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Abstract: Theinference stage can be accelerated significantly using a Non-Autoregressive Transformer
(NAT). However, the training objective used in the NAT model also aims to minimize the loss
between the generated words and the golden words in the reference. Since the dependencies between
the target words are lacking, this training objective computed at word level can easily cause semantic
inconsistency between the generated and source sentences. To alleviate this issue, we propose a new
method, Sentence-Level Semantic Agreement (SLSA), to obtain consistency between the source and
generated sentences. Specifically, we utilize contrastive learning to pull the sentence representations
of the source and generated sentences closer together. In addition, to strengthen the capability of the
encoder, we also integrate an agreement module into the encoder to obtain a better representation
of the source sentence. The experiments are conducted on three translation datasets: the WMT
2014 EN → DE task, the WMT 2016 EN → RO task, and the IWSLT 2014 DE → DE task, and
the improvement in the NAT model’s performance shows the effect of our proposed method.

Keywords: machine translation; non-autoregressive; contrastive learning; semantic agreement

1. Introduction

Over the years, tremendous success has been achieved in encoder–decoder based neu-
ral machine translation (NMT) [1–3]. The encoder maps the source sentence into a hidden
representation, and the target sentence is generated by the decoder from the hidden repre-
sentation in an autoregressive method. This autoregressive method has assisted the NMT
model in obtaining high accuracy [3]. However, because it needs the previously predicted
words as inputs, this also limits the speed of the inference stage. Recently, Gu et al. [4]
proposed a non-autoregressive transformer (NAT) to break the limitation and reduce the in-
ference latency. In general, the NAT model also utilizes the encoder–decoder framework.
However, by removing the autoregressive method in the decoder, the NAT model can
significantly expedite the decoding stage. Yet, the performance of the NAT model still lags
behind the NMT model.

During training, the NAT model, as the NMT model, uses a word-level cross-entropy
to optimize the whole model. Nevertheless, under the background of non-autoregressive
translation, the dependencies in the target words cannot be learned properly with the word-
level cross-entropy [5]. Although it encourages the NAT model to generate the correct
token at each position, due to the lack of target dependency, the NAT model cannot
consider global correctness. The NAT model cannot efficiently model the target dependency
well, and the cross-entropy loss further weakens this feature, causing undertranslation
or overtranslation [5]. Recently, some research has proposed ways to alleviate this issue. For
example, Sun et al. [6] utilized a CRF module to model the global path in the decoder, and
Shao et al. [5] used a bag-of-words loss to encourage the NAT model to capture the target
dependency. However, this previous research only considered global or partial modeling
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of dependency on the target side. Another issue that cannot be ignored is that the semantics
of the generated sentence cannot be guaranteed to be consistent with the source sentence.

In contrast, in human translation, the translator translates a sentence by its sentence
meaning, instead of the word-by-word meaning. Inspired by this process, the Sentence-
Level Semantic Agreement (SLSA) method is proposed in this paper to shorten the distance
between the source and generated sentence representations. SLSA utilizes contrastive
learning to ensure the semantic consistency between the source and generated sentences.
In addition, SLSA also adapts contrastive learning in the encoder to ensure the encoder
correctly transforms the source sentence into a shared representation space, which enables
the decoder to extract the information from it more easily.

The performance of the SLSA is evaluated by experiments on three translation bench-
marks, the WMT 2014 EN→ DE task, the WMT 2016 EN→ RO task, and the IWSLT 2014
DE→ EN task. The results indicate that a significant improvement in the NAT model is
achieved via our proposed method.

The remainder of this paper is structured as follows: Section 2 describes the back-
ground and baseline model of our work. Section 3 describes our proposed method in detail.
In Section 4, we describe the conducted experiments and analyze the results. Section 5 pro-
vides an overview of related works. Finally, we conclude our work and present an outlook
for future research.

2. Background
2.1. Non-Autoregressive Translation

By generating the target words in one shot, Non-Autoregressive Translation [4] is
utilized to speed up the inference stage. The vanilla NAT model adapts a similar encoder–
decoder framework to that used in autoregressive translation. Furthermore, the encoder
used in the NAT model remains the same as the transformer [3]. Different from the
autoregressive translation, the NAT model utilizes a bidirectional mask in the decoder,
on which the non-autoregressive mechanism mainly relies. In addition, because the NAT
model is unable to decide the length of a target sequence, as the autoregressive translation
does effectively, we use a separate predictor to output the length.

Using X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} to denote the source and corre-
sponding target sentences, the NAT model models the target sentence as an independent
conditional probability:

P(Y|X) =
N

∏
t=1

p(yt|X, θ). (1)

In this way, the probability of a word at each position only depends on the represen-
tation of the source sequence, and the parameter θ is learned with the cross-entropy by
minimizing the negative log-likelihood as:

L(θ) = −
T

∑
t=1

logp(yt|X; θ). (2)

During inference, the word with the maximum probability at each position forms
the final translation:

ŷt = argmaxp(yt|X; θ). (3)

2.2. Glancing Transformer

Although the vanilla NAT model can significantly reduce the decoding latency,
the translation accuracy is much lower than that of the autoregressive translation.
To improve the performance, Qian et al. [7] introduced a Glancing Transformer (GLAT).
With GLAT, the gap between the NAT and AT models is narrowed.

The training process of GLAT can be divided into two steps. Firstly, GLAT copies
the input from the source embeddings, feeds it into the decoder, and generates the target
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sentence. Secondly, GLAT computes the distance between the generated target sentence and
the reference sentence. According to the distance, GLAT samples some words from the ref-
erence sentence:

GS = S(Y, D(Y, Ŷ)). (4)

Then the sampled words are combined with the input at the first step. The new input is
then fed into the decoder to perform the second pass. Different from the vanilla NAT model,
GLAT does not compute the loss at each position, but it computes the loss at the position
that is not sampled:

LGT(θ) = ∑
y/∈GS

logp(yt|GS, X; θ) (5)

Although the Glancing Transformer can capture the latent target dependency and
improve the performance of the NAT model, it still uses cross-entropy to train the whole
model and cannot guarantee the semantic agreement between the source and target sen-
tences. In other words, GLAT also faces the same problem: the semantics of the generated
sentence are not consistent with the source sentence.

3. Method

Previous work [8,9] has pointed out the improvements in word alignment, especially
how it can improve the performance of the NAT model. However, the previous work
is mainly based on the word-level semantic alignment. Meanwhile, the effect of self-
attention [3] is to find the nested words in the source sentence for the word in the target
sentence. From the model to the training objective, there is no mechanism to ensure
the semantic alignment between the source and target sentence. In this paper, we attempt
to explore the sentence-level semantic relationship between the source and target sentences.
We propose a novel method, Sentence-Level Semantic Agreement (SLSA), to ensure
the representation of the source and generated sentences is similar.

First, we need to obtain the sentence-level representation of the source and generated
sentences. As pointed out in previous work [10,11], the average of the word-level represen-
tations is a effective way to represent a sentence. Similarly, in machine translation, it is also
a good representation for a sentence [12,13]. So in this work, we also utilize this method
to represent a sentence.

Given a source sentence, we use HE = {h1
E, h2

E, . . . , hm
E } as the word-level representa-

tions output by the top layer of an encoder. Similarly, HD = {h1
D, h2

D, . . . , hn
D} are the word-

level representations output by the top layer of a decoder. The source sentence-level
representation HE is computed as:

HE =
1
m

m

∑
t=1

ht
E. (6)

The generated sentence-level representation HD is computed by the same method:

HD =
1
n

n

∑
t=1

ht
D. (7)

3.1. Semantic Agreement between Source and Generated Sentence

According to the denotation above, the key to the semantic agreement between the
source and generated sentences is minimizing the distance between HE and HD. In
this work, the SLSA uses contrastive loss to bring the representations of the source and
generated sentences close together (Figure 1a) and keep the semantic representations
generated by the encoder and decoder consistent.
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Figure 1. The semantic agreement in our model. (a) is the semantic agreement between the source and
generated sentences. It uses the generated and source sentences as the positive pair and the generated
and randomly sampled source sentences as the negative pair. (b) is the semantic agreement in the
encoder. Different from (a), it only uses the representation output by the encoder. Furthermore,
it utilizes the source and corresponding target sentences as the positive pair and the source and
randomly sampled target sentence as the negative pair. Our model computes the contrastive loss
Le2d and Le2e on the representation of the positive and negative pairs.

The idea of contrastive loss is to minimize the distance between relevant sentences
and maximum the distance between irrelevant sentences. In this section, contrastive
loss is utilized to increase the similarity between the source and generated sentences.
Given a bilingual sentence pair (Xi, Ŷi), which denotes the positive example, a sentence
Xj (i 6= j) is randomly selected to form the negative example (Xj, Ŷi). In this work,
to simplify the implementation, we sample the negative examples from the same batch.
We compute the contrastive loss as:

Le2d = −log
exp(sim(HE(Xi), HD(Ŷi)))/τ

∑j exp(sim(HE(Xj), HD(Ŷi)))/τ
, (8)

in which sim(·) denotes the similarity between two sentences. The difficulty of distin-
guishing between the positive and negative examples is controlled by τ. In this way,
contrastive loss can pull the semantic representations of source and generated sentences
close together. The so f tmax function pushes the representations of irrelevant sentences
away from each other.

3.2. Semantic Agreement in Encoder

The conclusion in [13] showed that mapping the representations of the source and
generated sentences by the encoder into the shared space can lead to a better translation.
So, we also introduced a semantic agreement loss into the encoder (Figure 1b) to map
the representations of the source sentence and the target sentence into a shared space.

Similar to the description in Section 3.1, we denote (Xi, Yi)(Yi is different from Ŷi. Yi is
sampled from the reference, and Ŷi is the sentence generated by the decoder) as the positive
sample and (Xi, Yj) as the negative sample, respectively. We feed them into the encoder
and compute the semantic agreement loss as:

Le2e = −log
exp(sim(HE(Xi), HE(Yi)))/τ

∑j exp(sim(HE(Xi), HE(Yj)))/τ
. (9)

In this way, we can force the semantic representation of the source sentence learned
by the encoder to be closer to the semantics of the target sentence, which may reduce
the difficulty in generating the target sentence.
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3.3. Ahead Supervision for Better Representation

In a vanilla NAT model, the input to the decoder is copied from the encoder to remove
the dependency on the previously generated words. Furthermore, the supervised signal
is only on the output of last layer. In this way, the sentence-level semantic representation
output by the decoder may not be correct. Meanwhile, the similarity between the represen-
tations of the source and generated sentences is small, but the loss Le2d is very large, which
may cause the model to try to reduce the distance between the two representations and fail
to learn the correct translation.

In this work, to obtain a better semantic representation, we added a supervised signal
before the last layer [14]. We computed the cross-entropy loss on the output of the penulti-
mate layer:

LAGT (θ) = ∑
y/∈GS

logp(yt|GS, X; θ). (10)

In this way, we ensured that the semantic representations obtained from the last layer
were correct.

3.4. Optimization and Inference

In this work, given the performance of the Glancing Transformer, we adopted the
Glancing Transformer as the base of our method and replaced the attention-based Soft Copy
with Uniform Copy. The parameters of whole model were jointly learned by minimizing
the loss L, which is the sum of Equations (5), (9), and (10):

L = LGT + Le2d + Le2e + LAGT . (11)

During inference, because our model, SLSA, only modifies the training procedure,
it can perform a vanilla decoding pass.

4. Experiments

In this section, the conducted experiments are detailed to show the performance of
our method.

4.1. Datasets and Settings
4.1.1. Datasets

For a fair comparison, we followed previous works [4,7] and conducted the experi-
ments on the benchmark tasks: WMT 2014 EN→ DE, WMT 2016 EN→ RO, and IWSLT
2014 DE→ EN. The training datasets of these tasks contain 4.5 M, 610 k, and 190 k bilingual
sentence pairs, respectively. After we preprocessed these datasets following the preprocess-
ing steps in [15], each word in the dataset was divided into the sub-word units using BPE
[16]. For WMT 2014 EN→ DE, newstest-2013 and newstest-2014 were used as the develop-
ment and test sets, respectively. For WMT 2016 EN→ RO, newsdev-2016 and newstest-2016
were employed as development and test sets, respectively. Furthermore, for IWSLT 2014
DE→ EN, we merged dev2010, dev2012, test2010, test2011, and test2012 together as the
test set.

4.1.2. Sequence-Level Knowledge Distillation

As pointed out in previous works [4,7,15,17], knowledge distillation is a critical tech-
nology for non-autoregressive translation. In this work, we distilled the train set [18] for all
tasks. We used the transformer with the base setting [3] to generate the distilled datasets.
Then, all our models were trained on the distilled datasets.

4.1.3. Baselines

To show the performance of our method, we compared our model with the baseline
models, as shown in Table 1. We used the transformer with base setting [3] as the au-
toregressive baseline model. Furthermore, the recent strong NAT baseline models were
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also included for comparison. For all tasks, we obtained the results of other NAT models
directly from their original papers if they were available. In addition, we reimplemented
the sentence-level semantic agreement [19] proposed for the autoregressive machine trans-
lation as SLSAv1.

4.1.4. Model Setup

The hyperparameters used in our model were set closely following the previous works
[4,15]. We utilized the small transformer (nhead = 4, nlayer = 5, and ddim = 256) for the IWSLT
task. For the WMT tasks, the base transformer (nhead = 8, nlayer = 6, and ddim = 512) [3] was
used as the model configuration. The weights of our model were randomly initialized
using the normal distribution N (0, 0.02). The Adam optimizer [20] was used to optimize
the whole model. The temperature was set as 0.05 and will be analyzed in the next section.

4.1.5. Training and Inference

All our models were trained on 8/1 Nvidia Tesla V100 GPUs with batches of 64 k/8 k
tokens for the WMT and IWSLT14 tasks, respectively. We increased the learning rate from 0
to 5 × 10−4 during the first 10k steps; then, we decreased the learning rate according
to the inverse square root of the training steps [3]. During inference, we averaged the five
best checkpoints to create the final checkpoint. The translation was generated using the final
checkpoint on one NVIDIA Tesla V100 GPU. Furthermore, we utilized the widely-used
BLEU score [21] to evaluate the accuracy of translation.

Table 1. The results of our model on the EN → DE, EN → RO, and DE → EN translation tasks.
“NPD” represents noisy parallel decoding. “/” indicates there are no values in this term. “*” denotes
the results are obtained by our reimplementation. “k” denotes the number of decoding iterations.

Model EN → DE EN → RO DE → EN

AT Model Transformer 27.2 33.70 34.50

Iterative-Based NAT models

NAT-IR(k = 10) [15] 21.61 29.32 23.94
LaNAT (k = 4) [22] 26.30 / /
LevT (k ≈ 6) [23] 27.27 / /

CMLM (k = 4) [24] 25.94 32.53 30.42
CMLM (k = 10) 27.03 33.08 31.71

JM-NAT (k = 4) [25] 26.82 32.97 31.27
JM-NAT (k = 10) 27.31 33.52 32.59

Fully NAT models

NAT [4] 17.69 26.22 /
Hint-NAT [26] 21.11 / /
TCL-NAT [27] 21.94 / 28.16
DCRF-NAT [6] 23.44 / /
Flowseq [28] 21.45 29.34 27.55

CMLM 18.05 27.32 /
GLAT [7] 25.21 31.19 29.80 *

CNAT [29] 25.56 / 31.15

w/ NPD

NAT (NPD = 100) 19.17 29.79 24.21
Hint-NAT (NPD = 9) 25.20 / /
DCRF-NAT (NPD9) 26.07 / 29.99

GLAT (NPD = 7) 26.55 32.87 31.23 *
CNAT (NPD = 9) 26.60 / /

Ours

GLAT 25.02 31.09 29.74
SLSAv1 25.53 31.23 30.45
SLSA 26.06 31.40 31.14

SLSA (NPD = 7) 27.01 32.90 32.39

4.2. Main Results

The main results of our model on the three translation tasks are listed in Table 1. Our
model achieved a significant improvement and outperformed the other fully NAT models.
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Although the performance of the SLSA fell behind the iterative-based models, because
it only performs one decoding pass, it has a large speed advantage. In detail, the following
observations can be obtained from Table 1:

• Our model, SLSA, is based on the architecture of GLAT, but our model obtained the bet-
ter results than GLAT. It had a significant improvement (about 0.85 BLEU+) on the EN
→DE task. In addition, on the DE→ EN task, it gained +1.3 BLEU over GLAT. The rea-
son is that SLSA introduces the semantic agreement between the encoder and decoder.
The semantic agreement in the encoder can ensure the encoder projects the represen-
tation of the source target sentences into the shared space. The semantic agreement
between the source and target sentences can ensure the sentence-level representation
of the generated sentence is consistent with the representation of the source sentence.
Meanwhile, this semantic agreement gives the decoder a constraint, which limits
the decoder to generating semantically relevant words. Furthermore, the result of our
model was better than SLSAv1. SLSAv1 uses the mean square error to pull the similar
representation closer, but it cannot push the dissimilar representations away. We think
this is the reason for better results of the SLSA.

• Compared with the other fully NAT models, our model achieved better results and
remained simple. Hint-NAT and TCL-NAT need a pretrained autoregressive model
to provide the knowledge for the non-autoregressive model. Although DCRF-NAT
does not need a pretrained autoregressive model, it introduces the CRF module
and uses viterbi to generate the target sentence, which may reduce the decoding
speed when the target sentence is lengthy. However, SLSA only modifies the training
process, and it can perform the vanilla decoding process. Compared with CNAT,
on the WMT14 EN→ DE task, our model achieved a better result.

• As for the NPD, it did have a critical effect on improving the performance of the NAT
model, as the previous works [4,25] pointed out. When we reranked the candidates
with an autoregressive model, a result of 27.01 BLEU was obtained by our model
on the EN→ DE task and obtains a comparable result to the autoregressive model
transformer, which achieved 27.2 BLEU.

To show the speedup of our model, we present a scatter plot in Figure 2. From Figure 2,
we can see that the speedup of the SLSA is consistent with the NAT and GLAT. This is
because the decoding process of these models is exactly the same. Compared with the
other models, with the same speedup, only the performance of the CMLM and transformer
were better than our model. In addition, we can see that reranking with the NPD would
significantly increase the decoding latency. Therefore, improving the NAT model without
the NPD is worth exploring.

15

19

23

27

31

0 5 10 15 20 25 30

B
LE
U

Speed-UP

Transformer

NAT

Hint-NAT

TCL-NAT

DCRF-NAT

CMLM

GLAT

SLSA

Figure 2. The balance of performance and speedup on the EN→ DE.



Appl. Sci. 2022, 12, 5003 8 of 12

4.3. Analyses

In this section, the experiments conducted to analyze the performance of SLSA from
different aspects are detailed.

4.3.1. Effect of Different Lengths

To evaluate the influence of different target lengths, the different buckets were filled
according to the length of the target sentence in the DE → EN test set. The results are
shown in Figure 3.

From the results, we can see that as the length increased, the difficulty of translation
also increased, and the accuracies of all models decreased. Among them, the accuracy
of the vanilla NAT model dropped quickly. In contrast, although the accuracies of GLAT
and SLSA also showed a downward trend, they still remained relatively stable. In addition,
the SLSA achieved better results under different lengths compared to the GLAT, which
demonstrates the effectiveness of our proposed method. What should also be noticed is that
when the length was less than 10, the vanilla NAT model achieved better results. We think
the reason is that when the length is less than 10, the operation of glancing cannot perform
well as on a sentence length greater than 10.

10

15

20

25

30

35

40
<10

10 , 2 0

20 , 3 0

30 , 4 0

40 , 5 0

50 , 6 0

>=60

BL
EU

Length

Transformer NAT GLAT SLSA

Figure 3. The results from different lengths on the IWSLT14 DE→ EN.

4.3.2. Effect on Reducing Word Repetition

A previous work [30] pointed out that word repetition is a critical factor in the perfor-
mance of the NAT model. We conducted an analysis on the DE→ EN validation set to show
the effect of our model on reducing word repetition. Following the previous work [30], we
counted the number of repetitive tokens per sentence, as shown in Table 2.

Table 2. The average repetitive tokens on the validation set of the DE→ EN task.

NAT NAT-Reg CMLM GLAT SLSA

2.30 0.90 0.48 0.49 0.40

The results showed that compared with the vanilla NAT model and NAT-Reg [30],
both CMLM and GLAT significantly reduced the number of repeated words, which demon-
strated that capturing the target dependency can help to reduce the number of repeated
words. CMLM uses an iterative method to capture the target dependency, and GLAT
utilizes glancing to capture the target dependency. Compared with GLAT, the semantic
agreement in our model further reduced the number of repeated words. This is because
more repetition may affect the sentence-level representation of the generated sentence and
cause inconsistency between the source and target sentences.
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4.3.3. Visualization

In order to more intuitively observe whether our model pulled the source and target
representations close together, we visualized the source and target representations. Ac-
cording to Equations (6) and (7), we retrieved the source and target representations of each
sentence in the IWSLT14 DE→ EN test set.

Following [13], the 256-dim representation was reduced to 2-dim using T-SNE. We
then depicted its density estimation, as shown in Figure 4. From Figure 4a, we can see that
GLAT did not consider the semantic agreement between the source and target sentences,
and the source sentence could not be aligned with the target sentence. In contrast, our
model, SLSA, drew the source and target semantic representations much closer together.

75 50 25 0 25 50 75
x

100

75

50

25

0

25

50

75

100

y

type
src
tgt

(a)

60 40 20 0 20 40 60 80
x

100

75

50

25

0

25

50

75

y

type
src
tgt

(b)

Figure 4. Bivariate kernel density estimation plots of representations. (a) The representations output
by GLAT; (b) The representations output by SLSA. Source representation is denoted by a blue line,
and the target is in orange. This figure shows that our model effectively pulled the source and target
sentence-level semantic representations closer together.

4.4. Ablation Study
4.4.1. Influence of Temperature

The temperature τ in the loss Le2d and Le2e (Equations (8) and (9)) is used to control
the difficulty of distinguishing between the positive and negative samples. A different
temperature will result in a different performance. We also conducted an analysis of the in-
fluence of temperature on the performance of our model. We used different temperatures
from 0.01 to 0.2 to conduct experiments on the DE→ EN test set. The results are shown
in Figure 5.

29.9

30.3

30.7

31.1

31.5

0.01 0.05 0.1 0.15 0.2

BL
EU

Temperature
Figure 5. The results from different temperatures on the IWSLT14 DE→ EN.

We found that the results varied greatly at different temperatures. When the tempera-
ture τ was greater than 0.1, the performance of the SLSA dropped quickly. Furthermore,
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when the temperature ranged from 0.01 to 0.1, the SLSA achieved similar results. In this
work, we set the temperature τ as 0.05 for all experiments.

4.4.2. Effectiveness of Each Loss

To evaluate the contribution of each loss, an analysis was conducted on the DE→ EN
validation set. The results are listed in Table 3.

Table 3. The effectiveness of each loss on DE→ EN validation set.

Model LAGT Le2e Le2d BLEU

SLSA

30.34
X 30.51
X X 30.98
X X 30.82
X X X 31.19

LAGT was the base of our method, so we first trained our model only with this loss.
When adding this loss to the model, a better result was achieved. Then, we added the loss
Le2e and Le2d to the model separately. Both Le2e and Le2d improved the performance
of the SLSA. When adding all the losses to the model, the performance of the SLSA was
further improved.

5. Related Work
5.1. Non-Autoregressive Machine Translation

Since the non-autoregressive translation was proposed [4], several methods have been
introduced to improve the performance of the NAT model. From modeling the input by
latent variables [4,22,28] in the early stage to capturing the target dependency [7,15,24,25],
the performance of the NAT model has been greatly improved. In addition, there are some
works that have used different training objectives to improve the performance of the NAT
model [5,6,30,31]. However, there is no work considering the semantic consistency between
the source and target sentences. In addition, our work is related to the DLSP [32]. The DSLP
adds a supervised signal at each layer of the decoder, but we only added a supervised
signal at the penultimate layer. In addition, we used an ahead supervised signal to obtain
better representations, which was different from the DSLP.

5.2. Sentence-Level Agreement

In machine translation, the semantics of the source and target sentences should be
consistent. For autoregressive translation, there has been some work exploring the ef-
fectiveness of sentence-level agreement. Yang et al. [33] utilized the mean square error
to pull the representations of source and target sentences closer together. Furthermore,
Yang et al. [19] introduced a new method, which extracted the representations of the source
and target sentences and pulled the representations closer layer by layer with the MSE
error. However, they only considered the semantic agreement between the source and
target sentences for the autoregressive model. In contrast, we attempted to use contrastive
learning to pull the representations closer together for the non-autoregressive translation.
In addition, we considered not only the semantic agreement between the source and tar-
get sentences but also that the semantic representation output by the encoder remained
consistent with the target representation.

5.3. Contrastive Learning

Contrastive learning has achieved great success in various computer vision tasks [34–37].
Given the performance of contrastive learning, researchers in NLP have also attempted
to use it for sentence representation [10,11,38,39]. Compared to the success in sentence
representation, it is difficult to apply contrastive learning on machine translation. Recently,
Pan et al. [13] utilized contrastive learning to project multilingual sentence representations
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into a shared space, which improved the performance of multilingual machine translation.
Inspired by this, we utilized contrastive learning to ensure the sentence level semantic
representations of the source and target sentences remained consistent.

6. Conclusions

In this work, we utilized contrastive learning to obtain the sentence-level semantic
agreement between the source and target sentences. In addition, to strengthen the capa-
bility of the encoder, we also added an agreement module to the encoder to project the
source and target sentences into a shared space. Experiments and analyses were conducted
on three translation benchmarks, and the results showed that our model improved the per-
formance of the NAT model. In the future, we will consider applying contrastive learning
to improving the word-level or phrase-level semantic agreement. In addition, our method
selected negative samples from the same batch, which may have similar semantics. So,
in the future, we will explore more methods from which to select negative samples.
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