cu, Cv) (307.72, 242.33)

Skew α 0.00042
Radial Distortion (R1, R4, R6) (307.72, 242.33)

Tangential Distortion (T1, T0) (−0.00028, 0.00005)

Note that in the aerial camera simulated for this project, there was no simulated
distortion.

The incident model on the focal plane array is modeled using the Phong model with
diffuse term

Ip = kd

(→
L ·
→
N
)

id + ks

(→
R·
→
V
)

is

In this equation, Ip is the illumination at a given point, id is the incdient diffuse
irradiance at that point, is is the incident specular irradiance, R is the specular direction,
N is the surface normal, L is the direction from the point to the light source, and V is the
vector pointing to the viewer. The material properties kd and ks specify the diffuse and
specular reflectances. These have the constaint that they must both be positive and sum to
less than 1.0 (kd + ks < 1.0). In the MAVS simulator, the specular component is set to zero
for most natural surfaces and the the diffuse component is estimated from field data.

For each pixel, the total contribution of incident ration from all points in the scene is
estimated using path tracing. The response of the focal plane array is then modeled using a
power law model.

Iij = ALγ
ij

where Iij is the output intensity of pixel (i,j), Lij is the irradiance on pixel (i,j), γ is the
compression factor, and A is the gain. The compression factor (γ) is usually set to less than
one. The effect of range compression is shown in Figure 4, which demonstrates how the
dynamic range of the color and intensity of the image is reduced when decreasing γ.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 6 of 14

Figure 3. Example of the effect of distortion in the MAVS camera simulation. (Left) Distorted image.
(Right) Undistorted image.

Table 1. Example parameters in the MAVS camera distortion model.

Parameter Symbol Value (Pixels)
Focal Length (Fu, Fv) (657.30, 647.74)

Principal Point (Cu, Cv) (307.72, 242.33)
Skew α 0.00042

Radial Distortion (R1, R4, R6) (307.72, 242.33)
Tangential Distortion (T1, T0) (−0.00028, 0.00005)

Note that in the aerial camera simulated for this project, there was no simulated dis-
tortion.

The incident model on the focal plane array is modeled using the Phong model with
diffuse term 𝐼 = 𝑘 �⃗� ∙ 𝑁 𝑖 𝑘 𝑅 ∙ 𝑉 𝑖

In this equation, Ip is the illumination at a given point, id is the incdient diffuse irra-
diance at that point, is is the incident specular irradiance, R is the specular direction, N is
the surface normal, L is the direction from the point to the light source, and V is the vector
pointing to the viewer. The material properties kd and ks specify the diffuse and specular
reflectances. These have the constaint that they must both be positive and sum to less than
1.0 (kd + ks < 1.0). In the MAVS simulator, the specular component is set to zero for most
natural surfaces and the the diffuse component is estimated from field data.

For each pixel, the total contribution of incident ration from all points in the scene is
estimated using path tracing. The response of the focal plane array is then modeled using
a power law model. 𝐼 = 𝐴𝐿

where Iij is the output intensity of pixel (i,j), Lij is the irradiance on pixel (i,j), γ is the com-
pression factor, and A is the gain. The compression factor (γ) is usually set to less than
one. The effect of range compression is shown in Figure 4, which demonstrates how the
dynamic range of the color and intensity of the image is reduced when decreasing γ.

Figure 4. Comparison of γ = 0.5 (left) to γ = 1.0 (right).

In the experiments shown in this work, the radial and tangential distortion were set
to zero and the compression factor was γ = 0.6.

4. Methods for Generating Randomized UAV Images

Figure 4. Comparison of γ = 0.5 (left) to γ = 1.0 (right).

In the experiments shown in this work, the radial and tangential distortion were set to
zero and the compression factor was γ = 0.6.

4. Methods for Generating Randomized UAV Images

In this task, our goal was to develop methods for randomly generating synthetic data
that incorporated the most relevant features of real data for machine learning. In order
to achieve this, we decided to use a sample real dataset to compare to our synthetic set.

Appl. Sci. 2023, 13, 131 7 of 14

The real-world data were provided by MSU’s Geospatial Research Institute (GRI) and are
discussed below.

4.1. Real Data

Real images were acquired using the DJI Phantom 4 flown over the H. H. Leveck
Animal Research Center, often referred to as South Farm. The data were acquired in
July 2019 with the built-in Phantom-4 Pro RGB camera. The camera has a resolution of
4864 × 3648 pixels, focal length of 8.8 mm and a 70◦ field-of-view. The flight altitude was
122 m (400 feet) and the flight speed was around 7.1 m/second. A total of 119 images
were analyzed for this project. The images consist primarily of open fields and pastureland
bordered by both mature and scrub trees. In addition, the images contained some residential
areas, barns, and other farming structures, as well as paved and dirt roads. An orthomosaic
created from all 119 images using Agisoft Metashape Professional Edition with overlap
and sidelap average of 80% is shown in Figure 5.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 7 of 14

In this task, our goal was to develop methods for randomly generating synthetic data
that incorporated the most relevant features of real data for machine learning. In order to
achieve this, we decided to use a sample real dataset to compare to our synthetic set. The
real-world data were provided by MSU’s Geospatial Research Institute (GRI) and are dis-
cussed below.

4.1. Real Data
Real images were acquired using the DJI Phantom 4 flown over the H. H. Leveck

Animal Research Center, often referred to as South Farm. The data were acquired in July
2019 with the built-in Phantom-4 Pro RGB camera. The camera has a resolution of 4864 ×
3648 pixels, focal length of 8.8 mm and a 70° field-of-view. The flight altitude was 122 m
(400 feet) and the flight speed was around 7.1 m/second. A total of 119 images were ana-
lyzed for this project. The images consist primarily of open fields and pastureland bor-
dered by both mature and scrub trees. In addition, the images contained some residential
areas, barns, and other farming structures, as well as paved and dirt roads. An orthomo-
saic created from all 119 images using Agisoft Metashape Professional Edition with over-
lap and sidelap average of 80% is shown in Figure 5.

Figure 5. Mosaic created from 119 images of the MSU South Farm.

4.2. Simulated Data
Data generation is considered as a three-step process of sampling from multi-variate

distributions: one each for scene, environment, and camera parameters. As scene and en-
vironment generation is computationally expensive, scenes are reused for multiple envi-
ronments, which are in turn reused for multiple cameras from which one image is gener-
ated. Thus, the total number of generated images in a generation run can be described as 𝑁 = 𝑆 × 𝐸 × 𝐶 where S is the number of scenes, 𝐸 the number of environments per
scene, and 𝐶 the number of cameras per environment.

4.2.1. Scene, Environment, and Camera Sampling
Scenes are randomly generated by MAVS. The statistics and settings used are them-

selves sampled from configurable distributions. This allows scene generation to be tai-
lored. Currently, three such of the settings exposed by MAVS can be sampled from ran-
dom distributions: low frequency surface noise, high frequency surface noise, and plant
density. A similar scheme is in place for environment settings. Time of day (hour), rain

Figure 5. Mosaic created from 119 images of the MSU South Farm.

4.2. Simulated Data

Data generation is considered as a three-step process of sampling from multi-variate
distributions: one each for scene, environment, and camera parameters. As scene and
environment generation is computationally expensive, scenes are reused for multiple
environments, which are in turn reused for multiple cameras from which one image is
generated. Thus, the total number of generated images in a generation run can be described
as N = S× Es × CE where S is the number of scenes, ES the number of environments per
scene, and CE the number of cameras per environment.

4.2.1. Scene, Environment, and Camera Sampling

Scenes are randomly generated by MAVS. The statistics and settings used are them-
selves sampled from configurable distributions. This allows scene generation to be tailored.
Currently, three such of the settings exposed by MAVS can be sampled from random
distributions: low frequency surface noise, high frequency surface noise, and plant density.
A similar scheme is in place for environment settings. Time of day (hour), rain rate, and
cloud cover can all be sampled from random distributions to ensure a spread of different
environments are used. Cameras are placed facing down at an elevation of 200 m above a
random point in the scene.

Appl. Sci. 2023, 13, 131 8 of 14

4.2.2. Simulated Camera

To generate images sufficiently realistic for sim-to-real transfer, a path tracing camera
is essential. The most crucial parameter of such a camera is the number of rays per pixel
used to generate the image. The number of rays used has a direct effect on the time required
to render an image, so a tradeoff exists between image quality and render time.

Performance tradeoff studies were performed to quantify and gauge the consequences
of rays on image quality and render time. The same scene was rendered using a broad
spread of rays and the render time and image error were used to compare images. Image
error was computed with respect to the highest ray count image, representing the closest
sample to a ground-truth image.

4.2.3. Denoising

In an additional effort to reduce render time without impacting quality, Intel’s Open
Image Denoising Network (OIDN) was tested and ultimately incorporated. OIDN is a
network, with accompanying API and binaries, trained to denoise images rendered with
insufficient rays [36]. This allows fewer rays to be used initially. The raw images are too
noisy to be useful but can be denoised by the network to produce a result of notably better
quality. The network’s inference time is substantially faster than the equivalent number
of rays necessary to produce the higher quality image. The same experiment as used to
evaluate the number of rays for raw images was repeated with the addition of using OIDN.
Image error was still computed using error with respect to the highest ray un-denoised
image. The runtime of the OIDN network was included in the render time of the denoised
images to properly provide overall runtime comparisons.

4.2.4. Results

The mean-squared error (MSE) versus number of rays per pixel for both raw and
denoised images are shown in Figure 6 with a logarithmic scale for rays. At low ray counts,
the denoised images display higher error than the corresponding raw images. However,
the denoised images display substantially reduced error roughly between 2 and 200 rays.
Ray counts above this range become too computationally expensive for the marginal
improvements in image quality. This can be seen in Figure 7, which displays the raw and
denoised images for 1, 100, and 10,000 rays. Qualitatively, the denoised 100 ray image
is sufficiently like the 10,000-ray raw image to be used in training of machine learning
algorithms.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 9 of 14

Figure 6. Mean squared error (MSE) of images, raw and denoised.

Figure 7. Sample Raw Images on the left (a,c,e) and Denoised Images on the right (b,d,f). Images
(a,b) 1 rays per pixel, (c,d) 100 rays per pixel, and (e,f) 10,000 rays per pixel.

5. Environment Features for Labeling and Feature Classifications
Consideration of terrain features includes pavement, gravel, dirt, trees, grass, vehi-

cles, and pedestrians. After our initial assessment of the real dataset, semantic classes were

Figure 6. Mean squared error (MSE) of images, raw and denoised.

Appl. Sci. 2023, 13, 131 9 of 14

Appl. Sci. 2023, 12, x FOR PEER REVIEW 9 of 14

Figure 6. Mean squared error (MSE) of images, raw and denoised.

Figure 7. Sample Raw Images on the left (a,c,e) and Denoised Images on the right (b,d,f). Images
(a,b) 1 rays per pixel, (c,d) 100 rays per pixel, and (e,f) 10,000 rays per pixel.

5. Environment Features for Labeling and Feature Classifications
Consideration of terrain features includes pavement, gravel, dirt, trees, grass, vehi-

cles, and pedestrians. After our initial assessment of the real dataset, semantic classes were

Figure 7. Sample Raw Images on the left (a,c,e) and Denoised Images on the right (b,d,f). Images
(a,b) 1 rays per pixel, (c,d) 100 rays per pixel, and (e,f) 10,000 rays per pixel.

5. Environment Features for Labeling and Feature Classifications

Consideration of terrain features includes pavement, gravel, dirt, trees, grass, vehicles,
and pedestrians. After our initial assessment of the real dataset, semantic classes were
selected to provide adequate discretization and coverage of the data. The initial set of
semantic classes included grass, soil, water, trees, paved and unpaved roads, fences, shrubs,
and a class for miscellaneous manmade objects. An example image labeled with these
classes is shown in Figure 8.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 10 of 14

selected to provide adequate discretization and coverage of the data. The initial set of se-
mantic classes included grass, soil, water, trees, paved and unpaved roads, fences, shrubs,
and a class for miscellaneous manmade objects. An example image labeled with these
classes is shown in Figure 8.

Figure 8. Example of semantic labeling of real-world data.

However, we discovered that there were limitations with our selection of semantic
labels. First, because of the high-resolution and detail of the real images, each image took
about 30 min to semantically label. Second, the boundaries between many of the classifi-
cations such as soil, grass, and unpaved road were unclear, making consistent labeling
difficult.

Therefore, because our primary goal in this work was to develop the automation pro-
cess, rather than develop new techniques in machine learning or investigate optimal meth-
ods for hand-labeling sensor data, we chose to simplify the labeling process by focusing
only on buildings. This allowed us to use box-labels, rather than pixel labels. In addition,
since there only a few buildings per image, the average labeling time was reduced to only
a few minutes per image. An example box-labeled image is shown in Figure 9.

Figure 9. Example box-labeling of real-world data.

Figure 8. Example of semantic labeling of real-world data.

Appl. Sci. 2023, 13, 131 10 of 14

However, we discovered that there were limitations with our selection of semantic
labels. First, because of the high-resolution and detail of the real images, each image
took about 30 min to semantically label. Second, the boundaries between many of the
classifications such as soil, grass, and unpaved road were unclear, making consistent
labeling difficult.

Therefore, because our primary goal in this work was to develop the automation
process, rather than develop new techniques in machine learning or investigate optimal
methods for hand-labeling sensor data, we chose to simplify the labeling process by
focusing only on buildings. This allowed us to use box-labels, rather than pixel labels. In
addition, since there only a few buildings per image, the average labeling time was reduced
to only a few minutes per image. An example box-labeled image is shown in Figure 9.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 10 of 14

selected to provide adequate discretization and coverage of the data. The initial set of se-
mantic classes included grass, soil, water, trees, paved and unpaved roads, fences, shrubs,
and a class for miscellaneous manmade objects. An example image labeled with these
classes is shown in Figure 8.

Figure 8. Example of semantic labeling of real-world data.

However, we discovered that there were limitations with our selection of semantic
labels. First, because of the high-resolution and detail of the real images, each image took
about 30 min to semantically label. Second, the boundaries between many of the classifi-
cations such as soil, grass, and unpaved road were unclear, making consistent labeling
difficult.

Therefore, because our primary goal in this work was to develop the automation pro-
cess, rather than develop new techniques in machine learning or investigate optimal meth-
ods for hand-labeling sensor data, we chose to simplify the labeling process by focusing
only on buildings. This allowed us to use box-labels, rather than pixel labels. In addition,
since there only a few buildings per image, the average labeling time was reduced to only
a few minutes per image. An example box-labeled image is shown in Figure 9.

Figure 9. Example box-labeling of real-world data. Figure 9. Example box-labeling of real-world data.

Of the 119 real images, 37 had at least one building, while the remainder did not have
buildings. Of those images with buildings, 16 had exactly one building, while the other 21
had 2–8 buildings.

For this project, we used the MATLAB Image Labeler [37] to perform the labeling
tasks. Although we considered other solutions for performing the labeling, MATLAB was
chosen because we could perform the labeling on our local machines without uploading
the data to a 3rd-party server.

6. Object Detection Modeling

Training data were generated with MAVS. Scenes were automatically generated with
random degrees of surface roughness. The buildings and trees in each scene were randomly
oriented and scaled to produce a wide range of different training data. In addition, some
vehicles were placed in the scenes in random positions and orientations. For example, some
red vehicles can be seen in bottom right corner Figure 10a.

Appl. Sci. 2023, 13, 131 11 of 14Appl. Sci. 2023, 12, x FOR PEER REVIEW 12 of 14

(a) (b)

Figure 10. (a) Simulated UAV original image. (b) Detection of “buildings” using RetinaNet, marked
in white boxes.

7. Conclusions
We implemented the RetinaNet framework as its design features an efficient feature

pyramid and uses anchor boxes, which the model uses to predict the bounding box for an
object. This aided in predicting the relative scale and aspect ratio of specific object classes.
The model worked well even with a limited training dataset and gives excellent detection
accuracy.

Our goal was to develop methods for randomly generating synthetic data that incor-
porated the most relevant features of real data for machine learning. In order to achieve
this, we decided to use a sample real dataset to compare to our synthetically generated
dataset. We point out that the real data is not necessary to run the automated pipeline.
Nevertheless, incorporating real data as a baseline provided several benefits to this pro-
ject.

The automated architecture is currently under development to facilitate training and
testing of machine learning algorithms [39]. This pipeline will be broken into two sub-
tasks; training and testing. The training pipeline will leverage MAVS environments in or-
der to generate image data sets. These data sets will be used to train specific algorithms,
which will be tested against a subset of data for accuracy. Should the accuracy of the al-
gorithms fall below an acceptable level, additional data will be selected for generation by
MAVS based on meta data tags, used to identify classes which are under performing.

Planned improvements to the machine learning algorithm include running the algo-
rithm on a higher GPU machine, training with more simulated data, and increasing the
number of epochs to achieve better accuracies of detection.

Author Contributions: J.B., conceptualization, writing, idea proposal, resources, submission, and
preparation; C.G., conceptualization, writing, data curation, software development, investigation;
L.D., software development, data curation, editing, and visualization; C.H., data curation, writing,
editing, and visualization; L.C., writing data curation and visualization; D.C., review, writing, re-
sults. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the United States Department of Army, Research, Develop-
ment, Test & Evaluation, Army; High Performance Computing Modernization Program, Program
Element Number 0603461A.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: This study did not report any publicly available data.

Acknowledgments: This study was conducted for the US Army Engineer Research and Develop-
ment Center’s (ERDC) Information Technology Laboratory (ITL) under the High Performance Com-
puting Modernization Program.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 10. (a) Simulated UAV original image. (b) Detection of “buildings” using RetinaNet, marked
in white boxes.

To match the weather conditions of the real data, the MAVS simulations used mid-day
conditions with no cloud cover, rain, or fog. The camera altitude was 122 m, like the
real camera. The simulated camera had a horizontal field-of-view of 60.5◦. Simulations
were run on Mississippi State University’s supercomputer, Shadow, a Cray CS300-LC on
multiple Xeon-Phi cores.

Object detection in aerial images is a challenging task as some objects are only a few
pixels wide. We have implemented keras-retinanet on the simulated aerial data generated
using MAVS. RetinaNet is one of the best single stage object detection models that has
proven to work well with dense and small-scale objects [38]. Moreover, it is one of the
popular object detection models to be used with aerial imagery. RetinaNet makes use of
keras, tensorflow, tensorboard, CUDA, CUDNN, and several other Python libraries.

Keras-RetinaNet uses feature pyramid network (FPN) and focal loss for training. FPN
is a structure for multiscale object detection which combines low resolution, high resolution,
and semantically weak features in a top down pyramid architecture [37]. The focal loss
is designed to address the problems with imbalance where there are many background
classes and a few foreground classes.

The simulated aerial dataset consists of 871 aerial images of 640 × 480 resolution
as shown in Figure 10a. Keras-Retinanet framework with ResNet 50 as backbone was
implemented for object detection. The training dataset has 696 images with bounding box
annotations and labels in PASCAL VOC format. The model was evaluated with 175 images
in the validation dataset. Anchor boxes are fixed size boxes that the model uses to predict
the bounding box of an object. The hyperparameters used in the model are the pixel size of
the anchor box, the distance between the centers of two neighboring anchor boxes (strides),
and the height/width ratio of the box to predict a relative scale of the object.

In this preliminary work, we detected “buildings” in the aerial imagery. Each location
on a given feature map has nine anchor boxes (at three scales and three ratios). The model
is trained using 15 epochs and 500 steps. The metrics used to evaluate the model are mAP
(mean Average Precision) and IoU (Intersection of Union). The mean average precision
value is the average AP over all classes and the IoU indicates how much bounding boxes
overlap, which is crucial in determining the true positives and false positives. Our results
achieved a mAP accuracy of 88% at IoU = 0.3. As shown in Figure 10b, the algorithm
detected each roof section as a building. The detected image has one false positive, where a
truck on the top right was detected as a “building”. As seen in Figure 10a, the building
roofs are in blackish gray except a few roofs with red color. There were very few images
with red roof structures and the algorithm detected a part of these structures too. Overall,
the deep learning network successfully detected objects in the aerial imagery.

7. Conclusions

We implemented the RetinaNet framework as its design features an efficient feature
pyramid and uses anchor boxes, which the model uses to predict the bounding box for an

Appl. Sci. 2023, 13, 131 12 of 14

object. This aided in predicting the relative scale and aspect ratio of specific object classes.
The model worked well even with a limited training dataset and gives excellent detection
accuracy.

Our goal was to develop methods for randomly generating synthetic data that incor-
porated the most relevant features of real data for machine learning. In order to achieve
this, we decided to use a sample real dataset to compare to our synthetically generated
dataset. We point out that the real data is not necessary to run the automated pipeline.
Nevertheless, incorporating real data as a baseline provided several benefits to this project.

The automated architecture is currently under development to facilitate training and
testing of machine learning algorithms [39]. This pipeline will be broken into two sub-tasks;
training and testing. The training pipeline will leverage MAVS environments in order to
generate image data sets. These data sets will be used to train specific algorithms, which
will be tested against a subset of data for accuracy. Should the accuracy of the algorithms
fall below an acceptable level, additional data will be selected for generation by MAVS
based on meta data tags, used to identify classes which are under performing.

Planned improvements to the machine learning algorithm include running the algo-
rithm on a higher GPU machine, training with more simulated data, and increasing the
number of epochs to achieve better accuracies of detection.

Author Contributions: J.B., conceptualization, writing, idea proposal, resources, submission, and
preparation; C.G., conceptualization, writing, data curation, software development, investigation;
L.D., software development, data curation, editing, and visualization; C.H., data curation, writing,
editing, and visualization; L.C., writing data curation and visualization; D.C., review, writing, results.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the United States Department of Army, Research, Develop-
ment, Test & Evaluation, Army; High Performance Computing Modernization Program, Program
Element Number 0603461A.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: This study did not report any publicly available data.

Acknowledgments: This study was conducted for the US Army Engineer Research and Development
Center’s (ERDC) Information Technology Laboratory (ITL) under the High Performance Computing
Modernization Program.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sharma, S.; Hudson, C.; Carruth, D.; Doude, M.; Ball, J.E.; Tang, B.; Dabbiru, L. Performance analysis of semantic segmentation

algorithms trained with JPEG compressed datasets. Real-Time Image Process. Deep. Learn. 2020, 2020, 1140104.
2. Goodin, C.; Sharma, S.; Doude, M.; Carruth, D.; Dabbiru, L.; Hudson, C. Training of Neural Networks with Automated Labeling of

Simulated Sensor Data; SAE Technical Paper; SAE: Warrendale, PA, USA, 2019.
3. Budd, S.; Robinson, E.C.; Kainz, B. A Survey on Active Learning and Human-in-the-Loop Deep Learning for Medical Image

Analysis. arXiv 2019, arXiv:1910.02923. [CrossRef] [PubMed]
4. Teng, E.; Iannucci, B. Learning to Learn in Simulation. arXiv 2019, arXiv:1902.01569.
5. Ruiz, N.; Schulter, S.; Chandraker, M. Learning to Simulate. arXiv 2018, arXiv:1810.02513.
6. Chen, M.; Feng, A.M.; Prasad, P.B.; Soibelman, L.; Enloe, M. Fully Automated Photagrammetric Data Segmentation and

Object Information Exraction Approach for Creating Simulation Terrain. In Proceedings of the Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC), Orlando, FL, USA, 28 November–2 December 2020; pp. 1–12.

7. Phung, V.H.; Rhee, E.J. A High-Accuracy Model Average Ensemble of Convolutional Neural Networks for Classification of Cloud
Image Patches on Small Datasets. Appl. Sci. 2019, 9, 4500. [CrossRef]

8. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

9. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

http://doi.org/10.1016/j.media.2021.102062
http://www.ncbi.nlm.nih.gov/pubmed/33901992
http://doi.org/10.3390/app9214500

Appl. Sci. 2023, 13, 131 13 of 14

10. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In European
Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37.

11. Hudson, C.; Goodin, C.; Miller, Z.; Wheeler, W.; Carruth, D. Mississippi State University Autonomous Vehicle Simulation Library.
In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium, Novi, MI, USA, 12–14 October 2020; pp.
11–13.

12. Cao, B.; Zhang, W.; Wang, X.; Zhao, J.; Gu, Y.; Zhang, Y. A memetic algorithm based on two_Arch2 for multi-depot heterogeneous-
vehicle capacitated arc routing problem. Swarm Evol. Comput. 2021, 63, 100864. [CrossRef]

13. Shi, Y.; Xu, X.; Xi, J.; Hu, X.; Hu, D.; Xu, K. Learning to detect 3D symmetry from single-view RGB-D images with weak
supervision. IEEE Trans. Pattern Anal. Mach. Intell. 2022. [CrossRef]

14. Zhou, W.; Wang, H.; Wan, Z. Ore Image Classification Based on Improved CNN. Comput. Electr. Eng. 2022, 99, 107819. [CrossRef]
15. Lu, H.; Zhu, Y.; Yin, M.; Yin, G.; Xie, L. Multimodal Fusion Convolutional Neural Network with Cross-attention Mechanism for

Internal Defect Detection of Magnetic Tile. IEEE Access 2022, 10, 60876–60886. [CrossRef]
16. Yin, M.; Zhu, Y.; Yin, G.; Fu, G.; Xie, L. Deep Feature Interaction Network for Point Cloud Registration, With Applications to

Optical Measurement of Blade Profiles. IEEE Trans. Ind. Inform. 2022. [CrossRef]
17. Qin, X.; Liu, Z.; Liu, Y.; Liu, S.; Yang, B.; Yin, L.; Liu, M.; Zheng, W. User OCEAN Personality Model Construction Method Using

a BP Neural Network. Electronics 2022, 11, 3022. [CrossRef]
18. Shen, Y.; Ding, N.; Zheng, H.T.; Li, Y.; Yang, M. Modeling relation paths for knowledge graph completion. IEEE Trans. Knowl.

Data Eng. 2020, 33, 3607–3617. [CrossRef]
19. Zhao, H.; Zhu, C.; Xu, X.; Huang, H.; Xu, K. Learning practically feasible policies for online 3D bin packing. Sci. China Inf. Sci.

2022, 65, 1–17. [CrossRef]
20. Zhou, W.; Lv, Y.; Lei, J.; Yu, L. Global and local-contrast guides content-aware fusion for RGB-D saliency prediction. IEEE Trans.

Syst. Man Cybern. Syst. 2019, 51, 3641–3649. [CrossRef]
21. Zhang, J.; Zhu, C.; Zheng, L.; Xu, K. ROSEFusion: Random optimization for online dense reconstruction under fast camera

motion. ACM Trans. Graph. (TOG) 2021, 40, 1–17.
22. Li, J.; Xu, K.; Chaudhuri, S.; Yumer, E.; Zhang, H.; Guibas, L. Grass: Generative recursive autoencoders for shape structures. ACM

Trans. Graph. (TOG) 2017, 36, 1–14. [CrossRef]
23. Ban, Y.; Wang, Y.; Liu, S.; Yang, B.; Liu, M.; Yin, L.; Zheng, W. 2D/3D Multimode Medical Image Alignment Based on Spatial

Histograms. Appl. Sci. 2022, 12, 8261. [CrossRef]
24. Yang, B.; Xu, S.; Chen, H.; Zheng, W.; Liu, C. Reconstruct Dynamic Soft-Tissue With Stereo Endoscope Based on a Single-Layer

Network. IEEE Trans. Image Process. 2022, 31, 5828–5840. [CrossRef]
25. Huang, C.Q.; Jiang, F.; Huang, Q.H.; Wang, X.Z.; Han, Z.M.; Huang, W.Y. Dual-Graph Attention Convolution Network for 3-D

Point Cloud Classification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–13. [CrossRef]
26. Dabbiru, L.; Goodin, C.; Scherrer, N.; Carruth, D. LiDAR Data Segmentation in Off-Road Environment Using Convolutional

Neural Networks (CNN). SAE Int. J. Adv. Curr. Prac. Mobil. 2020, 2, 3288–3292.
27. Hudson, C.; Goodin, C.; Doude, M.; Carruth, D.W. Analysis of dual lidar placement for off-road autonomy using MAVS. In

Proceedings of the 2018 World Symposium on Digital Intelligence for Systems and Machines, Košice, Slovakia, 23–25 August
2018; pp. 137–142.

28. Foroutan, M.; Tian, W.; Goodin, C.T. Assessing Impact of Understory Vegetation Density on Solid Obstacle Detection for Off-Road
Autonomous Ground Vehicles. ASME Lett. Dyn. Syst. Control 2020, 1, 021008. [CrossRef]

29. Perlin, K. Improving Noise. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques,
San Antonio, TX, USA, 23–26 July 2002; pp. 681–682.

30. Lane, B.; Prusinkiewicz, P. Generating Spatial Distributions for Multilevel Models of Plant Communities. Graph. Interface 2002,
69–87.

31. Kajiya, J.T. The Rendering Equation. In Proceedings of the 13th Annual Conference on Computer Graphics and Interactive
Techniques, Dallas, TX, USA, 18–22 August 1986; pp. 143–150.

32. Jensen, H.W. Importance Drivin Path Tracing Using the Photon Map. In Eurographics Workshop on Rendering Techniques; Springer:
Vienna, Austria, 1995; pp. 326–335.

33. Hosek, L.; Wilkie, A. An Analytic Model for Full Spectral Sky-dome Radiance. ACM Trans. Graph. (TOG) 2012, 31, 1–9. [CrossRef]
34. Zhang, Z. Flexible Camera Calibration by Viewing a Plane from Unknown Orientations. In Proceedings of the Seventh IEEE

International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; pp. 666–673.
35. Heikkila, J.; Silven, O. A four-step camera calibration procedure with implicit image correction. In Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, Kerkyra, Greece, 20–27 September 1997; pp.
1106–1112.

36. Intel. Open Image Denoise. Retrieved from Intel Overview. 2022. Available online: https://www.openimagedenoise.org/
(accessed on 9 December 2022).

37. MATLAB. Image Labeler. Retrieved from MATLAB Help Center. 2020. Available online: https://www.mathworks.com/help/
vision/ref/imagelabeler-app.html (accessed on 1 March 2021).

http://doi.org/10.1016/j.swevo.2021.100864
http://doi.org/10.1109/TPAMI.2022.3186876
http://doi.org/10.1016/j.compeleceng.2022.107819
http://doi.org/10.1109/ACCESS.2022.3180725
http://doi.org/10.1109/TII.2022.3220889
http://doi.org/10.3390/electronics11193022
http://doi.org/10.1109/TKDE.2020.2970044
http://doi.org/10.1007/s11432-021-3348-6
http://doi.org/10.1109/TSMC.2019.2957386
http://doi.org/10.1145/3072959.3073637
http://doi.org/10.3390/app12168261
http://doi.org/10.1109/TIP.2022.3202367
http://doi.org/10.1109/TNNLS.2022.3162301
http://doi.org/10.1115/1.4047816
http://doi.org/10.1145/2185520.2185591
https://www.openimagedenoise.org/
https://www.mathworks.com/help/vision/ref/imagelabeler-app.html
https://www.mathworks.com/help/vision/ref/imagelabeler-app.html

Appl. Sci. 2023, 13, 131 14 of 14

38. Sharma, S.; Goodin, C.; Doude, M.; Hudson, C.; Carruth, D.; Tang, B.; Ball, J.E. Understanding How Rain Affects Semantic
Segmentation Algorithm Performance; SAE Technical Paper; SAE: Detroit, MI, USA, 2020; 2020-01-0092.

39. He, X.; Zhao, K.; Chu, X. AutoML: A Survey of the State-of-the-Art. Knowl.-Based Syst. 2020, 212, 106622. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.knosys.2020.106622

	Introduction
	Related Work
	Automated Data-Generation and Labeling
	Scene Generation
	Radiative Transfer
	Camera Simulation

	Methods for Generating Randomized UAV Images
	Real Data
	Simulated Data
	Scene, Environment, and Camera Sampling
	Simulated Camera
	Denoising
	Results

	Environment Features for Labeling and Feature Classifications
	Object Detection Modeling
	Conclusions
	References

