
Citation: Dima, R.; Buonanno, G.;

Costanzo, S.; Solimene, R. Robustness

for the Starting Point of Two Iterative

Methods for Fitting Debye or

Cole–Cole Models to a Dielectric

Permittivity Spectrum. Appl. Sci.

2022, 12, 5698. https://doi.org/

10.3390/app12115698

Academic Editor: Nunzio Cennamo

Received: 21 April 2022

Accepted: 31 May 2022

Published: 3 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Robustness for the Starting Point of Two Iterative Methods
for Fitting Debye or Cole–Cole Models to a Dielectric
Permittivity Spectrum †

Roberto Dima 1,* , Giovanni Buonanno 2 , Sandra Costanzo 2,3,4,5 and Raffaele Solimene 1,5,6

1 Department of Engineering, University of Campania, 81031 Aversa, Italy; raffaele.solimene@unicampania.it
2 Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, University of Calabria,

87036 Rende, Italy; giovanni.buonanno@unical.it (G.B.); costanzo@dimes.unical.it (S.C.)
3 Institute for Electromagnetic Sensing of the Environment (IREA), National Research Council (CNR),

80124 Naples, Italy
4 National Inter-University Research Center on the Interactions between Electromagnetic Fields

and Biosystems (ICEmB), 16145 Genoa, Italy
5 National Inter-University Consortium for Telecommunications (CNIT), 43124 Parma, Italy
6 Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
* Correspondence: roberto.dima@unicampania.it
† This paper is an extended version of our paper published in Engineering Proceedings 2021, 11, 45.

Abstract: Curve-fitting means the determination of the set of parameters that best fit the input data
set as expressed by a given function that is usually non-linear. The paper addresses the curve fitting of
Debye and Cole–Cole models to a dielectric permittivity spectrum. The success of a nonlinear curve
fit heavily depends on the choice of the algorithm and how close the starting point is to the solution.
For these reasons, two different algorithms, the Levenberg–Marquardt and the Variable Projection
algorithms, were used for constrained optimization and compared, with particular reference to
robustness with respect to the choice of the starting point of the reconstruction procedure. The
dielectric spectrum of blood plasma with different glucose concentrations is taken as reference data
and a Monte Carlo analysis was conducted to evaluate accuracy and precision in the two methods
provided as the distance of the initial parameters from the true value’s changes. In general, both
algorithms with constraints on the parameters provide good results for practical situations, although
the Variable Projection Algorithm has a greater computational burden for large data sets.

Keywords: glucose measurement; Debye model; Cole–Cole model; Levenberg–Marquardt algorithm;
Variable Projection algorithm; blood dielectric properties; nonlinear fitting problem

1. Introduction

Debye and Cole–Cole models have been developed in the context of dielectric re-
laxation phenomenon to provide a synthetic description of an experimentally measured
dielectric permittivity spectrum. They are used in many contexts and with many different
materials: in electrochemical impedance spectroscopy [1], particularly in bioimpedance
spectroscopy [2], electromagnetic dosimetry [3], and biomedical applications [4–10]. Fitting
Debye and Cole–Cole models to data is, therefore, a topic of great interest in a research
context, and a variety of optimization algorithms has been proposed in the literature in this
regard [11–16].

In the framework of the design of non-invasive glucose monitoring devices, which can
considerably improve the quality of life for diabetic people [17], developing accurate and
precise fitting methods for blood models, with different glucose concentrations, is essential:
it affects the simulation stage required for sensor design [18] and the “synthetic view” (in
terms of a few parameters) extracted from sensor response data.
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For these reasons many models of the permittivity of blood (or similar materials)
have been proposed in the literature, fitting Debye or Cole–Cole models to experimental
measurements [6–10,19,20]. The studies differ in the materials used (human blood, animal
blood, plasma, and water/glucose solutions), frequency ranges, glucose concentrations,
and algorithms used. Unfortunately, little or no importance was given to the choice of
fitting algorithm and its implementation. Hence, the decision to produce this work was
motivated and we aim to provide valuable insights into the fitting problem, particularly in
the context of blood permittivity modeling.

More in detail, starting from the dielectric spectrum, which is assumed known over
a certain number of frequencies, we aim at estimating the parameters of a single-pole
Debye model and a single-pole Cole–Cole model. As it is well known, this entails solving a
nonlinear inverse problem, which here is addressed by two different methods: the classical
Levenberg–Marquardt method [21,22] and the Variable Projection algorithm [23]. We
evaluate how sensitive the two methods are with respect to the starting points of the
parameters and with what accuracy and precision these parameters can be estimated. In
order to compare the two methods, we generate synthetic dielectric spectra by employing a
single-pole Cole–Cole model, using data from the literature [24] as the true values for its
parameters, and we use them as reference.

The present work is an extended version of the conference paper [25]. In the previous
work, only one set of intervals was considered for initial value estimations. Here, this
is extended and completed by considering wider intervals and including also parameter
α, which in [25] was practically fixed at the value 0.1. In addition, we also consider
curve fitting applied to the Debye model in order to compare the two permittivity models
as well. Finally, the fitting algorithms are equipped with proper constraints that allow
the obtainment of algorithms with much better performance in terms of execution time
and convergence.

We consider first-order models to perform the comparison as they are a good trade-off
between complexity and fitting capability. In [26], the dielectric properties of a blood
plasma sample are fitted to single-pole, two-pole, and three-pole Cole–Cole models, and it
was found that the single-pole model is sufficient to represent data with lower numbers of
parameters and computational time. Furthermore, all blood glucose models we are aware
of from the literature use Debye or Cole–Cole single-pole models.

2. Materials and Methods

In this section two well-known models for complex relative permittivity εr = ε/ε0 are
briefly presented.

2.1. Debye Model

The Debye equation is used to describe the relaxation response of a group of ideal
noninteracting dipoles relative to an applied alternating electric field [27]. In most biological
tissues, there are different polarization phenomena, and each one is characterized by its
own relaxation time τn. The Debye relaxation equation with N poles describes the complex
relative permittivity of the medium as a function of the angular frequency ω of the applied
electric field as follows:

εr(ω) = ε∞ +
N

∑
n=1

εsn − ε∞

1 + jωτn
(1)

where N is the number of the poles and, thus, the order of the Debye model, ε∞ = limω→∞ εr(ω)
is the high-frequency permittivity. For each addend considered individually, εsn is the static
permittivity, and τn is the relaxation time constant. Also in this case, to take into account
the conductivity of the material considered, the conductive term is added, obtaining the
following expression:

εr(ω) = ε∞ +
N

∑
n=1

εsn − ε∞

1 + jωτn
+

σs

jωε0
(2)
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where σs is the static ionic conductivity.

2.2. Cole–Cole Model

The Cole–Cole model [28] is widely used to describe the complex relative permittivity
of biological tissues, εr(ω) = ε(ω)/ε0, and its equation is described as follows:

εr(ω) = ε∞ +
N

∑
n=1

εsn − ε∞

1 + (jωτn)1−αn
(3)

in which N is the number of poles and thence the order of the model, ε∞ = limω→∞, εr(ω),
is the permittivity at high frequencies, σs is the static ionic conductivity, and εsn, τn, and αn
are the static permittivity, the relaxation time constant, and the distribution parameter of
the n-th addend of the summation, respectively.

To take into account the conductivity of the material considered, the conductive term
is added, obtaining the following expression:

εr(ω) = ε∞ +
N

∑
n=1

εsn − ε∞

1 + (jωτn)1−αn
+

σs

jωε0
(4)

where σs is the static ionic conductivity.
Such a model incorporates the Debye model [27]. Indeed, the main difference between

the Debye and Cole–Cole models is that the latter includes exponent 1− α, with 0 ≤ α ≤ 1.
When the exponent becomes smaller, the relaxation time distribution becomes broader,
i.e., the transition between low- and high-frequency values becomes wider, and the peak
on imaginary part of the spectrum also becomes wider.

The complexity of both the structure and composition of biological material is such
that the dispersion region of each pole may be broadened by multiple contributions to
it. The broadening of the dispersion could be empirically accounted for by using the
Cole–Cole model [29]. It is for that reason that the Cole–Cole model is expected to provide
more accurate dielectric spectrum curve-fitting.

Nevertheless, we also consider the Debye model in our study as it is sometimes pre-
ferred for its simplicity [4,5,7–10] and easy implementation of computational EM methods,
such as finite-difference time-domain FDTD (in the Cole–Cole model, the addition of the pa-
rameters α causes difficulties when transforming to the time domain because the fractional
powers of frequency lead to fractional derivatives [11]).

2.3. Curve Fitting Algorithms

Let x be the vector of model parameters, P its length, and M the number of frequency
points where the measures are taken. We define the data vector as follows (> stands for
transposition):

y =
[
y(ω1), . . . y(ωm), . . . y(ωM)

]> (5)

in which the mth component of the vector y is the observed value y(ωm) . Let the following:

εr(x) =
[
εr(ω1; x), . . . εr(ωm; x), . . . εr(ωM; x)

]> (6)

be the model vector, here given by Equation (4), with εr(ωm; x) being its estimation at ωm.
Solving the least squares problem means finding x̂ such that the following is the case:

x̂ = arg min
x∈RP

{
1
2
‖εr(x)− y‖2

2

}
(7)

in which the function to minimize, Ψ = 1
2‖εr(x)− y‖2

2, is the `2 quadratic norm of the
misfit r = εr(x)− y, which is a non-linear function such that r : RP 7→ CM with P� M.
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Many studies in the literature have proposed metaheuristic algorithms for curve
fitting, such as genetic algorithm, simulated annealing algorithm, particle swarm algorithm,
hybrid variants, etc. [11,16,30], because of their ability to deal with very large search spaces.
However, they have non-negligible disadvantages: longer execution time, stochastic nature,
and poor mathematical background. For these reasons, we preferred to focus on gradient-
like algorithms by evaluating their performance in terms of what is considered their
weakness: the choice of the starting point.

Thus, we address the non-linear fitting problem with two methods: the Levenberg–
Marquardt Algorithm (LMA) and the Variable Projection Algorithm (VPA). The first is a
classic algorithm already used in this context [13,14]; the other, to the best of our knowledge,
is used for the first time for this problem.

2.3.1. Levenberg–Marquardt Algorithm

The Levenberg–Marquardt Algorithm [21,22] acts more similarly to a gradient-descent
method when the parameters are far from their optimal value and acts more similarly to
the Gauss–Newton method when the parameters are close to their optimal value [31]. The
equation for the step h at the kth iteration is as follows:(

J(xk)
> J(xk) + λk I

)
h = −J(xk)

> f (xk) (8)

where J is the Jacobian of f , and λk is the damping parameter. It controls both the magnitude
and direction of h, and it was chosen at each iteration. It can be shown [22] that, at each
iteration, Equation (8) solves the minimization problem over a reduced set of admissible
solutions, i.e., those that satisfy ‖h‖ ≤ R(λ), limiting the correction step within a region
near xk. The radius of the trust region R = R(λ) is a strictly decreasing function with
limλ→∞ R(λ) = 0. When λk = 0, step h is identical to that of the Gauss–Newton method
and its magnitude assumes the maximum value. As λ→ ∞, h tends towards the steepest
descent direction, with the magnitude tending towards 0.

Based on the above, we infer the qualitative update rule for λk+1: if Ψ(xk + h) < Ψ(xk)
then the quadratic approximation works well and we can extend the trust region, i.e., it will
be λk+1 < λk. Otherwise, the step is unsuccessful, and we reduce the trust region, i.e., it
will be λk+1 > λk; in this way, the next step tends toward the negative gradient method
and a lower value of Ψ is more likely to be found.

The MATLAB implementation has been used, specifically the lscurvefit function
with the Levenberg–Marquardt option [32].

2.3.2. Variable Projection Algorithm

The Variable Projection Algorithm [23] is a method used to solve separable nonlinear
least squares problems. The least squares problem is said to be separable when the model
parameters can be separated into two sets of parameters: one that enter linearly into the
model, c = [c1, . . . , ck], and another set of parameters that enters the model non linearly,
a = [a1, . . . , al ], such that x = [c, a]. For each observation ym of a separable nonlinear least
squares problem, the model consists of the following linear combination:

εr(ω) =
k

∑
j=1

cj φj(ω; a) (9)

where φj(ω; a) is a nonlinear function that depends on nonlinear parameters. Functional Ψ
is written in terms of residual vector r as follows:

Ψ(a, c) =
1
2
‖y−Φ(a)c‖2 (10)
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in which the j-th column of the matrix Φ is φj(ω; a). The linear parameters c could be
obtained from the knowledge of a by solving the linear least squares problem:

c = Φ(a)†y (11)

which stands for the minimum-norm solution of the linear least squares problem for fixed
a, where Φ(a)† is the Moore–Penrose generalized inverse of Φ(a). By replacing this in
Equation (10), we obtain the Variable Projection functional:

ΨVP(a) =
1
2

∥∥∥y−Φ(a)Φ(a)†y
∥∥∥2

(12)

The Variable Projection algorithm consists of two steps: first minimizing Equation (12)
with an iterative nonlinear method and then using the optimal value found for a to solve
for c in Equation (11) [33]. The principal advantage is that the iterative nonlinear algorithm
used to solve the first minimization problem works in a reduced space, and less initial
guesses are necessary. A robust implementation in MATLAB, called VARPRO [34], has
been adapted and used to deal with complex-value problems, choosing the Levenberg–
Marquardt option for the solution of Equation (12).

2.4. Numerical Simulations

The generation of the synthetic complex relative permittivity of blood plasma relies
on quadratic fits relative to glucose-dependent Cole–Cole parameters reported in [24]; in
particular, we consider two different concentrations, 100 mg/dL and 250 mg/dL, where
the former is a normal value while the latter is typical of severe diabetes, respectively, in ac-
cordance with the diagnostic criteria in [35]. The data vector consists of M = 1000 points
in the frequency range 500 MHz–20 GHz.

In gradient-like algorithms, the choice of the initial point is a crucial factor for the
convergence of the procedure. For the single-pole model case, it is fairly easy to exploit the
physical meaning of the parameters to infer an initial estimate. However, since the noise
can invalidate the initial estimate, we propose to study the robustness of the two algorithms
with respect to the initial point. To this end, a Monte Carlo analysis is performed, iteratively
evaluating the deterministic algorithms using a set of Nsim = 1000 uniformly distributed
random initial points arranged in a 5D hypercube of the parameter space in order to statis-
tically characterize the results. Each side of the hypercube represents an interval containing
the range of variation of each parameter for the glucose concentrations considered.

We run simulations on a machine with Intel i9-10850K (10 physical cores), 32GB RAM,
and Ubuntu 21.04, and we took advantage of the Parallel Computing Toolbox using the
parfor loop for running the Nsim simulations.

The intervals for generating the random initial value for each parameter (of the Cole–
Cole model) is chosen from the data tabulated in [24]. In particular, the widths of these
intervals are the same for each glucose concentration. We define three sets of intervals for
the starting points with wider and wider intervals.

The first set, labeled as Set A, consists of the following intervals: [1, 5] for ε∞, [1, 150]
for εs, [1× 10−14, 1× 10−11] for τ, [0.1− 1× 10−9, 0.1 + 1× 10−9] for α, and [0, 5] for σs.

The second set, labeled as Set B, consists of the following intervals: [1, 5] for ε∞, [1, 150]
for εs, [1× 10−14, 1× 10−11] for τ, [1× 10−4, 0.6] for α, and [0, 5] for σs.

The third set, labeled as Set C, consists of the following intervals: [0, 10] for ε∞, [0, 200]
for εs, [1× 10−14, 1× 10−10] for τ, [1× 10−4, 0.6] for α, and [0, 10] for σs.

These intervals are relatively large compared to the values taken from [24] in order to
test the two algorithms in sufficiently stressful situations. Obviously, it must be taken into
account that VPA requires only the generation of τ and α values for the Cole–Cole model
and only of τ values for the Debye model.
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The algorithms are improved by introducing constraints on the parameters to be re-
constructed. The required bounds are the following: [0, 30] for ε∞, [0, 200] for εs, [1× 10−14,
1× 10−10] for τ, [0, 1] for α, and [0, 10] for σs.

For a quantitative evaluation of the performance of the two algorithms, we then define
multiple figures of merit for statistically characterizing the results of the Monte Carlo
analysis. For each parameter, mean and standard deviation are calculated over the entire
set of reconstructions. Let the following:

x̂ (i) = [ε̂
(i)
∞ , ε̂

(i)
s , τ̂ (i), α̂ (i), σ̂s

(i)] (13)

be the vector of parameter estimates returned by the two algorithms at the i-th simulation
and let x̂(i) denote one of its five elements. Moreover, let the following:

x̄ =
1

Nsim

Nsim

∑
i=1

x̂i (14)

s =

√√√√ 1
Nsim − 1

Nsim

∑
i=1
|x̂i − x̄|2 (15)

be the sample mean and standard deviation, respectively, calculated for each parameter.
To evaluate the accuracy of fitted curves, for each simulation, the root mean square

relative error is calculated according to the following equation:

RMSREi =

√√√√ 1
M

M

∑
k=1

∣∣∣∣ εr(ωk)− yk
yk

∣∣∣∣2 × 100% (16)

Mean and standard deviation of RMSRE over all simulations are finally calculated.

3. Results

We have conducted many numerical simulations by increasingly widening the genera-
tion intervals. The qualitative and quantitative results of each of the performed simulations
are presented in Figures 1–6 and Tables 1–6. Each figure shows three curves: the exact
curve, the curve obtained from the average of the curves fitted with Cole–Cole model, and
the curve obtained from the average of the curves fitted with Debye model. In particular,
each figure shows the real part and the equivalent conductivity σ = −ωε0Im(εr(ω)) of
the permittivities.

In general, one can practically observe the following difference between the Debye
and Cole–Cole models: the additional degree of freedom given by the parameter α allows
the latter to shape the transition between low-frequency and high-frequency values more
accurately then the former. In particular, in this study, the transition is smoother and the
Debye model is not able to follow it.

Let us consider simulations with initial points taken from the first set, i.e., set A.
Figures 1a,b and 2a,b and Tables 1 and 2 refer to this case. The true values of the parameters
are reported in the row labeled xtrue (and it is the same for the other tables). Both algorithms
converge to the least square solution for both glucose concentrations. Even though the
Debye model is here used to fit synthetic data generated from Cole–Cole model, the fitted
curve reveals a small RMSRE.

The results of simulations with initial points taken from set B are reported in
Figures 3a,b and 4a,b and Tables 3 and 4. The widening of the generation range for the
parameter α up to [0, 0.6] does not change the considerations made for set A.

Figures 5a,b and 6a,b and Tables 5 and 6 refer to simulations with initial points
taken from set C. This is the most interesting case because a noticeable difference be-
tween the two algorithms emerges. In fact, VPA presents convergence problems in fit-
ting the Cole–Cole model due to ill-conditioning. In particular, we observed that for
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3× 10−11 < τ < 1× 10−10, matrix Φ(a) in Equation (11) is ill-conditioned, with condition
number ≈ 1016, such that the pseudo-inverse is not able to accurately determine the linear
parameters for the considered step, invalidating the convergence of the algorithm. In-
stead, LMA does not suffer from this problem, and the results are always comparable with
previous cases.

In terms of performance, the introduction of parameter constraints has reduced ex-
ecution times in both algorithms. However, while LMA takes a few seconds for the
1000 simulations, VPA takes a few hundred seconds.
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Figure 1. Real part of relative permittivity and conductivity of synthetic data (100 mg/dL glucose
concentration) and Debye’s and Cole–Cole’s fitted curves. LMA (a) and VPA (b) with Set A of initial
points are used.
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Figure 2. Real part of relative permittivity and conductivity of synthetic data (250 mg/dL glucose
concentration) and Debye’s and Cole–Cole’s fitted curves. LMA (a) and VPA (b) with Set A of initial
points are used.
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Figure 3. Real part of relative permittivity and conductivity of synthetic data (100 mg/dL glucose
concentration) and Debye’s and Cole–Cole’s fitted curves. LMA (a) and VPA (b) with Set B of initial
points are used.
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Figure 4. Real part of relative permittivity and conductivity of synthetic data (250 mg/dL glucose
concentration) and Debye’s and Cole–Cole’s fitted curves. LMA (a) and VPA (b) with Set B of initial
points are used.
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Figure 5. Real part of relative permittivity and conductivity of synthetic data (100 mg/dL glucose
concentration) and Debye’s and Cole–Cole’s fitted curves. LMA (a) and VPA (b) with Set C of initial
points are used.
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Figure 6. Real part of relative permittivity and conductivity of synthetic data (250 mg/dL glucose
concentration) and Debye’s and Cole–Cole’s fitted curves. LMA (a) and VPA (b) with Set C of initial
points are used.

Table 1. Statistical diagnostics on fitting results. Set A of the initial points and 100 mg/dL glucose
concentrations were considered.

ε∞ εs τ (s) α σs (S/m) RMSRE

xtrue 2.3 73.3 8.72× 10−12 0.1 1.99 -

x̄
Cole–Cole LMA 2.3 73.3 8.72× 10−12 0.1 1.99 6.5× 10−13

VPA 2.3 73.3 8.72× 10−12 0.1 1.99 7.83× 10−12

Debye LMA 12.9 71.8 1.07× 10−11 0 2.03 1.64
VPA 12.9 71.8 1.07× 10−11 0 2.03 1.64

s
Cole–Cole LMA 2.68× 10−11 2.86× 10−12 4.74× 10−24 1.89× 10−13 9.23× 10−14 3.06× 10−12

VPA 7.27× 10−10 7.06× 10−11 1.31× 10−22 5.12× 10−12 2.32× 10−12 8.57× 10−11

Debye LMA 0.000135 2.31× 10−5 4.05× 10−17 0 3.85× 10−7 1.67× 10−5

VPA 4.31× 10−5 7.35× 10−6 1.29× 10−17 0 1.23× 10−7 5.31× 10−6

Table 2. Statistical diagnostics on fitting results. Set A of the initial points and 250 mg/dL glucose
concentrations were considered.

ε∞ εs τ (s) α σs (S/m) RMSRE

xtrue 2.31 73.3 8.76× 10−12 0.1 1.97 -

x̄
Cole–Cole LMA 2.31 73.3 8.76× 10−12 0.1 1.97 3.× 10−24

VPA 2.31 73.3 8.76× 10−12 0.1 1.97 4.12× 10−22

Debye LMA 12.9 71.8 1.08× 10−11 0 2.01 1.07
VPA 12.9 71.8 1.08× 10−11 0 2.01 1.07

s
Cole–Cole LMA 2.45× 10−11 2.58× 10−12 4.36× 10−24 1.73× 10−13 8.39× 10−14 3.97× 10−23

VPA 2.88× 10−10 2.83× 10−11 5.2× 10−23 2.04× 10−12 9.31× 10−13 1.26× 10−20

Debye LMA 0.000136 2.33× 10−5 4.09× 10−17 0 3.9× 10−7 1.56× 10−9

VPA 4.28× 10−5 7.34× 10−6 1.29× 10−17 0 1.23× 10−7 8.53× 10−10
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Table 3. Statistical diagnostics on fitting results. Set B of the initial points and 100 mg/dL glucose
concentrations were considered.

ε∞ εs τ (s) α σs (S/m) RMSRE

xtrue 2.3 73.3 8.72× 10−12 0.1 1.99 -

x̄
Cole–Cole LMA 2.3 73.3 8.72× 10−12 0.1 1.99 8.81× 10−24

VPA 2.3 73.3 8.72× 10−12 0.1 1.99 1.37× 10−22

Debye LMA 12.9 71.8 1.07× 10−11 0 2.03 1.07
VPA 12.9 71.8 1.07× 10−11 0 2.03 1.07

s
Cole–Cole LMA 4.3× 10−11 4.03× 10−12 7.65× 10−24 2.92× 10−13 1.37× 10−13 1.51× 10−22

VPA 1.65× 10−10 1.63× 10−11 2.96× 10−23 1.17× 10−12 5.34× 10−13 5.79× 10−22

Debye LMA 0.000139 2.37× 10−5 4.16× 10−17 0 3.96× 10−7 1.59× 10−9

VPA 4.29× 10−5 7.31× 10−6 1.28× 10−17 0 1.22× 10−7 8.64× 10−10

Table 4. Statistical diagnostics on fitting results. Set B of the initial points and 250 mg/dL glucose
concentrations were considered.

ε∞ εs τ (s) α σs (S/m) RMSRE

xtrue 2.31 73.3 8.76× 10−12 0.1 1.97 -

x̄
Cole–Cole LMA 2.31 73.3 8.76× 10−12 0.1 1.97 1.0× 10−23

VPA 2.31 73.3 8.76× 10−12 0.1 1.97 1.18× 10−22

Debye LMA 12.9 71.8 1.08× 10−11 0 2.01 1.07
VPA 12.9 71.8 1.08× 10−11 0 2.01 1.07

s
Cole–Cole LMA 4.56× 10−11 4.3× 10−12 8.13× 10−24 3.09× 10−13 1.47× 10−13 2.46× 10−22

VPA 1.52× 10−10 1.51× 10−11 2.73× 10−23 1.08× 10−12 4.94× 10−13 4.61× 10−22

Debye LMA 0.000139 2.38× 10−5 4.18× 10−17 0 3.98× 10−7 1.62× 10−9

VPA 4.41× 10−5 7.56× 10−6 1.33× 10−17 0 1.27× 10−7 9.18× 10−10

Table 5. Statistical diagnostics on fitting results. Set C of the initial points and 100 mg/dL glucose
concentrations were considered.

ε∞ εs τ (s) α σs (S/m) RMSRE

xtrue 2.3 73.3 8.72× 10−12 0.1 1.99 -

x̄
Cole–Cole LMA 2.3 73.3 8.72× 10−12 0.1 1.99 1.21× 10−24

VPA 4.13 79.8 1.39× 10−11 0.182 1.9 14.1

Debye LMA 12.9 71.8 1.07× 10−11 0 2.03 1.07
VPA 12.9 71.8 1.07× 10−11 0 2.03 1.07

s
Cole–Cole LMA 1.57× 10−11 1.57× 10−12 2.79× 10−24 1.1× 10−13 5.24× 10−14 2.79× 10−23

VPA 4.64 14 1.14× 10−11 0.169 0.18 28.7

Debye LMA 0.000137 2.34× 10−5 4.11× 10−17 0 3.91× 10−7 1.39× 10−9

VPA 6.26× 10−5 1.07× 10−5 1.87× 10−17 0 1.78× 10−7 1.0× 10−9
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Table 6. Statistical diagnostics on fitting results. Set C of the initial points and 250 mg/dL glucose
concentrations were considered.

ε∞ εs τ (s) α σs (S/m) RMSRE

xtrue 2.31 73.3 8.76× 10−12 0.1 1.97 -

x̄
Cole–Cole LMA 2.31 73.3 8.76× 10−12 0.1 1.97 1.6× 10−24

VPA 4.12 79.7 1.39× 10−11 0.181 1.88 14

Debye LMA 12.9 71.8 1.08× 10−11 0 2.01 1.07
VPA 12.9 71.8 1.08× 10−11 0 2.01 1.07

s
Cole–Cole LMA 1.81× 10−11 1.63× 10−12 3.27× 10−24 1.23× 10−13 5.58× 10−14 4.03× 10−23

VPA 4.59 13.9 1.14× 10−11 0.168 0.18 28.6

Debye LMA 0.000136 2.32× 10−5 4.08× 10−17 0 3.89× 10−7 1.36× 10−9

VPA 6.15× 10−5 1.05× 10−5 1.85× 10−17 0 1.76× 10−7 9.66× 10−10

4. Discussion

In this paper, we faced the problem of fitting the dielectric spectrum of a blood sample
in order to estimate the parameters of the single-pole Debye model and the single-pole
Cole–Cole model. In particular, we compared the performance of two different algorithms,
LMA and VPA, in terms of accuracy and precision with respect to the starting points of
the parameters.

Compared to the results of the previous study [25], the performance of both algorithms
improved significantly by introducing constraints on the parameters to be reconstructed.
This prompted us to assess the algorithms in even worse cases, taking initial points fur-
ther and further away from the solution of the optimization problem. In consideration
of the shown results, we can say that, in the tests performed with the updated versions
of the algorithms, LMA was more stable than VPA and, as before, was considerably
faster. The slowness of VPA is due to the large number of measurement points consid-
ered (n = 1000), which makes the computation of SVDs (Singular Value Decomposition)
particularly time consuming.

The results are promising and research will continue by evaluating algorithms and
their variants in increasingly realistic scenarios, adding noise to synthetic data, and also
considering dielectric spectra of other biological tissues.
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