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Ecological indicators of ecosystem anomalies are fundamentally important to sensing
how close we are to slow or catastrophic ecosystem shifts and to targeting systemic controls
for preservation, restoration and eco-based development. Ecosystem anomalies, I argue, are
grounded in ecohydrological determinants and lead to alterations in socio-ecological functions
and services, including the collapse of species or hydroclimatological disasters such as
floods, droughts and heatwaves on land and in the ocean. Therefore, linked ecological cues
in the form of multiscale data are salient for predicting the risk of ecological change.

The aim of this Special Issue was to gather advances in ecosystem monitoring and mon-
itored data, including technology and ecological data (phenotypical, phylogenetic, eDNA,
macroecological, etc.), data fusion, pattern reconstruction and analysis, and inference mod-
els for the extraction of predictive information aimed at guiding ecosystem engineering
(integrated ecological and environmental engineering), considering both predictions and
field restoration.

The centrality of data must be seen as connected data as follows.

(1) Ecological data address biodiversity and water as green-blue foundational elements
beyond biogeochemical fluxes that are the byproducts of the baseline ecological
configuration. Species sense the quality of the environment, and ecological data
reflect the functioning of eco-environmental ties. There is no environment that is fully
abiotic, and yet efforts to compile ecological data must be comprehensive of the flows
of ecosystems over time;

(2) The spatial connections among habitats (natural and self-emergent habitats and those
of human-made design, which are reflected in geomorphological and infrastructural
data, respectively) are the basis of any ecological function with strong climate feedback;
thus, “climate neutral” efforts must consider the engineering of salient hydrologic
flows and eco-geomorphological connections (broadly defined as ecological ties) whose
scale-free organization is the optimal configuration of our ecosystem;

(3) Networks of people’s decisions, from the behavior of citizens to stakeholder devel-
opment and management strategies, are critical for an ecosystem’s function and
intelligence, in which the latter is as much a conscious action as the reactions of
species to information sensed in ecosystems. All these decisions are associated with
ecological information (extracted by models as perceptrons) for which digitized infor-
mation carries values and thresholds with respect to the functions of ecosystems to
create forecasts, assess indicators and ecosystem states and define ecosystem services
and controls (what is needed and/or desired, for which the definition of optimal
trade-offs is essential).

Despite their tremendous importance for understanding the function, integrity, and
future trajectories of biodiversity, ecological networks (or, more broadly, ecological ties)
are traditionally restricted to the biological interactions of species. However, ecological
networks represent the structures of food webs, hydro-bio-geochemical/energy flows,
and the many and diverse types of interactions between all species in ecosystems the
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underpinning ecosystemic function that defines fitness and risks. Multilayer networks,
sensu lato, are connecting people, habitats, and climate with feedback that affects our
conscious and unconscious behaviors, health, evolution and existence in the long term.
In general, any tie, or set of knots, is ecological information about biotic components in
“abiotic” environments that we need to sense, map and frame.

Can we infer visible and invisible collective networks from ecosystem patterns?
More importantly, can we intelligently engineer salient eco-hydro-geomorphological net-
works to adaptively optimize our collective (biodiverse) beliefs and decisions, enhancing
climate/human-impacted ecosystem services? Can we design key indicators, controls,
plans, portfolio investments and policies for our desired future ecosystems? Indeed, we
can, and we must.

Various initiatives are targeting global information gathering of ecological commu-
nities and their restoration, such as GeoBON (https://geobon.org/ebvs/indicators/) (ac-
cessed on 10 September 2023), Restor (https://restor.eco/), Allen Coral Atlas (https://
allencoralatlas.org/), the UN Biodiversity Lab (https://unbiodiversitylab.org/en/), Global
Forest Watch (https://www.globalforestwatch.org/), NEON (https://www.neonscience.
org/), BioTIME (https://biotime.st-andrews.ac.uk/), the Living Planet (https://www.
livingplanetindex.org/), PREDICTS (https://www.nhm.ac.uk/our-science/our-work/
biodiversity/predicts.html) and GBIF (https://www.gbif.org/). Global environmental
databases such as BioClim (https://www.worldclim.org/data/bioclim.html), WorldClim
(https://www.worldclim.org/), Copernicus Climate Data Store (https://cds.climate.copernicus.
eu/#!/home), and NOAA Climate Data (https://www.ncei.noaa.gov/cdo-web/) address
the “abiotic” spheres of ecosystems. It is desirable that these eco-environmental databases
are used together to pinpoint risks and solutions to global challenges, considering local–
global “butterfly effects” in space–time (i.e., ecological ties).

In this Special Issue, many papers highlighted data and methods used to infer pat-
terns across multiple scales and ecosystems, as well as to provide solutions, including
predictive capabilities. For marine ecosystems, the delicate nature of the phytoplankton–
environmental nexus was highlighted is in determining the extent and persistence of
algal blooms [1], and the ways in which the phenology of coastal vegetation in a cold
temperate intertidal system impacts remote sensing (and the subsequent classification of
coastal habitats) was addressed [2]. Both studies actually emphasize how ecological condi-
tions affect the information that can be gathered and yet add intrinsically uncontrollable
(but measurable) uncertainty into monitoring technology; this is rather important and
unappreciated since a large number of scientists and policy makers assume that all data
are the undisputable, golden truth. This far from reality, and data fusion and selection
should be dynamical processes based on the value of information constrained via predictive
patterns predict.

Other papers showed the potential of extracting vegetation information from tree
attributes [3] to study gross ecosystem production [4] and plant seasonal phenomena like
flowering [5]. More importantly, several studies highlighted the critical role of hydroge-
omorphology in shaping vegetation patterns [6] by also introducing new methods such
as the use of a “geodetector” [7] which includes spatial and risk dependencies. Species
have been shown to be bioindicators of ecosystem structures, such as geese for basin veg-
etation [8] and fish in rivers, which are also affected by climate and other anthropogenic
factors [9].

Hydrological dynamics was also studied in its complexity, considering river runoff [10]
and its consequences when poorly managed, i.e., floods [11]. Hydrological dynamics which
also experience variability due to changes in temperature extremes can trigger wildfires [12]
in water-depleted landscapes where vegetation is largely combustible.

The roles of human decisions, such as land management practices, which are largely
affecting woody invasive species [13] as undesired species, and human disturbances like
mines, which alter vegetation [14], are critical in positive and negative human–ecological
feedback respectively. Capturing this feedback is necessary, including in important natural
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world heritage sites, such as through remote sensing [15]. The advancement and refinement
of methods in treating ecological data, for example, for tracking salient changes in species
distributions [16], is constantly important due to the availability of new technology such as
satellite imagery [17] and small-scale biological data [1].

In conclusion, ecological data are the sine qua non condition for making optimal
ecosystem decisions in which the collective design and engineering of ecological components
(changing an ecological structure by taking advantage of species’ collective behaviors and
human enhancements) optimizes systemic function. We argue that we must transition from
a reductionist way of thinking to consequentialist thinking in which data-informed, nature-
based patterns are the ultimate objective achieved via optimal strategic decisions. Top-down
ecosystem inputs (natural flows and infrastructure) coupled with well-placed bottom-up
ecological components and enhancers create self-organized habitats and ecosystems: this is
Pareto optimal dynamics, leading to scale-free ecological patterns.

This is particularly important when thinking about the future climate and the co-
existence of natural and future human habitats which support each other in risks and needs.
The collectivity of data, design (natural and human-made) and decisions is necessary for
all ecosystems in which we are the primary ecosystem engineers.
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