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Abstract: In a multi-agent system, multi-job assignment is an optimization problem that seeks to
minimize total cost. This can be generalized as a complex problem in which several variations of
vehicle routing problems are combined, and as an NP-hard problem. The parameters considered
include the number of agents and jobs, the loading capacity, the speed of the agents, and the sequence
of consecutive positions of jobs. In this study, a deep neural network (DNN) model was developed
to solve the job assignment problem in a constant time regardless of the state of the parameters. To
generate a large training dataset for the DNN, the planning domain definition language (PDDL)
was used to describe the problem, and the optimal solution that was obtained using the PDDL
solver was preprocessed into a sample of the dataset. A DNN was constructed by concatenating the
fully-connected layers. The assignment solution obtained via DNN inference increased the average
traveling time by up to 13% compared with the ground cost. As compared with the ground cost,
which required hundreds of seconds, the DNN execution time was constant at approximately 20 ms
regardless of the number of agents and jobs.

Keywords: multi-agent system; assignment problem; vehicle routing problem; planning domain
definition language; deep neural network

1. Introduction

In a multi-agent system, the job assignment problem between multiple agents and
jobs is a combinational optimization problem that minimizes the total cost of the traveling
time or distance.

There are multiple agents and jobs in the job assignment problem, and each agent
and job is in a specific two-dimensional position. Each agent has a different movement
speed and loading capacity for the allocated job. A job is an ordered sequence that results
in movement from a starting position to a target position. Agents can select several jobs
that are within their loading capacity. A robot, for example, may move multiple objects, or
a worker may receive multiple delivery requests. When all the jobs have been moved to
their target location and are completed, the allocation between the agents and the jobs aims
to minimize the sum of the time spent traveling, which is calculated based on each agent’s
moving speed, or the time spent on the last completed task.

This multi-parameter allocation problem can be generalized as the vehicle routing
problem (VRP). Since the VRP was first proposed [1], VRP with pickup and delivery
(VRPPD) [2,3], capacitated VRP (CVRP) [4], open VRP (OVRP) [5], multi-depot VRP
(MDVRP) [6,7], and many other variants have been investigated.

An agent in VRPPD must handle multiple sequential jobs from specific start (pickup)
locations to other destination (delivery) locations. In the CVRP, each agent with the
same capacity is assigned a set of jobs to achieve minimum-cost routes that originate and
terminate at a depot. The OVRP is similar to the CVRP, but unlike the CVRP, an agent does
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not have to return to a depot. As a result, the route terminates when the last job is completed.
The MDVRP extends the CVRP by allowing depots to be placed in multiple locations.

This study’s allocation problem is a combination of all of the aforementioned condi-
tions, which reflect a real-world scenario. Based on the problem definition, all jobs should
be selected only once; one job only moves from the starting position to the target position;
multiple agents can select and process any number of jobs; and there is no need to return
to the agent’s starting position when the jobs have been completed. Therefore, this can
be regarded as a variation of the vehicle routing problem wherein an open VRP in which
vehicles with different loading capacity limitations start from multiple depots pick up
at a specific location in the job and deliver to another location, and the pickup of other
jobs may occur between the pickup and delivery of a job. This is an NP-hard problem
known as the multi-depot capacitated open vehicle routing problem with pickup and
delivery (MDCOVRPPD).

In previous studies that applied a metaheuristic algorithm to VRP variants such as
MDVRP or VRPPD, the computation time increased by hundreds of seconds as the number
of agents and jobs increased [8–10]. As such, the direct application of the algorithm to
problem-solving in a real-world environment is difficult.

In this study, we designed a deep neural network (DNN) that infers a result close
to the optimal solution to solve the subproblem with a time complexity of O(1) for the
MDCOVRPPD that considers several complex parameters. The results indicate that the
proposed approach can be applied to real-world scenarios by solving the allocation problem
within a specified time (e.g., tens of microseconds). The number of input agents and jobs
for the inference of a DNN is limited owing to the limitations of the computing resources
used in this study. Many agents and jobs in the real world are handled by subsets using
divide-and-conquer methods.

The following is a summary of the study’s contributions:

• This study entailed the development of a DNN model for solving the assignment
problem between multiple agents and multiple jobs in a variant of the VRP with real-
world parameters. As compared to the previously proposed methods, the proposed
method executes quickly without sequential procedures.

• We devised a method for generating a dataset for training the proposed deep neural
network model by using the planning domain definition language (PDDL). Various
parameter types were defined and relationships between parameters were expressed
in the PDDL description of the domain. By running the solver, a large number of data
samples can be acquired from multiple PDDL problem descriptions with different
initial values and goals.

In this paper, related works are discussed in Section 2. Section 3 defines the job as-
signment problem and describes the implementation of the PDDL to generate assignments
based on global search, which is created by varying multiple parameters in many instances.
Section 4 describes the DNN structure and the specification of the training dataset. Section 5
outlines the proposed DNN inference result by comparing it with the ground cost. Finally,
in Section 6 we present the main conclusions and outline our future work.

2. Related Works

In this section, we briefly survey related studies, including VRP variants, PDDL, and
machine learning for solving the assignment problem.

2.1. Vehicle Routing Problem and Variants

The VRP is defined as the optimal set of routes for a fleet of vehicles and agents that
travel to perform delivery to a given customer. This is referred to as a combinational integer
optimization problem [11]. The VRP is a generalization of the traveling salesman problem;
as it is NP-Hard, polynomial-time algorithms are unlikely to exist unless P = NP. Despite
the computational complexity of these problems, novel heuristic methods are able to obtain
near-optimal solutions within seconds for a few specific datasets.
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There are several VRP variants [12–14] as follows:

• Multi-depot vehicle routing problem (MDVRP): In this variant, multiple vehicles
leave from different depots and return to their original depots at the end of their
assigned jobs.

• Capacitated vehicle routing problem (CVRP): This variant is a particular case of the MD-
VRP in which the number of depots is one. Each vehicle has a limited carrying capacity.

• Vehicle routing problem with pickup and delivery (VRPPD): Several items/jobs must
be moved/processed from certain pickup locations to other delivery locations. The
objective of the VRPPD is to determine a set of optimal routes for the vehicle to visit
the pickup and delivery locations.

• Open vehicle routing problem (OVRP): In this variant, the vehicle does not have to
return to the depot.

Given that methods with exact solutions such as vehicle flow formulations, commodity
flow formulations, and set partitioning problems [15] generally fail to solve real-world
problems within feasible computation time frames, the emphasis of VRP solution methods
has shifted to heuristic approaches. However, there is no guarantee of quality solutions.

Heuristic algorithms for VRP can be categorized into constructive and improvement
methods. Constructive methods are typically quick, greedy approaches. Improvement
methods are more sophisticated and typically require a VRP solution as the input [16].
Well-known constructive methods for VRP include the nearest neighbor heuristic algorithm,
sweep algorithm [17], and the cluster-first path-second method [18]. Heuristic improvement
methods utilize a strategy called metaheuristics, iteratively moving from one solution to
a new solution via modifications. The metaheuristics for the VRP include simulated
annealing [19], tabu search [20], genetic algorithms [21], memetic algorithms [22], and
neural networks [23].

2.2. Planning Domain Definition Language

The PDDL is an action-oriented language inherited from the well-known STRIPS [24]
formulations of planning problems [25]. It implements a simple standardization of the
syntax for expressing this behavioral semantics, which uses pre- and post-conditions to
describe the applicability and effectiveness of behaviors. A planning problem is represented
by the pairing of a domain description with a problem description. A domain description is
sometimes coupled with many different problem descriptions to create different planning
problems. An instance of a problem description includes the parameterized actions that
characterize domain behaviors based on the description of objects, initial conditions, and
goals. The pre- and post-conditions of actions are expressed as logical sentences con-
structed from predicates, arguments, and logical operators. In [26–28], PDDL models were
developed for several VRP variants, such as CVRP and VRPTW, and their performances
were compared.

2.3. Machine Learning for Solving the Assignment Problem

Recently, with advances in machine learning methodologies, many researchers have
attempted to solve combinatorial optimization problems using only methods based on this
approach, without mathematical models or metaheuristic algorithms.

In one study [29], to solve a large-scale VRP, a training dataset was created by merging
several outputs that were computed using a heuristic solver based on small, partitioned
problem instances with approximately 100 jobs/cities. Using the machine learning model,
the execution time was reduced from tens of minutes to several seconds, while maintaining
a similar cost compared to the previous heuristic solver.

In another study [30], the linear sum assignment problem was decomposed into
multiple sub-assignment problems, allowing for the reconstruction of the problem to
classify subproblems and simultaneously reduce the size of the DNN. The accuracy of the
DNN model of the feed-forward neural network was approximately 10% lower than that
of the Hungarian algorithm. However, the execution time was reduced by 1%.
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3. Definition and PDDL Description of the Job Assignment Problem between
Multiple Agents and Multiple Jobs
3.1. Problem Definition for MDCOVRPPD

There are many agents (Wj, j = 1, 2, . . . , m), and many jobs (Jk, k = 1, 2, . . . , n) are
arranged in two-dimensional space. In the initial position, the agent (Wj) has a moving
speed (Vj), energy level (Bj), residual performance (Rj), and maximum loading capacity (Lj)
for multiple job selections. Job (Jk) is a sequence that moves from the starting position (Sk)
to the target position (Tk), and a sequence of other jobs may overlap during the execution
of the sequence of a job. All jobs must be selected and processed, but not all agents must do
the job. The agent may select fewer jobs than their maximum loading capacity and, in some
cases, may not select any jobs. The agent can move to the target position of the current job
or the starting position of another job after arriving at the starting position of the selected
job. According to this selection, the time of travel was calculated as the distance between
the positions divided by the moving speed of each agent.

In the case of a general CVRP, the parameters that define the problem are the num-
ber of customers/jobs (N), the number of vehicles/agents (K), and the capacity of the
vehicle/agent (C). (C) has a fixed value based on (N) and (K).

In contrast, the parameters considered in the instance of MDCOVRPPD are the number
of jobs (N), number of agents (K), payload loading capacity of an agent (L), velocity of an
agent (V), starting position of a job (S), target position of a job (T), energy level of an agent
(B), and residual performance of an agent (R). When creating each problem instance, all
parameters were randomly generated within a specified range, except for (N) and (K).

Figure 1 shows an example of a job assignment. When the number of agents is three
and the number of jobs is four, job {J1, J2, J4} is assigned to agent {W1}, job {J3} is assigned
to agent {W2}, and agent {W3} is not assigned a job.
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Figure 1. An example of the multi-agent (M = 3) and multi-job (N = 4) assignment problem.

If agent Wi selects N jobs, the maximum number of state transitions is calculated in
Equation (1) as follows:

#MAXTR |Wi
= N ∗ (N + 1) ∗ (N − 1)! = (N + 1)! (1)

The actual number of state transitions is smaller than that of Equation (1) because the
target position in which the starting position is not selected in the sequence for the state
transition cannot be changed.

Figure 2 shows an example of a state transition diagram. Agent W1 can display a path of
state transitions that can be selected for three jobs {J1(S1 → T1), J2(S2 → T2), J4(S4 → T4)}.
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The sparse state-transition matrix M for the moving path of agent W1 is illustrated in
Figure 3. The values of gray and blank in the matrix are zero (Mij = 0).
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The total cost of the agent W1’s traveling path is as shown in Equations (2) and (3).

total cost |W1
= ∑ c

(
Tri, Trj

)
|W1

= c(W1, S1) |W1
+ c(S1, S2) |W1

+ c(S2, T1) |W1
+

c(T1, S4) |W1
+ c(S4, T4) |W1

+ c(T4, T2) |W1
+

c(T2, END) |W1

(2)

c
(
Tri, Trj

)
|W1

=


0 ; Mij = 0, Trj = END√
(Tri x−Trj x)

2
+
(

Triy−Trjy

)2

V1
; Mij 6= 0

(3)

3.2. PDDL Description for MDCOVRPPD

When an agent selects an arbitrary number of jobs within its maximum loading
capacity, there are several scenarios in which it can transition from one state to the next, as
illustrated in Figure 2. The state-transition cost of the agent is calculated as different values
when moving between the same positions, because it is expressed in time according to the
speed of each agent. Therefore, it is necessary to calculate and compare the sum of the total
costs by searching every sequence for a path that passes through all states only once.

The PDDL is a standardized language for generating action plans and describing
relationships for various parameters. The domain description, for example, defines agent,
job, and position as types. The domain description describes the expressions for the agent’s
position, the position of the job, whether the agent is moved to the start or target position
of the job, and actions that create pre- and post-conditions using these expressions. The
problem description includes the parameterized actions that characterize domain behaviors
based on the description of objects, initial conditions, and goals. A problem description
instance, for example, has initial conditions such as the number of agents, the number of
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jobs, the starting positions of agents and jobs, and a goal condition that all jobs reach a
target position.

The definitions of the types and predicates in the PDDL domain description for the
assignment problem are shown in Algorithm 1. Appendix A presents a detailed description
of the MDCOVRPPD planning domain. Each agent and job has its starting position and
attempts to match all possible agents and jobs. The agent moves from its current location
to the starting position of the first job in a sequence, and then to the target position for the
job or to the starting position of the other jobs. To facilitate the movement of the agent
to the target job position, it is necessary to pick the state of the starting position of the
corresponding job.

Algorithm 1 Types and predicates definition of MDCOVRPPD planning domain description.

(define (domain MDCOVRPPD)
(:types job agent position)
(:predicates

(agent_at ?a—agent ?pt—position)
(job_at ?jb—job ?pt—position)
(job_targetpos ?jb—job ?pt—position)
(matched_job_with_agent ?jb—job ?a—agent)
(moved_agent_to_job_startpos ?a—agent ?jb—job)
(moved_agent_to_job_targetpos ?a—agent ?jb—job)
(picked_job ?jb—job ?a—agent)
(placed_job ?jb—job)

)

The function definitions in the PDDL domain are listed in Algorithm 2. For each
agent, the speed of movement and the maximum capacity for the number of selectable
jobs are specified, and the distances between the positions of all the agents and the jobs
are precalculated and recorded in the PDDL problem description. When searching the
sequence of several jobs selected by the agent, it determines whether the job is within each
agent’s loading capacity.

Algorithm 2 Function definition of MDCOVRPPD planning domain description.

(:functions
(agent_velocity ?a—agent)
(agent_loadingspace_capacity ?a—agent)
(distance_between_pts ?pt1—position ?pt2—position)
(total_cost)

(count_loaded_jobs ?a—agent)
)

An example of the result of job assignment using the PDDL implementation when
the number of agents is six and the number of jobs is five is shown in Algorithm 3. Jobs
{J2, J4} were assigned to agent {W2}, and agent {W4} was not assigned any jobs.

Algorithm 3 An example of the job assignment result for MDCOVRPPD.

match_job_with_agent, job_03, agent_06
match_job_with_agent, job_05, agent_03
match_job_with_agent, job_02, agent_02
match_job_with_agent, job_04, agent_02
match_job_with_agent, job_01, agent_01
move_agent_to_job_startpos, agent_03, job_05
move_agent_to_job_startpos, agent_02, job_04
move_agent_to_job_startpos, agent_06, job_03
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move_agent_to_job_startpos, agent_01, job_01
pick_job, job_03, agent_06
move_agent_to_job_targetpos, agent_06, job_03
pick_job, job_04, agent_02
move_agent_to_job_startpos, agent_02, job_02
pick_job, job_01, agent_01
move_agent_to_job_targetpos, agent_01, job_01
pick_job, job_05, agent_03
move_agent_to_job_targetpos, agent_03, job_05
place_job, job_03, agent_06
place_job, job_01, agent_01
pick_job, job_02, agent_02
move_agent_to_job_targetpos, agent_02, job_04
place_job, job_05, agent_03
place_job, job_04, agent_02
move_agent_to_job_targetpos, agent_02, job_02
place_job, job_02, agent_02

4. Design of Deep Neural Network
4.1. Generation of Raw Samples for the Training Dataset

The variable parameters in the PDDL domain description are the two-dimensional
position (SW) and moving speed (Vj), the maximum number of multiple job selections (Lj),
and the two-dimensional starting (Sk) and target (Tk) positions of each job (Jk).

The PDDL problem description can be generated in large quantities by varying the
values of several parameters considered in the assignment problem. In this study, the
number of agents and jobs was set from 1 to 10, and the starting positions of the agents and
the jobs generated arbitrary coordinates within 100 m in width and height. The moving
speed of the agent was set at a ratio between 0.8 and 1.0, and the maximum number of
the agent’s job selection was set to be smaller than the number of jobs. The assignment
results of agents and jobs are obtained by the PDDL solver, which uses the CPLEX-based
OPTIC [31].

A total of 783,239 samples was generated for the raw data of the assignment to create
the training dataset of the DNN. Figure 4 shows the average generation time of the PDDL
solver for different numbers of agents and jobs. The generation time of the PDDL solver
depends on the values of the parameters in each case and is calculated for up to 15 min
to obtain samples of the dataset. If a sample that has elapsed for more than 15 min for
generation is considered to be unsuccessful, it is excluded from the dataset.
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The PDDL method can be used to obtain results for the assignment problem. However,
as the number of agents and jobs increases, the execution time of the PDDL solver increases
rapidly. In a real-world application, it is necessary to solve the problem within a few
seconds or less, depending on the required conditions, and a method that requires tens to
hundreds of seconds to solve the problem is not practical.

In this study, a DNN was utilized to reduce the execution time of the search and to
solve the assignment problem. The search time can be reduced to O(1) by inferring that
the DNN was trained using the dataset generated under the condition that the subproblem
of the number of agents and jobs is within a maximum of 10.

4.2. Structures of the Training Dataset

The dataset for DNN training was created by preprocessing a large amount of raw
data. The positions of the agents and jobs in the training dataset were scaled down to a
size of 32 × 32. All agents and jobs were adjusted such that their positions did not overlap.
The depth of the training dataset was 37 layers, and detailed information for each layer is
shown in Table 1.

Table 1. Data Information for Each Layer in the Depth Direction of the Dataset.

Number of Depth Layers Data Information

1 Worker’s unique ID ( (
0∼(m−1))

M )

2 Worker’s velocity ratio

3 Worker’s loading capacity ratio

4–13 Each worker’s sparse distance map between a worker
and all jobs

14 Job’s unique ID ( (
0∼(n−1))

N ) at start position

15–24 Each job’s sparse distance map between all workers and
jobs from start position

25 Job’s unique ID ( (
0∼(n−1))

N ) at target position

26–35 Each job’s sparse distance map between all workers and
jobs from target position

36 All one value

37 All zero value

The target label data for multiclass classification is expressed as a two-dimensional
matrix in which up to ten agents and ten jobs are matched, and labels are arranged in a
one-dimensional array by concatenating each row of the matrix in succession.

4.3. Architecture of the Deep Neural Network

The proposed DNN is a dense-concatenate network (DeConNet) wherein the output
of the previous dense layer is concatenated to the current layer and is connected to the
input of the next layer. Its network structure is shown in Figure 5. The advantage of this
network structure is that more layers can be stacked as the effect of the gradient vanishing
problem is reduced. Deeper layers enable the neural network model to comprehend and
elucidate complex domain contexts.

The architecture described in Table 2 utilizes the idea of DenseNet [32], which continu-
ously connects the gradient calculated in the upper layer to the lower layer and is known
to improve the vanishing gradient problem and feature propagation.
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Table 2. DeConNet architecture for MDCOVRPPD dataset.

Layers Layer Size
(Output Shape)

Input (16× 16× 37)

Dense-concatenate
Block 1

concatenatei

([
Dense(74)

concatenatei−1

])
i=1...10

(16× 16× (74i + 37))

Dense-concatenate
Block 2

concatenatei

([
Dense(111)

concatenatei−1

])
i=1...10

(16× 16× (111i + 777))

Dense-concatenate
Block 3

concatenatei

([
Dense(148)

concatenatei−1

])
i=1...10

(16× 16× (148i + 1887))

Dense-concatenate
Block 4

concatenatei

([
Dense(111)

concatenatei−1

])
i=1...10

(16× 16× (111i + 3367))

Dense-concatenate
Block 5

concatenatei

([
Dense(74)

concatenatei−1

])
i=1...10

(16× 16× (74i + 4477))

Dense-concatenate
Block 6

concatenatei

([
Dense(37)

concatenatei−1

])
i=1...20

(16× 16× (37i + 5217))

Dense-concatenate
Block 7

concatenatei

([
Dense(18)

concatenatei−1

])
i=1...10

(16× 16× (18i + 5957))

Dense
Block (16× 16× 100)

Classification
Layer

Flatten

110D f ully connected, so f tmax or sigmoid

4.4. Training the Deep Neural Network

To train the DNN, each sample in the dataset was augmented by mixing the rotation
for different directions, in addition to vertical and horizontal inversion. The number of
augmented data was approximately 6,264,000 samples, which was eight times that of the
original dataset.

Figure 6 shows the loss and accuracy of the epoch in the training and validation of the
DNN. Given that the number of epochs was approximately 100 K, the loss decreased and
the accuracy increased rapidly.
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5. Experimental Results
5.1. Test Dataset of DNN

In the test dataset used to evaluate the performance of the DNN, test samples were
generated for all cases within the maximum number of agents and jobs of 10, and the total
number of samples was approximately 67,430. Table 3 lists the ground cost values for the
test dataset. Table 3a represents the maximum (worst) and minimum (best) average travel
times of the agent when all jobs are assigned to one agent. The left column of Table 3b is the
sum of the average travel times of all agents when jobs are assigned to multiple agents. The
right column of Table 3b shows the bottleneck of the average travel time of the agent, which
was the longest when all agents started at the same time and completed their assigned
jobs. Table 3c shows the average travel time reduction ratio when several agents divide
and perform multiple jobs versus when one agent executes all jobs.

Table 3. Ground cost value of the test dataset.

Number of
Agents (j) and

Jobs (k)

Cost (Average Travel Time [s])

An Agent
Does All the Work

(a)

Multi-Agent
Does Their Work

(b)

Average Travel Time
Reduction Ratio

(c)

j k Worst Best Sum Bottleneck S/Best B/Best

1 1 14.7 14.7 14.7 14.7 1.00 1.00
1 10 131.6 131.6 61.2 61.2 0.47 0.47

3 3 49.2 30.0 36.7 10.9 1.22 0.36
3 10 103.9 61.3 78.4 16.0 1.28 0.26

5 5 79.8 39.4 53.9 8.3 1.37 0.21
5 10 107.2 58.7 86.2 8.9 1.47 0.15

8 5 80.8 38.3 55.7 7.5 1.45 0.20
8 8 109.4 51.7 81.1 6.6 1.57 0.13
8 10 110.4 58.1 93.1 6.3 1.60 0.11

9 5 82.3 38.6 56.7 7.5 1.47 0.19
9 10 111.6 58.5 94.2 5.9 1.61 0.10

10 3 52.6 27.6 36.8 8.6 1.33 0.31
10 5 83.4 38.5 56.0 6.9 1.45 0.18
10 10 111.1 57.3 94.4 5.5 1.65 0.10
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5.2. Inference Result of DNN

The hardware specifications used in the experiment for inference were a ASUS GL504G
laptop with an Intel® Core™ i7-8750H CPU and an NVIDIA GeForce RTX2070 GPU. Table 4
shows the results of comparing the ground cost of the test dataset to the prediction cost of
the DNN. The left column of Table 4a is the sum of the average travel times of all the agents
for the assignment of the PDDL solver in the test dataset. The right column of Table 4a
shows the agent’s bottleneck of the longest average travel time when all agents started
simultaneously and completed all jobs. Table 4b shows the sum and bottleneck of the
average travel time of all agents for the assignment result based on the predictions of the
DNN. Table 4c presents the reduction ratio of the average travel time for the assignment
based on the DNN prediction or PDDL solver calculation.

As a result of the assignment between multiple agents and multiple jobs by inference
of the DNN, the average travel time increased by a maximum of 13% in the case of a
bottleneck compared with the ground truth. The result of the DNN inference is sometimes
better than the cost value of the ground truth in the case of the sum of the average travel
times, indicating that the PDDL solver’s job assignment was not optimal globally.

Table 5 shows the inference computation time for the DNN, which has a time com-
plexity of O(1) because it requires an average of approximately 20 ms of constant time,
regardless of the number of agents and jobs.

Table 4. Result of comparing the ground cost of the test dataset with the prediction cost of the
DeConNet.

Number of
Agents (j) and

Jobs (k)

Cost (Average Travel Time [s])

Ground Cost
in the Test Dataset

(a)

Prediction Cost
of the DeConNet

(b)

Average Travel Time
Reduction Ratio

(c)

j k GS GB PS PB PS/GS PB/GB

1 1 14.7 14.7 14.7 14.7 1.00 1.00
1 10 61.2 61.2 61.2 61.2 1.00 1.00

3 3 36.7 10.9 36.6 12.0 1.00 1.10
3 10 78.4 16.0 79.7 17.2 1.02 1.09

5 5 53.9 8.3 54.3 8.9 1.01 1.07
5 10 86.2 8.9 85.7 9.7 0.99 1.09

8 5 55.7 7.5 55.3 7.8 0.99 1.03
8 8 81.1 6.6 79.9 6.9 0.98 1.04
8 10 93.1 6.3 91.8 6.8 0.99 1.08

9 5 56.7 7.5 56.2 7.6 0.99 1.01
9 10 94.2 5.9 94.0 6.4 0.99 1.10

10 3 36.8 8.6 36.7 9.1 0.99 1.04
10 5 56.0 6.9 55.9 7.5 1.00 1.08
10 10 94.4 5.5 93.6 6.1 0.99 1.13
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Table 5. Comparison of the execution time [s] of the ground cost to the prediction time of the
DeConNet.

Number of
Agents (j) and

Jobs (k)

Time (Algorithm Running Time [s])

PDDL Solver
(OPTIC)

(a)

DeConNet
(b)

Runtime
Reduction Ratio

(c)

j k TG TP TP/TG

3 10 7.48× 100 2.59× 10−2 3.46× 10−3

5 10 1.23× 102 2.50× 10−2 2.03× 10−4

8 5 3.49× 100 1.41× 10−2 4.04× 10−3

8 8 1.01× 102 1.52× 10−2 1.50× 10−4

8 10 4.36× 102 2.08× 10−2 4.77× 10−5

9 5 8.56× 100 2.10× 10−2 2.45× 10−5

9 10 5.62× 102 2.48× 10−2 2.45× 10−3

10 5 1.54× 101 1.40× 10−2 9.09× 10−4

10 10 6.21× 102 2.49× 10−2 4.01× 10−5

6. Conclusions and Future Work

In this study, we developed a deep neural network to solve the job assignment problem
between multiple agents and multiple jobs for a multi-agent system within a constant time.

To create a training dataset for the deep neural network, the PDDL domain describes
the environment defined by various parameters for agents and jobs; the PDDL problem is
described by varying the values of the parameters; and finally, the PDDL solver generates
the assignment problem result for each case.

Our test results showed that the job assignment based on the inference of the deep
neural network increased by up to 13% compared with the results of the PDDL solver
in the case of a bottleneck. The proposed DNN method had a constant execution time
(approximately 20 ms), whereas that of the algorithm used for the PDDL solver or the
metaheuristic method in other studies increased rapidly according to the number of agents
and jobs, and other parameters.

In future work, it will be necessary to reduce the size of the network and improve the
deep neural network to solve the assignment problem. This includes the use of extended
parameters to better represent real-world situations. We also intend to implement a deep
neural network that predicts the order of execution of multiple jobs assigned to each agent
in order to help agents perform their tasks.
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Appendix A

Algorithm A1 Planning domain description of MDCOVRPPD.

(define (domain MDCOVRPPD)
(:requirements :strips :typing :action-costs :disjunctive-preconditions :durative-actions)
(:types job agent position)
(:predicates

(agent_at ?a—agent ?pt—position)
(job_at ?jb—job ?pt—position)
(job_targetpos ?jb—job ?pt—position)
(matched_job_with_agent ?jb—job ?a—agent)
(moved_agent_to_job_startpos ?a—agent ?jb—job)
(moved_agent_to_job_targetpos ?a—agent ?jb—job)
(picked_job ?jb—job ?a—agent)
(placed_job ?jb—job)

)
(:functions

(agent_id ?a—agent)
(agent_velocity ?a—agent)
(agent_loadingspace_capacity ?a—agent)
(agent_battery_level ?a—agent)
(agent_performance_residual ?a—agent)
(job_id ?jb—job)
(distance_between_pts ?pt1—position ?pt2—position)
(total_cost)
(count_loaded_jobs ?a—agent)

)
(:durative-action match_job_with_agent

:parameters (?jb—job ?jb_pt—position ?a—agent ?a_pt—position)
:duration (= ?duration 1)
:condition (and

(at start (job_at ?jb ?jb_pt))
(at start (agent_at ?a ?a_pt))
(over all (< (count_loaded_jobs ?a) (agent_loadingspace_capacity ?a)))
(over all (> (agent_battery_level ?a) 0.2)) )

:effect (and (at start (matched_job_with_agent ?jb ?a)))
)
(:durative-action move_agent_to_job_startpos

:parameters (?a—agent ?a_pt—position ?jb—job ?jb_pt—position)
:duration (= ?duration (/ (distance_between_pts ?a_pt ?jb_pt) (* (agent_velocity ?a)

(* (agent_performance_residual ?a) (agent_performance_residual ?a)))))
:condition (and

(at start (matched_job_with_agent ?jb ?a))
(at start (agent_at ?a ?a_pt))
(at start (job_at ?jb ?jb_pt))
(at start (> (agent_battery_level ?a) 0.2)) )

:effect (and
(at start (not (agent_at ?a ?a_pt)))
(at start (not (matched_job_with_agent ?jb ?a)))
(at start (moved_agent_to_job_startpos ?a ?jb))

(at end (increase (total_cost) (/ (distance_between_pts ?a_pt ?jb_pt) (*
(agent_velocity ?a) (* (agent_performance_residual ?a) (agent_performance_residual ?a)))) ))

(at end (decrease (agent_battery_level ?a) (/ (distance_between_pts ?a_pt ?jb_pt)
5000)))

(at end (agent_at ?a ?jb_pt)) )
)
(:durative-action pick_job
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:parameters (?jb—job ?a—agent ?jb_start_pt—position)
:duration (= ?duration 60)
:condition (and

(at start (moved_agent_to_job_startpos ?a ?jb))
(at start (job_at ?jb ?jb_start_pt))
(at start (agent_at ?a ?jb_start_pt))
(over all (< (count_loaded_jobs ?a) (agent_loadingspace_capacity ?a))) )

:effect (and
(at start (not (moved_agent_to_job_startpos ?a ?jb)))
(at start (not (job_at ?jb ?jb_start_pt)))
(at start (picked_job ?jb ?a))
(at end (increase (count_loaded_jobs ?a) 1))
(at end (increase (total_cost) 60)) )

)
(:durative-action move_agent_to_job_targetpos

:parameters (?a—agent ?a_pt—position ?jb—job ?jb_pt—position)
:duration (= ?duration (/ (distance_between_pts ?a_pt ?jb_pt) (* (agent_velocity ?a)

(* (agent_performance_residual ?a) (agent_performance_residual ?a)))))
:condition (and
(at start (picked_job ?jb ?a))
(at start (agent_at ?a ?a_pt))
(at start (job_targetpos ?jb ?jb_pt))
(at start (> (agent_battery_level ?a) 0.2)) )

:effect (and
(at start (not (picked_job ?jb ?a)))
(at start (not (agent_at ?a ?a_pt)))
(at start (not (moved_agent_to_job_startpos ?a ?jb)))

(at start (moved_agent_to_job_targetpos ?a ?jb)) (at end (increase
(total_cost) (/ (distance_between_pts ?a_pt ?jb_pt) (* (agent_velocity ?a) (*
(agent_performance_residual ?a) (agent_performance_residual ?a))))))

(at end (decrease (agent_battery_level ?a) (/ (distance_between_pts ?a_pt ?jb_pt)
5000)))

(at end (agent_at ?a ?jb_pt)) )
)
(:durative-action place_job

:parameters (?jb—job ?a—agent ?jb_target_pt—position)
:duration (= ?duration 60)
:condition (and

(at start (moved_agent_to_job_targetpos ?a ?jb))
(at start (job_targetpos ?jb ?jb_target_pt))
(at start (agent_at ?a ?jb_target_pt)) )

:effect (and
(at start (not (moved_agent_to_job_targetpos ?a ?jb)))
(at start (not (job_targetpos ?jb ?jb_target_pt)))
(at end (placed_job ?jb))
(at end (decrease (count_loaded_jobs ?a) 1))
(at end (increase (total_cost) 60)) )

)
)
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