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Abstract: Image-based rail defect detection could be conceptually defined as an object detection
task in computer vision. However, unlike academic object detection tasks, this practical industrial
application suffers from two unique challenges, including object ambiguity and insufficient annota-
tions. To overcome these challenges, we introduce the pixel-wise attention mechanism to fully exploit
features of annotated defects, and develop a feature augmentation framework to tackle the defect
detection problem. The pixel-wise attention is conducted through a learnable pixel-level similarity
between input and support features to obtain augmented features. These augmented features contain
co-existing information from input images and multi-class support defects. The final output features
are augmented and refined by support features, thus endowing the model to distinguish between
ambiguous defect patterns based on insufficient annotated samples. Experiments on the rail defect
dataset demonstrate that feature augmentation can help balance the sensitivity and robustness of the
model. On our collected dataset with eight defected classes, our algorithm achieves 11.32% higher
mAP@.5 compared with original YOLOV5 and 4.27% higher mAP@.5 compared with Faster R-CNN.

Keywords: object detection; pixel-wise attention; feature augmentation; rail defect

1. Introduction

Discovering defects on rail is the first step for rail health maintenance and is vital
for the safe operation of high speed trains. Recent progress in high-speed photography
technology offers the possibility of capturing real-time rail images from a running train
and further paved the way to solving this practical industrial problem from the perspective
of object detection using computer vision approaches. In computer vision, object detection
approaches based on a deep convolutional neural network (CNN) have achieved great
progress in both accuracy and efficiency [1-3]. Current CNN-based object detection is
mainly built on two alternatives: two-stage methods [4] and one-stage methods [5]. Two-
stage methods achieve high detection accuracy by separately conducting region proposal
and detection process. As a comparison, one-stage detection methods are less accurate but
faster in achieving real-time detection.

In academic research, both two-stage and one-stage methods are usually trained on
large-scale benchmarks such as MS COCO [6] and ImageNet [7], and have been successfully
applied to various tasks, such as defect detection [8,9], medical detection [10,11], etc.
Nevertheless, detecting a defect on the rail image is not as easy as detecting a normal
object on natural images due to the following two reasons. First, the concerned defects
are usually tiny and ambiguous because the images are captured from a running train at
very high speed. Complex illumination environment makes defects look similar to other
non-defect patterns such as dirt or gap. Second, there is a lack of benchmark annotations of
these railway defects and some defects are difficult to distinguish from 2D images. The
insufficient and ambiguous defect images that are substantially different from natural
photos may advise against such pretrain-finetune knowledge transfer.
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On the basis of increasingly extensive research on attentional feature fusion ap-
proaches [12-15], recent detection tasks [16-20] suggested that the idea of exploiting extra
features can potentially improve detection performance, especially with insufficient training
data. In these attempts, extra information are usually encoded into class-wise/channel-wise
feature vectors or pixel-wise relation matrixes for retrieving. However, these methods are
proposed for solving the few-shot learning problem. In this work, we borrow the idea
of the attentional feature augmentation under the fine-tuning strategy to solve the rail
defect detection.

In this paper, we proposed a feature augmentation framework by augmenting input
image feature maps with some support feature maps derived from an extra support image
set. The input image feature maps are obtained by passing the input image through any
backbone neural network which shows no difference than the traditional object detection
approach. The novel part of our model are those augmented feature maps that are extracted
by developing a pixel-wise metric learning model to generate new feature maps via a
query-based attention model. The augmented feature maps bring at least two benefits into
the detection framework. First, they alleviate the disturbances of the noise and ambiguities
on the original input images. The original input image serves as a query to encourage
new feature maps from extra information among those support images. Meanwhile, the
pixel-wise attention model can improve the discriminative ability of the generated feature
map by imposing the metric learning concept through a series of query-based attention. As
a result, these augmented features bring extra information from support images to the final
feature maps and hence improve the robustness of the detector for those ambiguous defect
patterns. The technical details will be explained in the following section.

2. Related Works

Traditional object detection methods roughly follow the following steps to detect
objects: input images, preprocessing, hand-craft features, classification. Many pioneering
works mainly focused on the construction of hand-crafted features [21,22] or classification
algorithms [23,24]. These methods can achieve good performance in specific types of
detection tasks but are less generalizeable to others.

CNN-based object detection methods tried to apply CNN into the previous mentioned
detection steps to accelerate the detection speed and improve the generalization ability of
the detection model. Earlier attempts separated the detection task into another two steps:
region proposal and feature extraction/classification/regression. In these attempts, regions
of interest are selected by multiple methods, such as selective search [25], edge box [26],
or Region Proposal Network (RPN) [4]. These regions are then sent to a CNN for feature
extraction and the subsequent classification and bounding box regression. The above
approach is usually called a two-stage method, since it requires two separate steps to
achieve detection. Famous two-stage detection methods include Fast RCNN and Faster
RCNN. Later CNN-based object detection methods tried to achieve detection through
end-to-end training, i.e., to train and detect the image within one step instead of the
previously developed two steps. Two typical one-stage detection methods are SSD [27]
and YOLO [5] families. To conclude, one-stage detection methods are much faster than
two-stage detection methods, but are relatively less accurate.

CNN-based detection methods have been successfully applied to various tasks such
as classification [28], detection [29], segmentation [30], etc. In industrial applications, a
widely accepted approach is to fine-tune a pretrained network on the scarce samples to
achieve task-aware detection ability [8,31,32]. A pretrained model on common large-scale
datasets such as ImageNet [7] or COCO [6] can be either fully or partially fine-tuned during
implementation. This approach has proved to be effective in various tasks such as defect
detection [8,9], medical detection [10,11], etc. However, the insufficient and ambiguous
defect images may advise against such pretrain-finetune knowledge transfer.

Many approaches were studied to enhance the detection performance in industrial
applications. The image augmentation [33] method is a widely used approach that can
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expand the scale of the training dataset through various random changes to the training
image. Feature augmentation, on the other hand, is a relatively newer concept and has
been used in many tasks such as person re-identification [34] and low-shot learning [35].
Another feature augmentation approach lies in attentional feature fusion [12-15], and has
proved to achieve better detection results [16-20] by exploiting extra features. For example,
Hu et al. [16] proposed a graph-based Relation R-CNN considering extra global relation in
labels and achieved better performance for small objects detection. Yan et al. [19] proposed
a predictor-head remodeling network to infer class attentive vectors of low-shot objects, and
take channel-wise soft-attention on ROI features. Hu et al. [20] proposed the DCNet with
a pretrained ResNet-101 backbone and a pixel-wise dense relation distillation module to
aggregate relations between input and support sets. The attentional feature augmentation
idea inspired us to implement rail detection with a fine-tuning strategy.

3. Materials and Methods
3.1. Dataset

The rail defect dataset is a series of high resolution (2048 x 2000 pixel of 96 dpi) rail
surface images with annotations. We collected 9039 images from the 9 km railway test loop
built by the National Academy of Railway Sciences Test Center. The images are taken by
CMOS line scan cameras with laser light source and preprocessed by an image processor to
eliminate specular reflections. Only 400 of the 9039 images contain objects and are used
to build the dataset. The objects in the images can be categorized into four main classes:
damage, gap, dirt, and unknown. Damage class can be further divided into five classes: general
damage (defects that cannot be categorized into other classes), dent, crush, scratch, and slant.
A detailed division of the dataset is listed in Table 1.

The dataset is annotated by following the YOLO’s annotation format with five num-
bers. The first number is object type and the following four numbers are object coordinates.
Object types are recorded as integers starting from zero, while object coordinates are
recorded as four float numbers with six significant digits: x, y, w, and h. x and y are are
normalized center coordinates of the bounding box, while w and h are the normalized
width and height of the bounding box. The YOLO format can be easily converted to COCO
format or PASCA VOC format. Annotated images as examples are illustrated in Figure 1,
where blue bounding boxes refer to non-damage features while red boxes refer to damages.

Table 1. Two divisions of the rail defect dataset.

4 Class Division 8 Class Division

gap: gaps left between successive rails on a railway track
dirt: paint, or mud that covers the surface of the rail
unknown: unrecognized features

general damage: displacement of parent metal from the rail surface
dent: tear of the lateral planes of the rail surface

damage crush: big/severe wear of the lateral planes of the rail surface
scratch: small/mild wear of the lateral planes of the rail surface
slant: tear of the lateral planes of the rail surface

The dataset contains 148 general damages, 180 dirt, 87 unknown, 51 gaps, 35 dent
defects, 94 crush defects, 129 scratch defects, and 43 slant defects. The total number of the
annotated objects is 767. These annotations are provided by railway maintenance engineers,
but still include some mislabeled and unlabeled patterns. We confirmed 11 errors (including
wrong labeled and mislabeled objects) within the 767 annotations after double check. The
error ratio is approximately 1.43% and is relatively lower than many other widely used
datasets [36]. Therefore, we believe the dataset is acceptable for training and detection.
Experiments were conducted concerning both 8 and 4 classes (regarding all defect types as
one class).
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Figure 1. Samples of the rail defect dataset. From left to right, first row contains damage, dirt,
unknown and gap, and second row contains dent, crush, scratch and slant.

3.2. Model Architecture

The overall detection model is illustrated in Figure 2. Our model is based on the
one-stage object detection architecture to ensure high detection speed. The whole model
consists of three parts: (a) a feature extractor as backbone network that builds multi-level
semantic feature maps at all scales, (b) the proposed feature augmentation framework
based on pixel-wise attention that enables the model to better distinguish ambiguous defect
patterns, and (c) multi-level detect heads for both object classification and bounding box
regression. To be more specific, the pretrained backbone network is fine-tuned to extract
input and support features from an input batch. A novel pixel-level similarity metric is
developed to evaluate dense spatial relations that enables pixel-level match of input and
support features. The final refined feature are activated by support features for subsequent
detector heads.

backbone

Feature Augmentation

support images

Figure 2. The architecture of the rail defect detection model.

To establish feature augmentation, N numbers of representative defect images are
manually selected and masked as support samples. Every single image of the rest of the
images is grouped with the N masked images to form a batch of input images. The feature
extractor will extract features of the input batch for subsequent feature augmentation.

3.3. Feature Augmentation

To utilize the support defect images and improve class-wise defect detection ability,
we perform the feature augmentation framework to aggregate input and support features,
as illustrated in Figure 3. The framework mainly consists of a query, key, and value embed-
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ding, and a feature fusion operation based on pixel-wise attention. Although there exist
alternative embedding and attention methods, we adopt the transformer-style attention [14]
because it has been widely used and proved to be generally effective for various tasks.

Q, K,V Embedding ;
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Figure 3. Feature augmentation framework. The sample and support features are first encoded into
query (Q), key (K), and value (V) embedding. Two linear transformations are performed on both Q
and K feature maps. Pixel-wise attention is performed to fuse the Q and K feature maps to form the
final learnable similarity metric, thus retrieving co-existing information from support features.

Query, Key and Value Embedding. The sample and support features extracted by
backbone feature extractor are encoded separately to reduce their dimension for saving
computation cost. Specifically, sample feature is encoded into a query feature map and
a value feature map, while support features are encoded into a concatenated key feature
map and a concatenated value feature map. Query and key feature maps contain semantic
information about relations, while value maps carry richer detailed information about the
original feature maps.

The two encoders share the same structure, i.e., two 3 X 3 convolution layers, a batch
normalization, and a leaky ReLU activation function, but have different weights. The query
encoder takes sample feature of size H x W x C as input, and output query feature map Q
and value feature map V; as:

Q c RHWXCk
HWxC/2
v, €R ,

M

where H is feature height, W is feature width, C is channel dimension, and Cj is the user-
defined query dimension (e.g., Cx = C/4). On the other hand, the support encoder takes N
support features as input, and output a series of key feature maps and value feature maps.
Support key feature maps are horizontally concatenated, while support value maps are
vertically concatenated:

K= concat[KlT, e ,K{,] € RG> NHW ?
Vs = concat[Vyy, - -, Ven]T € RNHWXC/2,

Pixel-wise Attention. After acquiring query, key, and value feature maps, pixel-wise
attention is performed to activate co-existing patterns among sample and support features.
The key of pixel-wise attention lies in a learnable pixel-level similarity metric. To calculate
the metric, two different linear transformation ¢, ¢’ are first applied to query and key
feature maps:

Q" =¢(Q), K =¢'(K). ®)

Then, linear transformed query and key feature are fused by inner-production to
obtain the pixel-level similarity metric:

S — Q* . K* — [51,82,' . ,SN] c RHWXNHW. (4)
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This similarity metric concerning ¢, ¢’ can be dynamically learned through back-
propagation during fine-tuning.

After obtaining the fused similarity metric, global softmax normalization is performed
to obtain the final attention weight:

1 2 - N
Wip wip o W1, HW
w = . T . . i .
: . : LWl : /
wl e w2 ce . N
HW,1 HW,1 WHW HW 5)

i exp(S;.,k)
jk Si 4
Lnuw exp(S;y)

wherei = 1,2, -, N is the support index, j,k = 1,2,--- , HW is the pixel index of the
similarity metric. To be more specific, the rows of the similarity metric correspond to the
pixels of the sample feature, while the columns of the metric correspond to pixels of all
support features in sequence. The whole metric can be viewed as N blocks [w!,w?, - - -, w™]
each representing relations between the sample feature and one support feature. Global
softmax is performed to highlight the most relevant defect patterns while suppress less
similar features.

The support value maps can be weighed by w through another matrix inner-product,

and then concatenated with the query value map to form the final output feature map:

7

F = concat[Vy, w - V5] € RIWXC, (6)

This feature is then reshaped to H x W x C to fit the input sample dimension and
used for subsequent object classification and bounding box regression.

Our pixel-wise attention within feature augmentation framework can be treated as a
combination of self attention and cross attention, since we retrieve hidden representations
from both the sample feature and the support features. Previous meta-learning trials
either perform class-wise feature vectors to fuse attention feature maps [15] or perform
concatenation over N class-wise results to obtain the final soft attention [20]. However,
our approach considers a global pixel-wise attention on all N classes, making our model
extremely sensitive to pixel-level detailed features of the most relevant support defect,
while reducing potential ambiguities from less similar classes or noises. It also makes our
model applicable to pretrain-finetune paradigm. In addition, we adopt random selection to
generate support class prototype features instead of average calculation to reduce training
resource consumption without losing detection performance.

4. Results

In this section, we demonstrate various experimental results to illustrate the effective-
ness of our proposed method. All the experiments were conducted on Intel(R) Xeon(R)
Gold 6226R CPU@2.90 GHz and NVIDIA RTX 3090 GPU, running an Ubuntu 18.04 op-
erating system. Unless specified otherwise, all used models are implemented based on
PyTorch 1.9.1. YOLOv5 and AL-MDN [37] are implemented according to their official
GitHub repository, while DyHead [38] and Faster R-CNN [4] are implemented based on
Detectron2 [39].

The support defect images are randomly selected from the training set and mask it
using its label. One of the chosen result of the eight defect classes are shown in Figure 4. If
four classes detection is analyzed, the defect class is randomly chosen from defect, unknown,
dirt, and gap.
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(a) masked damage ) masked dirt (c) masked unknown (d) masked gap

(f) masked crush

(e) masked dent

(g) masked scratch ) masked slant

Figure 4. Masked support images of eight classes.

4.1. Experimental Settings

As illustrated in Figure 5, we follow the widely-applied training paradigm in [1,40,41].
The backbone network as well as the detector heads is pretrained on MS COCO. During
fine-tuning, all defect images excluding the manually selected support ones are divided
into three parts: a training set, a validation set and a test set. Specifically, the training
set contains 280 images, the validation set contains 80 images, and the test set contains
40 images. The training set is used to train the model, while the validation set is used to
evaluate its detection performance. After training, the test performance of the model that
performs best on validation set is evaluated on the test set.

J

CocCo i—» backbone » detector
o=l FE--,
train set > backbone Feature Augmentation ]—» detector ||
! A [ |
Rail val set —:—» backbone Feature Augmentation ]—» detector :
Defect [ [ 4 72|
Dataset | testset || backbone Feature Augmentation}—» detector |
o J——F-——A-—---———-- -

support set

Figure 5. Demonstration of learning strategy of our detection framework. The backbone is pre-
trained on MS COCO, and fine-tuned on the rail defect dataset together with our proposed feature
augmentation module.

All learnable parameters, including the parameters of the backbone feature extractor
and the feature augmentation framework are jointly tuned by stochastic gradient descent
(SGD) for 500 epochs. The momentum and weight decaying factor are set to be 0.9 and
5 x 1074, respectively. All the images are resized to 640 x 640 pixels before training and
testing. It takes about 61.2 h to train the proposed model with 400 images (batch size is 9
with 1 sample image and 8 support images) on one NVIDIA RTX 3090 GPU.
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4.2. Detection Results

We first analyze the detection results on our collected rail defect dataset. We com-
pare the accuracy of our approach to YOLO [5], Faster R-CNN [4], AL-MDN [37], and
DyHead [38] on both 8-class and 4-class detection tasks.

In Tables 2 and 3, we summarize the results of the experiments performed on eight classes.
In the table, numbers in bold are models with the minimum performance indices, ‘R’ in the
backbone column is short for ResNet, ‘s/s6” refer to the small version of YOLOv5 without/with
4 output layers, and ‘F R50/R101’ refer to Faster R-CNN with ResNet 50 or ResNet 101. As
shown, our proposed method performs better according to mAP@.5 and mAP@.5.95 on both
the validation set and test set. The best performance is highlighted as a bold text. The mAP@.5
of our model (i.e., YOLOvV5s6 with FA) on validation set is 11.32% better than YOLOv5s6 and
4.27% better than Faster R-CNN R101. Although feature augmentation calculation heavily
reduces the detection speed, our proposed model can still achieve real-time detection with more
than 30 fps. As a comparison, AL-MDN and DyHead also outperform traditional one-stage and
two-stage baselines, and are competitive with our proposed method.

Table 2. Detection results of different methods over the rail defect validation dataset.

Model Backbone mAP@.5 mAP@.5:.95
8 defect classes

YOLOVS5 + FA (ours) s 0.8462 0.3724
YOLOVS5 + FA (ours) s6 0.8643 0.4232
YOLOV6 + FA (ours) s 0.8714 0.3911
YOLOVS5 [42] s 0.8371 0.3206
YOLOWS5 [42] s6 0.8316 0.3476
YOLOV6 [43] s 0.8417 0.3595
Faster R-CNN [4] R50 0.8351 0.3447
Faster R-CNN [4] R101 0.8402 0.3366
AL-MDN [37] VGG16 0.8545 0.3772
DyHead [38] RetinaNet 0.8513 0.3817
DyHead [38] F R50 0.8527 0.3833
DyHead [38] FR101 0.8535 0.3851
4 defect classes

YOLOVS5 + FA (ours) s 0.8856 0.4557
YOLOVS + FA (ours) s6 0.8992 0.4979
YOLOV6 + FA (ours) s 0.8878 0.5011
YOLOVS5 [42] s 0.8989 0.4622
YOLOWS5 [42] s6 0.8966 0.4659
YOLOV6 [43] s 0.8981 0.4730
Faster R-CNN [4] R50 0.8779 0.4642
Faster R-CNN [4] R101 0.8916 0.4760
AL-MDN [37] VGGl16 0.8947 0.4861
DyHead [38] RetinaNet R50 0.8941 0.4903
DyHead [38] F R50 0.8965 0.4967
DyHead [38] FR101 0.8932 0.4839

Several defect detection results are shown in Figure 6. In the first row, Faster R-CNN
detected an extra unknown object (a false alarm) while YOLOV5 treat the extra object to be
a dirt. In the second row, the ground truth is a scratch but it can also be regarded as a dent
(i.e., an ambiguous defect). Faster R-CNN identified a dent and a scratch with large position
deviation. YOLOVS5 failed to detect any object but with the help of feature augmentation it
can identify the scratch very close to the ground truth, and also detected an extra dent. In
the third row, the ground truth contained a labeled dent, a labeled dirt, and an unlabeled
gap. Faster R-CNN and our model can identify the unlabeled gap, while Faster R-CNN
mistakenly identified an extra dirt. The precision-recall curves are illustrated in Figure 7.
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Table 3. Detection results of different methods over the rail defect test dataset.

Model Backbone mAP@.5 mAP@.5:.95 FPS
8 defect classes

YOLOVS5 + FA (ours) s 0.757 0.365 34.36
YOLOVS5 + FA (ours) s6 0.726 0.369 34.25
YOLOV6 + FA (ours) s 0.740 0.377 52.99
YOLOV5 [42] s 0.657 0.317 52.36
YOLOVS5 [42] s6 0.680 0.346 48.54
YOLOV6 [43] s 0.674 0.325 72.51
Faster R-CNN [4] R50 0.719 0.333 8.49
Faster R-CNN [4] R101 0.726 0.322 9.00
AL-MDN [37] VGG16 0.744 0.362 5.98
DyHead [38] RetinaNet R50 0.741 0.367 38.41
DyHead [38] F R50 0.741 0.367 8.23
DyHead [38] FR101 0.741 0.367 7.36
4 defect classes

YOLOVS5s + FA (ours) s 0.796 0.357 41.49
YOLOvV5s6 + FA (ours) s6 0.818 0.391 32.79
YOLOV6 + FA (ours) S 0.835 0.393 54.31
YOLOV5 [42] S 0.816 0.336 56.34
YOLOVS5 [42] s6 0.804 0.386 56.18
YOLOV6 [43] S 0.827 0.383 72.33
Faster R-CNN [4] R50 0.808 0.387 14.48
Faster R-CNN [4] R101 0.820 0.373 9.76
AL-MDN [37] VGG16 0.816 0.381 6.27
DyHead [38] RetinaNet R50 0.802 0.377 40.67
DyHead [38] FR50 0.809 0.381 7.75
DyHead [38] F R101 0.810 0.389 6.51
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Figure 6. Detection result concerning 8 classes. The four columns corresponds to (a) ground truth, (b)
Faster R-CNN-R101, (c) YOLOv5s6, and (d) YOLOv5s6 with the proposed FA. Three rows are three
different test images.
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In industrial applications, dirt and gap objects can be ignored, whereas unknown
objects are usually regarded as potential defects and should be double-checked manually.
Therefore, false detection may cause additional manual inspection time. The detection
result revealed that Faster R-CNN is too sensitive and confident to identify many objects
that did not exist or need to be ignored. On the contrary, YOLO missed some objects
and is too rigid to doubt the training samples. The feature augmentation framework can
give scores to help balance the sensitivity and robustness of the model. It can increase the
confidence of objects with obvious features but not correctly labeled (e.g., the unlabeled
gap in the third row of Figure 6), while reduce the confident of objects with features similar
to certain class but are ‘far’ to selected support defects (e.g., small objects in the first row of
Figure 6 that should be ignored).

1.0 1.0T——
MM \l
0.8 0.8 ' ‘-—L
™
L 5 L &i
5 3 3 e
14 o 9 'L\‘
a04 o a04 1
yolovss- FA [
—— yolov5s6- FA LL—_
02 yolov5s 0.2 yolov5s6 021 __. fasterRCNN-R50
—— yolov5s-FA —— yolov5s6- FA fasterRCNN-R101

0. 0. 0.
%.0 02 04 06 08 1.0 %.0 02 04 06 08 1.0 %.O 02 04 06 08 1.0
Recall Recall Recall

Figure 7. Three group of PR curves, from top to bottom are PR curves of: YOLOv5s and YOLOvbs
with FA, YOLOv5s6 and YOLOv5s6 with FA, and two YOLO models with FA compared with two
Faster R-CNN models.

4.3. Ablation Study

We conduct a series of ablation studies to analyze the effectiveness of our proposed
method. All ablation studies are conducted on the 8-class rail defect test dataset if not
otherwise stated. All results are averaged over 10 random runs.

Impact of multiple support defects. We test our method on a different number of
support defects per category. We randomly select 2, 3, 4, and 5 support defects in each
category, and train our model. The validation and test results of our model are shown in
Figure 8. As can be seen from the figure, although the validation performance of the model
is slightly improved when using two support defects per category (e.g., 0.7% improvement
of YOLOV5s, from 84.62% to 85.21%), the overall performance trend of the model decreases
with the increase of the number of support defects. This result indicates that although more
support defects can introduce more diverged defect patterns to the model, it cannot help
improve the detection performance of the model. Instead, the redundant defect patterns
may confuse the model and impede the detection process.

100% — 100%
o o ~o-Validation Accuracy —~o—Validation Accuracy
2 90% g 90%
o 8% '——'\0*.\. o 85% .—‘\‘\0\.
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Figure 8. Effect of different number of support defects per category on validation and test perfor-
mance of (a) YOLOv5s with FA and (b) YOLOv5s6 with FA.
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Impact of support feature generation methods. Support class prototypes are usually
generated by averaging all support images of each class [20,44,45]. In this section, we
analyze the effectiveness of two support class prototype feature generation methods other
than averaging: random selection and summation and normalization (add and norm).
Random selection means to randomly select one of the support feature for subsequent
feature augmentation, while summation and normalization apply normalization after
adding all the support features. We further set the number of support defects per category
to be 2. The detection results are shown in Table 4. As shown in the table, the model
perform best by averaging all support images. However, the model does not degrade much
when adopting random selection or by averaging only two support images, but the amount
of calculation during training is greatly reduced.

Table 4. Evaluation of support feature generation approaches.

Method Feature Generation Approach mAP@.5 mAP@.5:.95
YOLOv5s + FA  random selection 0.758 0.371
YOLOv5s + FA  random selection (2) 0.757 0.369
YOLOvV5s + FA'  add & norm 0.743 0.356
YOLOvV5s + FA  add & norm (2) 0.729 0.344
YOLOv5s + FA  average 0.760 0.372
YOLOv5s + FA  average (2) 0.757 0.366

Impact of Mask. We studied the effect of the mask operation within the detection
process. The detection results are shown in Table 5. From the two tables we can see that the
detection performance of the model decreases slightly without mask operation. This result
is easy to understand, since the mask operation can effectively remove the background
information interference of non-defect parts. It can help the model to focus more on useful
objects rather than the background.

Table 5. Impact of mask.

Method w/ Mask w/o Mask

mAP@.5 mAP@.5:.95 mAP@.5 mAP@.5:.95
YOLOvV5s + FA 0.757 0.365 0.748 0.345
YOLOv5s6 + FA 0.726 0.369 0.716 0.354

Generalization on existing backbones. We evaluate the generalization ability of our
proposed feature augmentation method by plugging it to popular object detection back-
bones other than YOLO, such as Faster R-CNN and RetinaNet [27]. These two backbones
are typical two-stage and one-stage object detection frameworks. As shown in Table 6, our
proposed feature augmentation module boosts the two backbones by around 1% mAP@.5.
It demonstrates the generality of our method. Yet we still prefer our module to be plugged
to one-stage object detection frameworks for faster detection ability.

Table 6. Generalization of FA module applied to object detection backbones.

Method Backbone mAP@.5 mAP@.5:.95 FPS
Faster R-CNN [4] R50 0.719 0.333 8.49
Faster R-CNN [4] + FA R50 0.727 0.346 8.13
RetinaNet [46] R50 0.687 0.328 24.26
RetinaNet [46] + FA R50 0.696 0.337 20.98
SSD [27] VGGI16 0.684 0.321 21.78

SSD [27] + FA VGG16 0.698 0.342 19.91
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5. Discussion

In this paper, we focused on the rail defect detection task and developed a feature
augmentation framework to ensure fast and accurate defect detection. The proposed
method is especially designed to take advantage of the limited but precisely annotated
support defect images. Multi-scale defect features were aggregated to calculate a learnable
similarity metric between sample image and support defect images. Support features are
then weighed by the similarity and concatenated with the input sample feature to obtain
the final feature map. The feature augmentation framework can help increase the detecting
accuracy concerning multiple distinctive defect types, and reduce the confidence of small
defects that should be ignored. Experimental results validated the proposed method and
showed its potential usefulness in practice.

To test the proposed method, we annotated and constructed a novel rail defect dataset.
All the rail defection images are captured from the 9 km railway test loop built by the
National Academy of Railway Sciences Test Center. As shown experimentally, the proposed
framework outperforms the two baselines in terms of detection accuracy on both validation
and test rail defect dataset concerning eight classes. Our method is capable of the inspection
task at the running speed of 160 km per hour.

Our pixel-wise attention within the feature augmentation framework can be treated
as a combination of self attention and cross attention, since we retrieve hidden represen-
tations from both the sample feature and the support features.The feature augmentation
framework can give scores to help balance the sensitivity and robustness of the model. It
can increase the confidence of objects with obvious features but not correctly labeled, while
reduce the confident of objects with features similar to certain class but are ‘far” to selected
support defects.

We consider as possible future works to investigate the use of our framework in other
defect detection tasks where there are many kinds of defect types but relatively fewer
defect samples. The combination of line scan cameras and laser cameras could also be
an applicable research direction. For example, an extra 3D laser camera could provide
height value for better detection when the budget and hardware performance allow. The
height values provided by laser cameras can help better eliminate disturbances such as
dirt [47-49], dust and plants, while the x-y images provided by line scan cameras can help
detect various damage types intuitively.
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