iriciedl applied
e sciences

Article

MSDeveloper: A Variability-Guided Methodology for
Microservice-Based Development

Betul Kuruoglu Dolu %*

check for
updates

Citation: Kuruoglu Dolu, B.;
Cetinkaya, A.; Kaya, M.C.; Nazlioglu,
S.; Dogru, A.H. MSDeveloper: A
Variability-Guided Methodology for
Microservice-Based Development.
Appl. Sci. 2022,12,11439. https:/ /
doi.org/10.3390/app122211439

Academic Editors: Sanjay Misra,
Robertas Damasevi¢ius and Bharti

Suri

Received: 18 October 2022
Accepted: 8 November 2022
Published: 11 November 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Anil Cetinkaya 23

4

, M. Cagri Kaya >*(, Selma Nazlioglu > and Ali H. Dogru °

ASELSAN, Ankara 06200, Ttirkiye

Department of Computer Engineering, Middle East Technical University, Ankara 06800, Tiirkiye
Department of Computer Engineering, Iskenderun Technical University (ISTE), Iskenderun 31200, Tiirkiye
Department of Computer Engineering, Ardahan University, Ardahan 75002, Tiirkiye

Department of Software Engineering, Atilim University, Ankara 06830, Ttiirkiye

Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA
Correspondence: bkdolu@aselsan.com.tr or betul kuruoglu@ceng.metu.edu.tr

G R W N =

Abstract: This article presents a microservice-based development approach, MSDeveloper (Microser-
vices Developer), employing variability management for product configuration through a low-code
development environment. The purpose of this approach is to offer a general-purpose environ-
ment for the easier development of families of products for different domains: a domain-oriented
development environment is suggested, where domain developers and product developers can
utilize the environment as a software ecosystem. Thus, genericity is offered through supporting
different domains. A domain is populated with feature and process models and microservices in
a layered architecture. Feature models drive the product configuration, which affects the process
model and the microservice layer. An experimental study was conducted to validate the applica-
bility of the approach and the usability of the development environment. Students from different
courses were assigned system modeling projects where they utilized helper tools supporting the
provided methodology. Furthermore, professional software developers were consulted about this
recommended domain-oriented development environment. Feedback from student projects and
professionals’ remarks are analyzed and discussed.

Keywords: low-code development; microservices architecture; model-driven engineering; software
development; variability modeling; process modeling

1. Introduction

With the changing world, software is rapidly being included in every aspect of our
lives in an indispensable way. Therefore, low-cost, consistent, error-free, and user-friendly
software production has become very important. Low-code development intends to serve
these purposes and allows the fast development of products supported by visual modeling
that will achieve needs by writing little to no code [1]. It is a development approach
that responds quickly to customers’ needs with reduced costs. However, most of the
existing studies in this field are tool-centric, references are scarce [2] and less inclusive
about conceptual frameworks, and are methodologies especially lacking.

In the world of software development, which transforms, develops, and evolves every
day, software development approaches are also being improved, renewed, and expanded.
With a background of almost 10 years, low-code development is a software development
approach that has become quite popular. Its practical use is supported by visual modeling,
which allows quick development, especially leveraging on mature domains with low
costs. Low-code development environments are easy to use in a product-oriented way,
even for users without a programming background, which relieves them from mundane
“infrastructural” tasks. These environments are being further established in the IT sector
day by day [2].

Appl. Sci. 2022, 12, 11439. https:/ /doi.org/10.3390/app122211439

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122211439
https://doi.org/10.3390/app122211439
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3662-642X
https://orcid.org/0000-0001-7192-9894
https://orcid.org/0000-0001-8924-0630
https://orcid.org/0000-0001-8609-5714
https://doi.org/10.3390/app122211439
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122211439?type=check_update&version=3

Appl. Sci. 2022,12, 11439

20f19

The expectations sound ambitious. We therefore impose some restrictions. First,
the developers who will maintain coding phases in low-code development environments
should be advanced computer users—preferably developers. Then, the development envi-
ronments should be domain-oriented. This requirement relieves the developers from many
development issues that are “infrastructural”. For any application field, the development
domain should be prepared with inclusive models and executable code for the common
functions in that field. We refer to such a domain as mature [3] if there is no unwritten code
left for the functions required in that field. Such code could take the form of components or
microservices. This expectation is not unrealistic for today.

There are many no-code and low-code development environments that are gathering
bigger developer communities. Owing to the long past of “faster development” initia-
tives, there are some common patterns of use and feel for such tools. Earlier Integrated
Development Environments (IDE) offered drag-and-drop facilities for the “low-code” devel-
opment of graphical user interfaces (GUI). Later, the “widgets” used in those environments
were made database-aware. Additionally, earlier desktop database management systems
were supported with such environments to quickly configure applications with GUI and
databases glued with some procedural code and SQL.

Some enterprises such as Creatio (formerly bpm’online) [4], Pega [5], Salesforce [6],
and Zoho [7] specialised in Customer Relationship Management (CRM) solutions, and
incorporated low-code development extensions within their products via the orchestration
of processes in their business process model functionalities [8]. There are also low-code
tools prepared for a specific domain, such as IoT, as researched in ref. [9].

The influence of such earlier successful tools can be observed in modern approaches.
We are, however, seeking a more systematic approach for related methodologies and
supporting tools [10-12]. The existing tools are usually preferred for specific domains.
If a more generic approach was desired, software ecosystems could probably be used in
the definition of various domains, making possible the configuration of products in such
domains. For genericity, the infrastructure for development should allow the definition of
different domains (domain engineering), as well as product development. Additionally, a
simple high-level reference architecture would benefit genericity. An ecosystem that allows
the easy definition and instantiation of new domains and products will support continued
infrastructural success and gain wider user communities.

Our vision is to provide a generic approach utilizing the existing experience in many
architectural avenues, such as Service-Oriented Architecture (SoA) and Software Product
Lines (SPL). A more foundational concern has been voiced in the past when program-
ming languages were being discussed for offering generic capabilities: the Bohm Jacopini
Theorem [13] has proven genericity through the minimum requirements for the control
structures to be included in the languages for that matter. They demonstrated the Tur-
ing Machine equivalency. In a similar fashion, fundamental design dimensions in this
research are intended to be addressed for genericity. These dimensions are catered by the
constituents of the modern development approaches organized in our methodology.

This article reports on our ongoing work, which offers graphical modeling environ-
ments for an example application domain (Webinar System) and supports the development
of products without code writing once the developers refine their set of graphical models
(Feature, Variability, and Business Process models) and Microservice Domain Model in
conformance with each other. A two-layer architecture is proposed for accommodating
these models, corresponding to the run-time environment.

The proposed methodology offers a generic environment, which is suitable for defining
different domains, allowing the development of products in a variability-guided manner.
For this approach, variability stands out as the ultimate development concept. Furthermore,
SPLE is expanded to low-code directions, and the expansion bridges these two concepts.

This article is organized as follows: In Section 2, the background information that forms
the basis of our study is presented. In Section 3, studies regarding low-code development
platforms and the modeling approaches of these studies are presented. In Section 4,

Appl. Sci. 2022,12, 11439

30f19

our approach and architectural designs are explained in detail. Section 5 presents our
experimental study conducted for the Webinar Systems domain, the survey we conducted
after the study, and professionals’ remarks about our approach. In Section 6, the analysis we
conducted on the results of the survey is explained. In Section 7, the general applicability
and validity of the approach is discussed in addition to our concluding remarks.

2. Background

SoA has been a widely accepted and employed avenue for developing complex and
distributed applications that usually connect through the Internet. The integration mecha-
nisms supported through process models that are intuitive and graphical actually present
an invaluable approach to development. They leverage the world market of web services
that provide any kind of functionality and that are already written, tested, and published.
The need to create more flexible and scalable systems leads to moving attention from
developing monolithic applications to independently functioning microservices. With
each managing their own data storage, microservices, which are potentially written in
different languages, use lightweight protocols, such as HTTP and REST. As the focus is
independent deployment, scaling, and testing, microservices require a bare minimum
centralized management [14,15].

Our previous work focused mainly on the structure dimension [16], which actually
corresponds to the decomposition view of Software Architecture approaches. We later real-
ized that our research neglected an analysis of an important issue—dynamic modeling.This
need has been addressed in UML through sequence diagrams or activity diagrams and in
SoA by the process model. Another very powerful concept offered by the SPL approaches,
namely the domain conceptions presented through feature models and variability, has also
been inspirational.

SPL constitutes an environment for the construction of a set of software systems from
core assets by feature management, thus making it easier to satisfy specific requirements.
Common assets lie at the core of the development; therefore, the handling of these assets is
crucial, in addition to variability management in the creation of a final product. Ref. [17]
specified a requirement for a framework with two distinct processes: domain engineering
and application engineering, with the first one being for the characterization and real-
ization of necessary assets and the latter for the production of distinctive applications
under the guidance of variability. A final product is created as a result of systematic deci-
sions on variability resolution throughout the development phases. Each design decision
corresponds to a variation point by incorporating/eliminating features. Delayed design
decisions improve the efficiency of SPL by allowing the core assets to be used along with
changing requirements [18]. This can be supported through variability, especially with later
resolution times.

Some early approaches have been used for utilizing domain feature models in order to
resolve variability; however, they were complicated because variability was accommodated
in an already populated feature model. The Orthogonal Variability Model (OVM) [17] and
Covamof [19] are some of the pioneering variability models that stand alone outside of
feature models.

In an effort to orchestrate these concepts in the environments to further develop
complex software more easily, some research was conducted regarding methodology.
The decomposition of the structural view governing the components or the web services
was later supported by configuring a process model for the integration and flow-control
specifications. The latter addition enabled the ordering of method invocations to complete
the definition of executable systems. Although today no development process should
dictate a linear order of tasks, such as that of Waterfall, some priority for the modeling
dimensions that would correspond to the abstraction levels of design was necessary. To
support our expectations, the limited studies conducted in Ref. [20] showed that the process
model can have a priority over the component model, as has practically been the case in

Appl. Sci. 2022,12, 11439

40f19

the SoA world, in which an implied two-level architecture is the hidden de facto standard:
A process model at the top commands the web services at the bottom.

The desire to support many different ecosystem domains through potentially different
communities for both defining and utilization (through no/low-code development) neces-
sitates us to have command over the domain conceptions. That is why SPL was exploited
for feature models and variability, ripening our environment. Variability will be the sole
first-class citizen, probably accounting for the vast majority of the specification consid-
erations.For this reason, we tried to align all the models under variability and support
the microservices with domain-specific connector utilities [10] that play the final roles in
configuring with respect to variability.

3. Related Work

In this section, we present some work directly related with no- and low-code software
development, as well as some related research. BPMN and SPL fields are considered
especially related in our work. Additionally related is the platform concept, which can be
offered as a cloud service to support ecosystem capabilities.

Increasing demand in the software field has led to a never-ending search for the
next development methodology. Increasing demand for complex systems composed of
heterogeneous components increased the requirements for reuse and automation to meet
requirements. Low-code development is a fairly new topic, and according to reports
published by Gartner [8] and Forrester [21], it is expected to gain significant popularity over
the next few years. The core principles are adopted from Model-Driven Engineering (MDE)
approaches [22]. Waszkowski presents Aurea BPM that employs BPMN [1]. The target is
to provide automation solutions for manufacturing. Model-driven software development,
rapid application development, automatic code generation, and visual programming are
presented as approaches that can lead to the creation of low-code programming.

A conceptual comparative framework was proposed, and a technical survey is pre-
sented in Ref. [2]. Eight low-code development platforms (LCDP) are considered as market
leaders based on Refs. [8,21]: Appian [23], Google App Maker (this service has been shut
down since 15 April 2020), Kissflow [24], Mendix [25], MS Power Apps [26], Salesforce
Platform [6], Outsystems [27], and Zoho Creator [7]. All of the overviewed LCDPs utilized
a process designer and supported workflow management in their operations. However,
only Kissflow, Salesforce App Cloud, and Zoho Creator allow users to configure workflows
according to their needs.

4. MSDeveloper: A Variability-Guided Methodology

The proposed methodology, MSDeveloper supports the development of software
systems in a top-down approach. This approach is suggested with a layered model, where
the process model is the model at the top layer and the structural model is at the bottom
layer [20]. Both process and structural models are compliant with the variability model.
The process model located at the higher level and the web services at the bottom level
point to the de facto architecture in SoA. Additionally, conventional development based
on UML starts with the functional dimension modeled with the use case diagrams. These
widely practiced approaches, along with our research, suggest a model hierarchy where
processes are at the top [20]. Rather than organizing our architecture based on structural
components, such as GUI and data, etc., we prefer to process the top-level model, followed
by the low-level executional models, which are microservices. These lower-level units also
accommodate data structures to account for the data dimension. Following our discussion
in the introduction related to genericity, fundamental design dimensions are considered in
the shaping of the proposed reference architecture in Figure 1.

Appl. Sci. 2022,12, 11439

50f19

Variability Model

Process Model

|
==l

Web Services
Components

Microservices

Structural Model

Figure 1. The Reference Model of MSDeveloper.

The modeling of function, data, and control support executability (Turing Machine
equivalency) concerns, whereas structure supports understandability, hence the manage-
ability of the development. These could be referred to as “3+1 dimensions of design”.
Table 1 lists the mapping of those dimensions to development structures. Furthermore,
the process assumes control responsibilities at a higher (coordination) level. Since we are
not interested in coding-level control issues, such as inside the methods, we have a better
support in this dimension through process modeling.

Table 1. Mapping of dimensions to development structures.

Design Dimension Architecture Element
Control Process model (BPMN)
Function Microservice methods
Data Microservice attributes
Structure Two-layered architecture

It should be noted here that the microservice philosophy suggests a single responsi-
bility per service, practically resulting in simpler and smaller services. The orchestration
assumes more duties because services are simpler. Consequently, the reference architecture
does not allocate complex structures for the data and the function dimensions.

The suggested method requires a mature domain to be applied. Reusing existing code
with a new configuration or generating new code from graphical models makes mature
domains [3] possible, in which all common functionality and data were created earlier by
domain experts. A software ecosystem can be created that supports different domains. In
the suggested method, a domain in which applications will be created is assumed to be
mature.Each domain in the ecosystem includes its own template process model for future
applications. This step corresponds to the domain engineering stage of Software Product
Line Engineering (SPLE). Additionally, developers will be able to use pre-implemented

Appl. Sci. 2022,12, 11439

6 of 19

components in their designs or create their own based on their preferences. This step
corresponds to the application engineering stage of the SPLE. Based on the selected domain,
users will be presented with a feature model, in addition to a variability and a process
model that correspond to the feature model.

Users will be selecting the features that will be included in the final product from
the variability model. Based on these selections, the process model and its required
microservices will be automatically configured to incorporate the selected features.

The emphasis here is on product engineering. Preparing a domain in the ecosystem
consists of the activities given in Table 2, where the order is not imposed. It is suggested to
start with the domain feature model and a variability model. Rather than taking one model
at a time in a linear process, all models can be developed simultaneously. Simultaneous
top-down development can be supported by the Axiomatic Design [28] approach for the
development of complex domains.

In a similar fashion, the product development is also suggested to start top-down
and continue with a free-ordered process to modify any model any time. “Acquire Any
Missing Services” activity in the product development steps will be required in the case of
a non-mature domain.

Table 2. Domain and product development steps.

Domain Development Steps Product Development Steps

1. Develop feature model; 1. Resolve variabilities;

2. Develop variability model; 2. Instantiate the process model;

3. Develop base process; 3. Instantiate the microservices model;
4. Develop optional processes; a. Acquire any missing services.

5. Acquire microservices.

Methodological Principles

In our work, we propose a methodology that can be used as a low-code development
environment for mature domains, where the success largely depends on the maturity of
domain models. The experience provided in SPL practices relieves us from the redundant
declarations and definitions that took place in previous products. These are the fruits of
domain orientation. Now, the low-code developers can be offered variations corresponding
to a world of known products rather than the definition of requirements from scratch,
which are often abstract.

There are four architectural units in MSDeveloper that are mostly defined in the
domain engineering that takes place before the low-code development. Then, these models
are used for the development of new applications. These units are the feature, variability,
process, and microservice models. Additionally, there is a fifth unit, which was created
during low-code product development: Graphical User Interface (GUI). This research
excluded the GUI constituent because it has been previously addressed in depth by many
applications and will be incorporated to our framework later. The framework supports the
creation of different domains, and the presence of communities that can define different
domains will enable the environment to support low-code development as a general
approach for application development. We often use the word domain to define the set of
four models that are defined for a specific application field. Figure 2 depicts the architectural
components and their usage in MSDeveloper.

Appl. Sci. 2022,12, 11439

7 of 19

Domain Engineer

Fo

Framework

---------- |

Domain 1: Domain 2: Domain 3:
Webinar Systems

o [
o e
|

Citizen Developer Webinar 1 ’ Webinar 2 ’ ’ ’

Legends: FM: Feature Model, VM: Variability Model,

PM: Process Model, MM: Microservice Model

Figure 2. Usage of architectural components in MSDeveloper.

The transition from feature-model layer to process-model layer and the transition from

the process-model layer to the microservice layer are explained below.

Domain engineering efforts are presented below, and are organized with respect to

the corresponding models:

A variability model (VM) is created (if necessary, from a feature model), as shown
in Figure 3. The variability model is prepared according to the optional features and
constraints that are defined in the feature model. All mandatory features that are
included in every product are represented in the base feature model;

A complete process model (PM) is prepared with Business Process Modeling Notation
(BPMN), which will include every feature. This process model corresponds to the
domain. The tasks, gateways, and sequence flows associated with each optionally
defined feature are extracted from this main BPMN and kept as a partial BPMN for
this optional feature. This operation is performed for all optional features. As a result,
base (covering all mandatory features) and partial BPMNs for all optional features
are prepared. Later, for the low-code development of the product corresponding to
the product engineering part, according to the optional feature selections made in the
variability model, the relevant tasks, gateways, and sequence flows of selected optional
features are added to the base BPMN model. As a result, a product-specific BPMN
model will be instantiated according to the changes made to the variability model;
A microservice model (MM) layer is prepared to cover all the related features. A
microservice may be required to be developed for each feature (some features may only
correspond to processes). While the microservices prepared for mandatory features
create a base microservice model, the microservices prepared for each optional feature
create optional microservices. According to the optional feature selections made
in the variability model, the relevant microservices and base microservice model’s
(mandatory features’) microservices are prepared for method calls;

The optional microservice methods that are linked directly to an optional feature are
associated to the relevant task(s) located in that feature’s partial BPMN. The mandatory
microservice methods that are linked directly to a mandatory feature are associated
with the tasks located in the base BPMN. As a result, according to the changes made to
the variability model, the microservice model methods are also prepared to be called
by the BPMN.

Appl. Sci. 2022,12, 11439

8of 19

Feature Variability Base Feature
Model Model Model

Process
Model

L Base BPMN

Microservice
Model Optional BN Microservice

Microservices

v

Figure 3. Models used in MSDeveloper.

MSDeveloper is shaped to carry the following properties:

* The environment is flexible and supports feature-based development;

* Variability resolution and related constraints propagate through all the models;

* BPMN is automatically configured as a result of variability resolution;

* Performing the microservice method through the BPMN provides the final steps
in executability.

Product engineering is the part that corresponds more to low-code development, espe-
cially if a mature domain exists. A methodological flow of activities can also be presented
for this task. However, the flow of activities does not prescribe a strict order. A natural start
from higher-level abstraction models, and the development activities concerning them, are
natural. As the inclusive feedback arrows imply, modifying any model after any assessment
is possible. MSDeveloper adapts the activity flow resembling the low-code methodology
for the product development in Figure 4.

Resolve
variability
Assess
Process Model

Modify
Process Model
Assess
uServices Model

Modify
uServices Model '
Assess
prototype

Figure 4. The low-code development methodology.

Consistency is an important criterion for both domain engineering and product engi-
neering outcomes. As stated above, variability resolution and related constraints propagate
through all the models, which supports the consistency of the output. After variability
decisions, which are handled as a product engineering phase, the temporary outcome in

Appl. Sci. 2022,12, 11439

90f19

the process and the microservice models can be reviewed. Until the desired consistency is
achieved, the developers can iterate through the activities of variability modifications and
processes and microservice model inspections and modifications.

5. Experimental Study

In this section, we present our experimental study for evaluating the proposed method-
ology with student projects. Students used supportive prototype tools to model target
systems by adhering to the methodology.

5.1. Development Environment

We set up an environment where Eclipse IDE for Java Developers (includes Incubating
components) version December 2020 (4.18.0) is employed with the following plugins:

. FeaturelDE Plugin, Version: 3.7.0.202010141034;
e BPMN Plugin, Version: 1.5.2.SNAPSHOT-v20200602-1600-B1;
¢ Maven Plugin, Version: 1.17.1.20201207-1112

Moreover, we developed domain-independent and generic jar files that allow tran-
sitions (from feature model to BPMN and from BPMN to microservice method calls) and
domain-related SpringBoot applications. Software structures for the selected domain and
webinar system (feature model, auto-generated variability model, process model, and
microservice model) are available in Ref. [29].

5.2. Selected Domain: Webinar System

Webinar is a combination of the words “web” and “seminar”. It is used for systems
that allow users to organize and participate in a video workshop, lecture, or presentation
in an online environment. With the current COVID-19, such systems have become a part of
our lives. Due to its popularity, we chose webinar systems for this experiment’s domain.

Our chosen feature set for the webinar system contains the following features: live and
pre-recorded video streaming, mobile accessibility, chat messaging, file sharing capabilities,
virtual whiteboards, shared screens, virtual waiting rooms, breakout rooms, pass-presenter
tools, polling tools, app integration, audio and video recording, in-app conference registra-
tion, automated reminders, Q and A tools, engagement analysis for attendance and lead
generation, in-app offers, integration with live-streaming social media platforms, active
speaker view, Al and gamification features, and backgrounds to create a branded virtual
environment [30].

5.3. The Experiment: Webinar System Development

We conducted the experimental study in two phases. We asked the participants to
complete the tasks given in Table 3 for Phase 1 and Phase 2.

Table 3. The experimental study phases.

Phase 1

Phase 2

Domain Engineering Stages:

Domain Engineering Stages:

-Preparation of the feature model; -Preparation of the domain-specific methods;

-Preparation of the variability model; -Invocation of all the related methods over the base BPMN;

-Preparation of the complete BPMN; -Invocation of the related methods from the partial BPMNss;

-Preparation of the base BPMN; Product development stages;

-Preparation of the partial BPMNSs. -Selection of the variability model and automatic development of the product;

-Execution of the auto-generated product-specific BPMN model;
-Observation of correctness in the execution of related methods.

5.3.1. Participants

We conducted the experiment at the Department of Computer Engineering of Middle
East Technical University during the 20202021 spring semester; a graduate class (CENG551

Appl. Sci. 2022,12, 11439

10 of 19

System Development with Abstract Design) and a senior class (CENG454 Introduction to
Software Architecture) participated in this experiment. We asked students to form groups of
two or three students. We gave groups a document [31] that included a system specification
for the webinar system’s design, along with the user manual for the development platform
to be used in this experiment. The manual included details about the installed plugins in
the provided development environment and general instructions about how to operate
the environment.

After the completion of the project, we asked participants to answer some questions
about their experience, provided development environment, and the system they designed.
We conducted this questionnaire through the Internet. A total of 30 students participated
in the questionnaire. The survey questions are given in Appendix A and the answers are
presented in Ref. [32].

5.3.2. Phase 1

We introduced the development setting to the developers before sharing the experi-
mental webinar system domain. The shared feature model, which takes place in the shared
workspace, is depicted in Figure 5, the shared variability model (which automatically
performs all the controls regarding the features and constraints) is represented in Figure 6,
and the shared BPMN model is shown in Figure 7.

WebinarPlatform

Webinar

Seminars UserManagement VirtualRooms Tools Platform
qu o/\ . /\ c/\ , A l
Live F F p: Login gl BreakO QA_ Cl

UserRoles LiveStreaming

ActiveSpeaker Listener PassPresenter

LiveStreaming < Live

Live v PreRecorded

Figure 5. Webinar system domain feature model.

We asked developers to enrich the webinar system domain with optional and manda-
tory features to develop it towards a mature domain. The participants added the features
they deemed necessary and enhanced the feature model by defining the constraints among
the features. In this stage, they were able to perform visual modeling by using the drag-
and-drop capability of the framework. Then, they prepared the variability model through
support from the facility provided by the framework. A representation of the variability
model is shown in Figure 6. After that, they prepared the base and the partial BPMNs for
each optional feature.

Appl. Sci. 2022,12, 11439

11 0f 19

Start Event 1

= v WebinarPlatform
v Webinar
“ Seminars
Live
PreRecorded
WhiteBoard

<J1]1

' Participants
~ UserRoles
ActiveSpeaker
Listener
PassPresenter
“ UserManagement
Registration
Login
> VirtualRooms
Tools
Q_A_
ChatMessaging
' Platform

' SocialMedialntegration

000 00 00030D0DDD

LiveStreaming

Figure 6. Variability model of webinar system domain.

After these preparatory stages, when the developers generated the product, they were
able to observe that the resultant BPMN diagram was drawn according to the selections
made in the variability model. The selected features were linked with corresponding
process assets in the BPMN model. Additionally, we excluded assets that were directly
linked with the unselected features from the BPMN Model.

What is
R

Do you want to
registeNe-a
Seminar Yes

Reglster to a Seminar

Time Y
Senj

Show BreakOut Rooms

Figure 7. BPMN of webinar system domain.

5.3.3. Phase 2

four User
e

Pass Presenter

iﬂeﬂd to Seminar as

T Speaker

Start Seminar < X]
No Ustener
End Event 1

Listener

Pass Presenter

Keep Records

inend to Seminar as

e

i!leﬂd to Seminar as

)

ﬁmsee[j

—

End Event 2

K’m\sr
ar

We asked developers to perform method calls over the scripts corresponding to the
tasks included in the BPMN. We asked them to call these methods by writing Java methods
within these scripts. After, we asked them to add method calls to the partial BPMNs. As a
result, the choices to be made on the variability model have a direct effect on the BPMN

Appl. Sci. 2022,12, 11439

12 0of 19

and the methods called over the BPMN. In this phase participants used methods from Java
classes that can directly represent a set of microservices.

In the final stage, we asked the developers to generate products with different config-
urations on the development environment they prepared for the webinar system. In this
stage, they experienced the ability to produce products that differ according to the choices
they made simply by updating the variability model.

6. Results
6.1. Experimental Study Results

After the completion of the project, the participants were asked to fill out the survey
questions. We analyzed the information we gathered from the participants via question-
naires. The results of the surveys are analyzed below. It should be noted that these
participants are not professionals. This experiment group with no familiarity with low-code
development rated their experience on a scale of 1 to 10, 1 being the hardest and 10 being
the easiest, and they were asked to answer questions.

We can deduce from the following results stated in Figure 8 that half of the participants
who have never developed in a low-code development environment do not find this envi-
ronment very easy. On the other hand, it is seen that 64% of the participants have a positive
opinion about the framework that we have prepared. Moreover, 86% of respondents think
that they understood the framework well. This is encouraging feedback that suggested
that we were able to explain our methodology and tools to the participants well. We see
that after the domain-oriented development processes, 79% of them find it easy to generate
the products through different configurations corresponding to low-code development.

How would you rate the How would you rate the How would you rate the How well did you
ease of using the Low ease of developing a ease of producing understand the
Code Development? project on this products on the project framework?

Framework? environment they
developed?

<5 m>=5

50%

21%

79%

<5 m>=5 <5 m>=5 n<5 m>=5
Figure 8. Easiness of the framework.

When we asked the participants about their experiences regarding the transitions
among models, we encountered the results in Figure 9. The answers we obtained are not
very surprising. Transitions between the feature model and BPMN model cover the creation
of the complete BPMN and the preparation of the base and partial BPMNs. In summary, it
includes drawing a business process model covering the entire domain and more. For this
reason, only 57% of people think that this transition is easy. On the other hand, operations
involving method calls from the BPMN model were found easy by 86%. We think that this
is due to the fact that method calls from within the tasks defined in the BPMN model can
be made through the easy-to-use GUI of the framework.

Appl. Sci. 2022,12, 11439

13 0of 19

How would you rate the easiness How would you rate the
of connecting Feature Model easiness of connecting BPMN
with BPMN by using variability with method calls by using
management? variability management?

u<5 m>=5 <5 m>=5

Figure 9. Questions about transitions between models and the responses .

One of the things we were most curious about during the experiment was the time
spent. The answers we received to the questions we asked for this purpose are given in
Figure 10. A total of 62% of respondents said they spent less than or equal to 10 h developing
their webinar system domain. When generating the products with different configurations,
86% explained that they spent less than or equal to 6 h. We inferred that the time spent here
is due to an immature domain because the framework completes the creation process of
products developed in different configurations in milliseconds. However, the participants,
who probably did not have a chance to develop a mature domain, encountered errors,
corrections, etc. So, this step may have taken a long time.

How many hours did you spend How many hours did you spend
for developing the project? for generating products with
different configurations?

m <=10 Hours = >10 Hours m <=6 Hours m> 6 Hours

Figure 10. Questions about required time and the responses.

6.2. Professionals” Remarks

The methodology and the framework were also shared with the professionals. In a
video, the framework was introduced, and the processes of adding an optional feature on a
mature domain and the effects of this feature addition on the feature, variability, and the
BPMN models, as well as the method calls, are shown [33].

After watching the video, the professionals were asked to answer some questions about
their opinions. This survey was conducted using the Internet. A total of 32 professionals
participated in the survey. The survey questions are given in Appendix B and the answers
are presented in [34]. The profile of the professionals (their work experience, company
profile, and current working type) is shown in Figure 11.

Appl. Sci. 2022,12, 11439 14 of 19

Work Experience Company Profile Product/Project Basis
3%

22%
66%

m1-5 Years m46-10 Years m 11+ Years = 1-50 Employees # 51-100 Employees Product Basis = Project Basis
100-1000 Employees = 1000+ Employees

Figure 11. Profile of the professionals.

In Figure 12, we see the answers given by the product-based working professionals
regarding questions related with the products they are working on. When we ask the
question “Are you maintaining a single version (the most recent version) of the product
you are working on?”, 69% of them answered “No, Multiple Versions”. That means most
of them maintain the products with different configurations. Additionally, 69% of them
find it difficult to see the overall picture and 92% of them have difficulties because of the
size of the product, especially when they want to add a new feature to the product. After
watching the video that we introduced in our methodology on the framework, 100% of
them answered “Yes” to the question “Specific to the field you are working in, would a
Framework be useful?”.

Are you maintaining « Do you find it difficult When you want to add Specific to the field you

single version (the most to see the overall a new feature to the are working in, would a
recent version) of the picture of the product product, do you have Framework be useful?
product you are you are working on? difficulties because of
working on? the size of the product?
0%
" Neo = Sometimes mYes u N
= One Version ® Multiple Versions " Yes mNo i es & No
u Often u Every time

Figure 12. Product-based working professionals” answers.

In Figure 13, we see the answers given by all the professionals about the easiness
of the framework in different perspectives, including developing a domain, creating a
product, adding a feature, connecting a feature model with BPMN, and connecting BPMN
with method calls. The evaluations of professionals with an average of 7.73 years of work
experience are around 8 points, and these responses are greater than students’ evaluations.

Appl. Sci. 2022,12, 11439

15 0f 19

m O N A O

o K bk O

o Ll Ill |I| Ill |I.
6 7 8 9 10

5
Easiness of Using the Framework Easiness of Developing a Domain
m Easiness of Creafing a Product m Easiness of Adding a Feature
B Easiness of Connecting FM with BPMN Easiness of Connecting BPMMN with Method Calls

Figure 13. Easiness of the framework.

An open-ended question is also asked: “What are your views on the suitability of this

methodology for professional life?”. Some answers are listed below:

In general, it will be useful for the structural standardization of the code. Models cre-
ated by experienced teams will automatically ensure that less experienced employees
stay within the quality constraints;

It can be used easily and effectively in many large and small projects, and the time it
saves in the development process cannot be underestimated;

Low-code libraries make software development processes much easier and shorter
today. Low-code development will become much more widespread in the future of
the rapidly developing software industry;

In general, the requirements are analyzed, a software/system is designed on top of
it, and the whole development process continues, both waterfall and iterative. The
Variability-Guided Development method seems to be able to parallelize both high- and
low-level designs in waterfall or iterative processes. At the same time, it is a method
that will minimize the workload when a new project is desired with the capabilities
already in the product pool. It has an important place in creating backlogs for new
features that need to be implemented. When Software Product Line is considered,
maybe it will be helpful to deliver a project without the need for a developer;

It can minimize the deficiencies that may occur during the manual management of
multiple versions and the varying configurations of these versions. In addition, it will
reduce the time spent managing the configurations with each changing version;

It is very logical and solution-oriented because the project I am working on needs
a framework just like this one. If given the opportunity and time, I would consider
using it;

It will be very useful, and it will save a lot of time since there are very similar projects
with different configurations and code bases.

7. Discussion and Conclusions

The experiments and expert opinions support the usability of our proposal. The

claim to offer a generic capability for the development of professional software would be
validated through further experience, especially in industrial media. Expected experience
is the definition of various domains and the creation of products in commercial settings.
Nevertheless the conducted study provides a proof of concept. Our future work will
continue in this direction to gain wider acceptance.

Appl. Sci. 2022,12, 11439

16 of 19

It was stated in the previous section that 100% of the participating professionals would
find such a framework useful. Considering the difficulties of creating a mature domain in
the professional world, it will be necessary to facilitate the domain development process.
We aim to find new fields of study for the suitability of the domain development process
with agile approaches, for example feature-driven development.

All features and constraints depend on the feature model, and all other layers are
developed in accordance with corresponding constraints. This makes the whole process
easier. For example, the function of a microservice, and whether it will be mandatory or
optional, are very clearly revealed before starting its development. This situation is similar
for the BPMN-model layer.

The framework we developed in academic settings is still in its infancy. However,
by understanding the literature, examining the previously developed tools in detail, and
by correctly understanding the needs of users, we aim to prepare a tool that is more
useful and beneficial. According to the survey results, even though it is a new framework,
the framework was found to be useful and promising. In the upcoming period, we will
continue our work by evaluating the feedback we received from the participants and the
remarks of the professionals.

Within the scope of this study, the users who mostly participated in the experiment
with the role of domain developer were asked to prepare partial BPMNs for optional
features during the transition from the feature model to the process model. Considering
that all the other stages were conducted through graphical user interfaces, we can observe
that this is the only part in which the participants were challenged; therefore, there was a
need for an improvement on this matter.

We can conclude that the framework was successful with its low-code development
goal. Microservices were appropriate to support the lower-level layer of the proposed
architecture because of their granularity. We demonstrated the use of the environment for
the product engineering task. However, to complete the spectrum for general-purpose
development, domain engineering tasks also need to be experimented on. Our experimenta-
tion provided a prepared domain; however, the simple mechanisms adopted, while shown
to be suitable, also indicate that effort would be involved in their development—domain
engineering. Nevertheless, future work is required to experiment with this phase.

It is not difficult to realize that the environment is suitable for general purpose devel-
opment. We are planning to continue our work in two avenues: integrating the tools to
achieve a stand-alone and consistent development environment and conduct experimenta-
tions for the domain engineering phase. For this, the project groups will identify different
domains and populate them with feature, process, and microservice models.

Author Contributions: Conceptualization, BK.D., A.C., M.C.K. and A.H.D.; data curation, B.K.D.;
formal analysis, B.K.D.; funding acquisition, B.K.D.; investigation, B.K.D., A.C.,, M.CK. and A HD.;
methodology, B.K.D., A.C,, M.CK,, S.N. and A.H.D.; project administration, B.K.D.; resources, BK.D.;
software, B.K.D.; supervision, A.H.D.; validation, B.K.D., A.C. and A.H.D.; visualization, B.K.D., A.C.
and A.H.D.; writing—original draft, B.K.D., A.C., M.CK,, S.N. and A.H.D.; writing—review and
editing, B.K.D., A.C,, M.C.K,, S.N. and A.H.D. All authors have read and agreed to the published
version of the manuscript.

Funding: The APC was funded by ASELSAN.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: “The development workspace” at https:/ /github.com /betulkuruoglu/
developmentWorkspace (accessed on 7 October 2022).

Conflicts of Interest: Betul Kuruoglu Dolu is employed by ASELSAN.

https://github.com/betulkuruoglu/developmentWorkspace
https://github.com/betulkuruoglu/developmentWorkspace

Appl. Sci. 2022,12, 11439

17 of 19

Abbreviations

The following abbreviations are used in this manuscript:

BPMN Business Process Modeling Notation
CRM Customer Relationship Management
GUI Graphical User Interface

IDE Integrated Development Environment
MM Microservice Model

OVM Orthogonal Variability Model

SoA Service-Oriented Architecture

SPL Software Product Line

SPLE Software Product Line Engineering
VM Variability Model

Appendix A

Framework: Low-code development environment shared with you

Project: Interconnected feature model-configuration-BPMN-method calls

Product: Each “Configuration—BPMN-—Method Calls” after you run your projects by
changing the configuration

1. Complete following fields:

e Course code;
e Group number.

2. Do you have any previous experience on a low-code development environment?
(Answer this question per group member);

3. Onascaleof 1to 10, 1 being the hardest and 10 being the easiest, how would you rate
the easiness of using the framework shared with you?

4. Onascale of 1to 10, 1 being the hardest and 10 being the easiest, how would you rate
the easiness of developing projects using the framework?

5. Onascale of 1 to 10, 1 being the hardest and 10 being the easiest, how would you rate
the easiness of creating a product by changing the feature model configuration?

6. Onascale of 1to 10, 1 being the lowest and 10 being the highest, how well did you
understand the framework?

7. Plugins that offer you a user interface to prepare the feature model and BPMN with
constraints are given in the framework. On a scale of 1 to 10, 1 being the hardest and
10 being the easiest, how would you rate the easiness of creating a feature model and
BPMN by using the Framework?

8. Onascale of 1 to 10, 1 being the hardest and 10 being the easiest, how would you
rate the easiness of switching from feature model to BPMN by using variability
management?

9. On a scale of 1 to 10, 1 being the hardest and 10 being the easiest, how would
you rate the easiness of switching from BPMN to method calls by using variability
management?

10. If you would have to develop similar products by changing the configuration, would
you consider developing them by using a low-code development environment?

11. Specify how many hours you spent:

e For learning the framework;
* For developing the project;
* For creating the product according to a specific configuration.
12. Which features do you think are essential for a webinar system?
13. What do you think about the fidelity of your project? (Fidelity searches for the answer
to the following question: Does the project represent a real webinar system?)

Appl. Sci. 2022,12, 11439 18 of 19

Appendix B

1. What is your current position?

2. How many years of work experience do you have in the information technologies

and software development industry?

In which field(s) did you receive your university degree(s)?

What is the size of your firm (number of employees)?

Are you working on a project or product basis?

Have you taken part in more than one project in the company you work for?

What is the number of projects developed by your company in the field you are

working in?

8. If the number of projects developed by your company in the field you work in is two
or more, what is the percentage of the similarities (area, requirements, coding, testing,
etc.) of these projects?

9. Are you maintaining a single version (the most recent version) of the product you are
working on?

10. Do you find it difficult to see the overall picture of the product you are working on?

11. When you want to add a new feature to the product you are working on, do you have
difficulties due to the size of the product?

12. Would it be useful to have a framework that keeps assets specific to the field you are
working in, such as common requirements, business processes, and code bases, and
allows these assets to be prepared with a common infrastructure?

13. On ascale of 1 to 10, 1 being the hardest and 10 being the easiest, can you evaluate
the easiness of the framework shared with you?

14. On a scale of 1 to 10, 1 being the hardest and 10 being the easiest, can you evaluate
the easiness of developing a domain using the framework shared with you?

15. On ascale of 1 to 10, 1 being the hardest and 10 being the easiest, can you rate the
easiness of creating a product using the framework shared with you?

16. Onascale of 1 to 10, 1 being the hardest and 10 being the easiest, how would you rate
the easiness of creating a feature on this framework?

17. On a scale of 1 to 10, 1 being the hardest and 10 being the easiest, can you eval-
uate the easiness of transitioning from a feature model to BPMN using variability
management?

18. On a scale of 1 to 10, 1 being the hardest and 10 being the easiest, can you rate the
easiness of transitioning from BPMN to method calls?

19. If you need to develop similar products by changing/adding features, would you
consider developing using a low-code development environment?

N oUW

References

1. Waszkowski, R. Low-code platform for automating business processes in manufacturing. IFAC-PapersOnLine 2019, 52, 376-381.
[CrossRef]

2. Sahay, A,; Indamutsa, A.; Di Ruscio, D.; Pierantonio, A. Supporting the understanding and comparison of low-code development
platforms. In Proceedings of the 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
Portoroz, Slovenia, 26-28 August 2020; pp. 171-178.

3. Togay, C.; Dogru, A.H.; Tanik,].U. Systematic component-oriented development with axiomatic design. J. Syst. Softw. 2008,
81, 1803-1815. [CrossRef]

4. Creatio. Creatio Studio Platform Overview. 2022. Available online: https://www.creatio.com/studio (accessed on 25
August 2022).

5. Pega. Pega Platform Overview. Available online: https://www.pega.com/products/platform (accessed on 25 August 2022).

6. Salesforce. Salesforce Platform Overview. 2022. Available online: https://www.salesforce.com/eu/products/platform/
overview/ (accessed on 19 August 2022).

7. Zoho Creator. Zoho Creator Platform Overview. 2022. Available online: https://www.zoho.com/creator/product-overview.
html?src=hdd (accessed on 19 August 2022).

8. Vincent, P; Ilijima, K.; Driver, M.; Wong, J.; Natis, Y. Magic Quadrant for Enterprise Low-Code Application Platforms; Gartner Report;

Gartner, Inc.: Stamford, CT, USA , 2019.

http://doi.org/10.1016/j.ifacol.2019.10.060
http://dx.doi.org/10.1016/j.jss.2007.12.746
https://www.creatio.com/studio
https://www.pega.com/products/platform
https://www.salesforce.com/eu/products/platform/overview/
https://www.salesforce.com/eu/products/platform/overview/
https://www.zoho.com/creator/product-overview.html?src=hdd
https://www.zoho.com/creator/product-overview.html?src=hdd

Appl. Sci. 2022,12, 11439 19 of 19

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

Ihirwe, F,; Di Ruscio, D.; Mazzini, S.; Pierini, P; Pierantonio, A. Low-code engineering for internet of things: A state of research. In
Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings, Virtual, 16-23 October 2020; pp. 1-8.

Kaya, M.C.; Cetinkaya, A.; Dogru, A.H. Off-the-shelf connectors for interdisciplinary components. J. Integr. Des. Process. Sci.
2018, 22, 35-53. [CrossRef]

Kaya, M.C,; Suloglu, S.; Tokdemir, G.; Tekinerdogan, B.; Dogru, A.H. Variability incorporated simultaneous decomposition of
models under structural and procedural views. In Software Engineering for Variability Intensive Systems; Auerbach Publications:
Boca Raton, FL, USA, 2019; pp. 95-115.

Suloglu, S.; Kaya, M.C.; Cetinkaya, A.; Karamanlioglu A.; Dogru, A.H. Cloud-Enabled Domain-Based Software Development. In
Software Engineering in the Era of Cloud Computing; Springer: New York, NY, USA, 2020; pp. 109-130.

Bohm, C.; Jacopini, G. Flow diagrams, Turing machines and languages with only two formation rules. Commun. ACM 1966,
9,366-371. [CrossRef]

Lewis, J.; Fowler, M. Microservices, a Definition of This New Architectural Term. 2014. Available online: https://martinfowler.
com/articles/microservices.html (accessed on 19 August 2022).

Kyle, B. Beyond Buzzwords: A Brief History of Microservices Patterns. 2016. Available online: https://developer.ibm.com/
articles/cl-evolution-microservices-patterns/ (accessed on 19 August 2022).

Dogru, A.H.; Tanik, M.M. A process model for component-oriented software engineering. IEEE Softw. 2003, 20, 34—41. [CrossRef]
Pohl, K.; Bockle, G.; Linden, F. Software Product Line Engineering: Foundations, Principles, and Techniques Springer. 2005.
Available online: https://link.springer.com/book/10.1007/3-540-28901-1 (accessed on 19 August 2022).

Van Gurp, J.; Bosch, J.; Svahnberg, M. On the notion of variability in software product lines. In Proceedings of the Working
IEEE/IFIP Conference on Software Architecture, Amsterdam, The Netherlands, 28-31 August 2001; pp. 45-54.

Sinnema, M.; Deelstra, S.; Nijhuis, J.; Bosch, J. Covamof: A framework for modeling variability in software product families. In
Proceedings of the International Conference on Software Product Lines; Springer: Berlin/Heidelberg, Germany, 2004; pp. 197-213.
Cetinkaya, A.; Suloglu, S.; Cagri Kaya, M.; Karamanlioglu, A.; Tokdemir, G.; Dogru, A.H. An Experimental Study on Decom-
position: Process First or Structure First? In Proceedings of the International Symposium on Business Modeling and Software Design;
Springer: Lisbon, Portugal, 2019; pp. 279-289.

Richardson, C.; Rymer, J.R. Vendor Landscape: The Fractured, Fertile Terrain of Low-Code Application Platforms; FORRESTER:
Cambridge, MA, USA, January 2016.

Basciani, F.; Iovino, L.; Pierantonio, A. MDEForge: An extensible web-based modeling platform. In Proceedings of the
2nd International Workshop on Model-Driven Engineering on and for the Cloud, CloudMDE 2014, Co-located with the 17th
International Conference on Model Driven Engineering Languages and Systems, MoDELS 2014, CEUR-WS, Valencia, Spain, 30
September 2014; Volume 1242, pp. 66-75.

Appian. Appian Platform Overview. 2022. Available online: https://appian.com/platform/overview.html (accessed on 19
August 2022).

Kissflow. Kissflow Platform Overview. 2022. Available online: https://kissflow.com/platform/ (accessed on 19 August 2022).
Mendix. Mendix Platform Overview. 2022. Available online: https://www.mendix.com/low-code-guide/ (accessed on 19
August 2022).

Microsoft Power Apps. Microsoft Power Apps Platform Overview. 2022. Available online: https://powerapps.microsoft.com/
en-us/ (accessed on 19 August 2022).

Outsystems. Outsystems Platform Overview. 2022. Available online: https://www.outsystems.com/ (accessed on 19 August
2022).

Suh, N.P. Axiomatic Design: Advances and Applications; Oxford University Press: New York, NY, USA, 2001.

Dolu, B.K. The Development Workspace. 2022. Available online: https://github.com/betulkuruoglu/developmentWorkspace
(accessed on 7 October 2022).

Webb, T. Best Virtual Conference Platforms for Online Events. 2022. Available online: https://getvoip.com/blog/virtual-
conference-platforms/ (accessed on 19 August 2022).

Cetinkaya, A. Project Specification and Development Platform Manual. 2020. Available online: https://drive.google.com/file/
d/1s]JC27hAGw{BIMpAuV4-cUeGqzbyKOhVEF/ (accessed on 19 August 2022).

Cetinkaya, A. Low-Code Development Environment Survey/Responses. 2020. Available online: https://docs.google.com/
spreadsheets/d/1itrSW4dWq3IUBHEYmQ20kDDUR8m1iWs8oMFN-XcbvPg/ (accessed on 19 August 2022).

Dolu, B.K. Variability-Guided Low-Code Development Environment Introductory Video. 2021. Available online: https:
/ /vimeo.com /664041103 /ea798f30bc (accessed on 19 August 2022).

Dolu, B.K. Low-Code Development Environment Survey/Responses. 2021. Available online: https://docs.google.com/
spreadsheets/d/1BWFIp2CFhmcXRiXqyXQdJayz5IFqMWtMOSF4dU]Jzptl (accessed on 19 August 2022).

http://dx.doi.org/10.3233/JID190003
http://dx.doi.org/10.1145/355592.365646
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://developer.ibm.com/articles/cl-evolution-microservices-patterns/
https://developer.ibm.com/articles/cl-evolution-microservices-patterns/
http://dx.doi.org/10.1109/MS.2003.1184164
https://link.springer.com/book/10.1007/3-540-28901-1
https://appian.com/platform/overview.html
https://kissflow.com/platform/
https://www.mendix.com/low-code-guide/
https://powerapps.microsoft.com/en-us/
https://powerapps.microsoft.com/en-us/
https://www.outsystems.com/
https://github.com/betulkuruoglu/developmentWorkspace
https://getvoip.com/blog/virtual-conference-platforms/
https://getvoip.com/blog/virtual-conference-platforms/
https://drive.google.com/file/d/1sJC27hAGwfBIMpAuV4-cUeGqzbyK0hVF/
https://drive.google.com/file/d/1sJC27hAGwfBIMpAuV4-cUeGqzbyK0hVF/
https://docs.google.com/spreadsheets/d/1itr5W4dWq3lUBHEYmQ2okDDUR8m1iWs8oMFN-XcbvPg/
https://docs.google.com/spreadsheets/d/1itr5W4dWq3lUBHEYmQ2okDDUR8m1iWs8oMFN-XcbvPg/
https://vimeo.com/664041103/ea798f30bc
https://vimeo.com/664041103/ea798f30bc
https://docs.google.com/spreadsheets/d/1BWFIp2CFhmcXRiXqyXQdJayz5IFqMWtM0SF4dUJzptI
https://docs.google.com/spreadsheets/d/1BWFIp2CFhmcXRiXqyXQdJayz5IFqMWtM0SF4dUJzptI

	Introduction
	Background
	Related Work
	MSDeveloper: A Variability-Guided Methodology
	Experimental Study
	Development Environment
	Selected Domain: Webinar System
	The Experiment: Webinar System Development
	Participants
	Phase 1
	Phase 2

	Results
	Experimental Study Results
	Professionals’ Remarks

	Discussion and Conclusions
	Appendix A
	Appendix B
	References

