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Abstract: The drug resistance of bacterial pathogens causes considerable morbidity and death glob-
ally, hence there is a crucial necessity for the development of effective antibacterial medicines to
address the antibacterial resistance issue. The bioprepared zinc oxide nanoparticles (ZnO-NPs)
were prepared utilizing the flower extract of Hibiscus sabdariffa and then characterized using differ-
ent physicochemical techniques. The antibacterial effectiveness of the bioprepared ZnO-NPs and
their synergism with fosfomycin were evaluated using disk diffusion assay against the concerned
pathogens. Transmission electron microscopy (TEM) investigation of the bioprepared ZnO-NPs
showed that their average particle size was 18.93 ± 2.65 nm. Escherichia coli expressed the highest
sensitivity to the bioinspired ZnO-NPs with a suppressive zone of 22.54 ± 1.26 nm at a concentration
of 50 µg/disk, whereas the maximum synergistic effect of the bioinspired ZnO-NPs with fosfomycin
was noticed against Klebsiella pneumoniae strain with synergism ratio of 100.29%. In conclusion, the
bioinspired ZnO-NPs demonstrated significant antibacterial and synergistic efficacy with fosfomycin
against the concerned nosocomial bacterial pathogens, highlighting the potential of using the ZnO
NPs-fosfomycin combination for effective control of nosocomial infections in intensive care units
(ICUs) and health care settings. Furthermore, the biogenic ZnO-NPs’ potential antibacterial action
against food pathogens such as Salmonella typhimurium and E. coli indicates their potential usage in
food packaging applications.

Keywords: drug resistance; Hibiscus sabdariffa; antibacterial activity; heteroresistance; fosfomycin;
synergism

1. Introduction

A declining antibiotic research pipeline has coincided with the growth of multidrug-
resistant (MDR) bacteria, which are resistant to more than three different antibiotic classes [1].
Antimicrobial-resistant (AMR) pathogens are classified as a serious danger to human health
by both the World Health Organization (WHO) and the U.S. Centers for Disease Control
and Prevention (CDC) [2]. According to studies, the United States experiences more than
2 million AMR infections annually, with a mortality toll of 29,000 and an associated health
care cost of more than $4.7 billion [3]. Hospital-acquired (HA) and community-acquired
(CA) AMR infections are responsible for about 33,000 fatalities and 874,000 disability-
adjusted life years in Europe each year, costing USD 1.5 billion in direct and indirect
expenses [4]. In order to focus and guide research related to the development of new
antibiotics, the WHO created a list of illnesses for which the development of new antibiotics
is urgently needed in February 2017 [5]. The ESKAPE pathogens (Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter species) were given “priority status” within this lengthy list [6]. ESKAPE
pathogens have established resistance mechanisms against antibiotics that are the last
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line of defense, such as glycopeptides, carbapenems, and clinically unfavorable polymyx-
ins, through genetic mutation and the acquisition of mobile genetic elements (MGEs) [7].
Furthermore, ESKAPE pathogens were also found to express high resistance patterns to
lipopeptides, tetracyclines, macrolides, fluoroquinolones, oxazolidinones, and β-lactams
antibiotics [4]. In contrast, lipoglycopeptide resistance is uncommon and has just recently
been reported. This could be attributable to lipoglycopeptides’ twin function of suppress-
ing peptidoglycan production and disrupting bacterial cell membranes [8]. Overall, the
increasing proportion of bacterial species with various drug resistance mechanisms in
hospital-acquired infections is due to the constitutive and/or inducible expression of these
mechanisms [9].

Recent nanotechnology advancements have resulted in the development of nano-scale
particles with potent bioactivity against drug-resistant bacterial infections [10,11]. For the
last decade, researchers have been interested in the biological generation of ZnO NPs [12].
The prospect of using fewer chemicals, as well as its cost-effectiveness and environmental
friendliness, are driving the development and importance of this green synthesis tech-
nique [13]. The biological manufacturing of ZnO NPs is undeniably more efficient than
conventional chemical or physical synthesis methods [14]. Plants are the commonly used
biological substrates for preparation of ZnO NPs owing to their cheap production and
handling costs, minimal environmental effect, and simplicity of manufacture [15]. Further-
more, distilled water and ethanol are the most commonly utilized solvents for preparing
plant extracts, and they pose fewer health concerns than microbially assisted ZnO NPs
formation [16]. Plant extracts from diverse plant components, such as the leaves, bark,
flowers, roots, peels, and so on, are used to make ZnO NPs [17,18]. Plant extracts are
thought to contain high levels of active compounds such as flavonoids, methylxanthines,
phenolic acids, and saponins. These compounds are collectively known as antioxidants [19].
These antioxidants make free radicals, reactive oxygen species, and chelated metal struc-
tures harmless. As a result, it should come as no surprise that plant extracts may serve
as both bioreductors and stabilizers [20]. Plants include reductive antioxidants such as
polysaccharides, polyphenols, alkaloids, tannins, amino acids, and saponins [21]. These
materials also include terpenoids, alkaloids, flavonoids, and alkaloids. As a result, Zn(II)
ions in corresponding salt solutions can be reduced, capped, and oxidized to form stable
and well-dispersed ZnO NPs using plant extracts [22]. Several studies have used plant ex-
tracts to biosynthesize green zinc oxide nanomaterials with photocatalytic and antibacterial
properties [23]. For instance, flower-like ZnO structures with hexagonal wurtzite forms
were produced using Arabic Gum (AGZnO) or Karaya Gum (KGZnO) with crystallite
sizes of 20 and 19 nm, respectively. Due to enhanced optical and morphological features,
the KGZnO nanostructures performed better in the photodegradation of the pollutant
Methylene Blue model under visible light irradiation [24]. Metal oxide nanocomposites,
such as TiO2/Karaya nanocomposite with an average crystalline size of 10 nm generated
by the sol-gel process, have been shown to photoinactivate bacterial pathogens [25]. The
synergistic impact of dopants such as iron (Fe) and Praseodymium (Pr) with spherical ZnO
nanoparticles may have improved their potency against S. aureus strain, while Pr concen-
tration directly affected E. coli inhibition, making the synthesized nanomaterials promising
for bacterial pathogen elimination [26]. Another previous report revealed the bioefficiency
of ZnO-NPs synthesized using plantain peel extract against Staphylococcus aureus 26923,
Bacillus cereus MTCC 430, Salmonella enterica, and Klebsiella pneumoniae with minimum in-
hibitory concentration (MIC) of 100 µg/mL against the tested strains [27]. Moreover, ZnO-
NPs prepared using Thymbra Spicata L. extract exposed bioefficiency against the bacterial
strains Bacillus subtilis ATCC 6633, Escherichia coli ATCC 25952, and Pseudomonas aeruginosa
ATCC 27853, as well as the fungal strain Candida albicans ATTC 90028, with corresponding
inhibitory zones of 16.3, 10.25, 13 and 10.2 mm, respectively [28]. Furthermore, a prior in-
vestigation indicated that the biologically prepared ZnO-NPs revealed antibacterial activity
against E. coli and Klebsiella pneumoniae strains with minimum inhibitory concentrations
(MIC) of 10 µg/mL and 40 µg/mL, respectively [29]. The previous reports have focused on
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evaluating the antimicrobial proficiency of ZnO-NPs and nanocomposites against different
bacterial pathogens, whereas few reports have studied the synergism of ZnO-NPs with
antibiotics as fosfomycin antibiotic.

Hibiscus sabdariffa L. (roselle) is a popular flowering plant with more than 300 species
found in tropical and subtropical climates worldwide [30]. Several reports have demon-
strated that the calyces of roselle are high in polyphenols and flavonoids, which increase
the nutritional value of roselle since these substances are linked to antioxidant activity [31].
The plant’s phenolic content is primarily composed of anthocyanins such as delphinidin-
3-glucoside, sambubioside, and cyanidine-3-sambubioside; as well as flavonoids such as
gossypetine, hibiscetin, and their corresponding glycosides; protocatechuic acid, eugenol,
and sterols such as β-sitoesterol and ergoesterol [32]. The high phenolic content emphasizes
the potentiality of utilizing the extract as a stabilizing and reducing agent of metal ions [33].
Fosfomycin, initially known as phosphonomycin, was discovered in 1969 in Spain. Fos-
fomycin is available in three forms: fosfomycin calcium and fosfomycin tromethamine (a
soluble salt) for oral use, and fosfomycin disodium for intravenous use [34]. Fosfomycin
exhibits broad antibacterial action against both Gram-positive and Gram-negative bacte-
ria and reveals the bactericidal activity through the inhibition of cell-wall formation by
inhibiting phosphoenolpyruvate synthetase [35]. It is very effective against Gram-positive
infections such as Staphylococcus aureus and Enterococcus, as well as Gram-negative bacteria
such as Klebsiella pneumoniae and Pseudomonas aeruginosa [36]. Ciprofloxacin displayed a
greater synergistic pattern than ampicillin, according to a previous work that examined
the synergistic bioefficiency of doped ZnO-NPs with antibiotics [37]. The high incidence of
antimicrobial resistance worldwide makes finding new antimicrobial combinations neces-
sary [38]. Therefore, the current study aims to assess the antibacterial efficacy of greenly
synthesized ZnO-NPs made with Hibiscus sabdariffa flower extract against bacteria that
cause nosocomial infections, including A. baumannii, E. cloacae, K. pneumoniae, MRSA, and
E. coli, as well as against the bacteria that cause food poisoning, S. typhimurium. Addition-
ally, for the first time, the potential synergism between the bio-prepared ZnO-NPs and
fosfomycin was examined against the tested nosocomial bacterial infections.

2. Materials and Methods
2.1. Preparation of the Plant Extract

Dried flowers of H. sabdariffa were obtained from a local market in Riyadh, Saudi
Arabia. The Botany and Microbiology department’s herbarium confirmed the identity of
the plant samples. Hisbsicus-dried flowers were cleaned three times with distilled H2O
after being washed once with tap water. After that, they were allowed to air dry entirely. A
mechanical blender was used to smash the flowers into a fine, uniform powder. A 500 mL
flask containing 50 g of plant powder and 200 mL of dist. H2O was heated to 60 ◦C for
30 min. The mixture was then stirred continuously for 24 h at 25 ◦C using a magnetic stirrer
before being cleaned using Whatman filter paper (1) to achieve a clean filtrate and eliminate
any leftovers. After that, the extract was sterilized by filteration through a 0.45 µm Millipore
membrane filter and a 0.2 µm Millipore membrane filter. Finally, the extracts were stored
for later use in a 4 ◦C refrigerator.

2.2. Green Biopreparation of ZnO-NPs

The water extract of H. sabdariffa flowers was used to reduce the zinc acetate hex-
ahydrate solution during the biopreparation of ZnO-NPs. The zinc nitrate hexahydrate
salt (Zn (NO3)2.6H2O) of grade 98% was provided by Sigma-Aldrich, Poole, Dorset, U.K.
Five mL of the flower extract was mixed with 95 mL of a 0.01 M zinc nitrate hexahydrate
solution. The mixture was then stirred magnetically for an hour at 70 ◦C. Brown precipitate
development is a sign that ZnO-NPs are developing. The reaction mixture was centrifuged
at 10,000 rpm for 10 min to separate the precipitates, and the supernatant was discarded.
To remove any impurities, the precipitates were subsequently rinsed with distilled water.
The precipitates were then characterized after being incubated for 8 h at 100 ◦C in an oven.
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2.3. Characterization of ZnO-NPs

The physicochemical characterization of ZnO-NPs was conducted using different
methods. UV-VIS-NIR spectrophotometer (UV-1601, Shimadzu, Kyoto, Japan) was used to
detect the surface plasmon resonance (SPR) of the bioprepared ZnO-NPs in wavelength
range between 200 and 800 nm. The morphology, particle size diameter and distribution of
ZnO-NPs were detected using transmission electron microscope (JEOL, JEM1011, Tokyo,
Japan), whereas the elemental mapping of nanoparticles was performed using Scanning
electron microscopy (SEM) coupled to an energy-dispersive X-ray (EDX) analyzer (JEOL,
JSM-6380 LA, Tokyo, Japan). However, the main functional groups of ZnO-NPs were
identified using Fourier transform infrared spectroscopy (Shimadzu, Kyoto, IR Affinity 1,
Japan). The crystalline size and configuration were detected using X-ray powder diffraction
(XRD) analysis, which was conducted using a Shimadzu XRD model 6000 diffractometer
(Shimadzu, Columbia, MD, USA) fitted with a graphite monochromator. The surface charge
and the average hydrodynamic diameter of the bioprepared ZnO-NPs were estimated using
a Zeta sizer instrument (Malvern Instruments Ltd.; zs90, Worcestershire, UK) [39].

2.4. Screening of the Antibacterial Activity of the Bioinspired ZnO-NPs

The following bacterial pathogens, comprising Salmonella typhimurium (ATCC 14023),
Klebsiella pneumoniae (ATCC 700603), Enterobacter cloacae (ATCC 13047), methicillin-resistant
Staphylococcus aureus (ATCC 43300), Escherichia coli (ATCC 25922), and Acinetobacter baumannii
(ATCC 43498), were used to determine their sensitivity to the bioprepared ZnO-NPs. Disc
diffusion assay was employed to detect the antimicrobial efficacy of the bioinspired ZnO-
NPs against the concerned pathogens [40]. Firstly, the microbial suspension was prepared
from fresh bacterial colonies using 0.85% sterilized saline solution then the turbidity was
accustomed using 0.5 McFarland standard to acquire viable cell count of 1.0 × 108 CFU/mL.
Afterwards, fresh Mueller–Hinton agar (MHA) plates were inoculated with 0.5 mL of the
prepared suspension, which was spread homogeneously over the plates. The ZnO-NPs
were suspended in methanol for disk impregnation, and then 50 and 100 µg of the solution
were loaded onto sterile filter disks (8 mm), whereas the negative control disks only had
methanol solvent on them. In addition, positive controls were the fosfomycin (50 µg) plus
50 µg glucose-6-phosphate. Lastly, the impregnated disks were allocated over the seeded
layer and then kept in incubator for 24 h at 37 ◦C. MIC was estimated against E. coli strain,
which exposed the uppermost sensitivity to ZnO-NPs using broth microdilution method as
reported previously [41]. Consequently, the minimum bactericidal concentration (MBC)
was estimated by plating inoculums from MIC wells onto MHA plates and incubating
them at 37 ◦C for 24 h, with the concentration displaying no apparent bacterial growth
being recorded as the MBC [42].

2.5. Detection of Morphological Deformations of Bacterial Cells Using SEM Analysis

Scanning electron microscope (SEM) analysis was used to observe the deformations
generated by the biogenic ZnO-NPs against MRSA as a Gram-positive strain and E. coli as
a Gram-negative strain. Small pieces of agar were removed from the inhibitory zones and
fixed for 1 h at 25 ◦C in 3% (v/v) glutaraldehyde (buffered with 0.1 M sodium phosphate
buffer, pH 7.2). Afterwards, the fixed agar pieces were rinsed four times in buffer. After the
pieces had been post-fixed in 1% (w/v) osmium tetroxide (OsO4) for 1 h, they had been
rinsed four times in buffer. Then, alcoholic dehydration of the samples was performed
using a series of ethanol concentrations (30–100%) for 15 min. The samples were dried and
fixed onto stubs using double-sided carbon tape. A Polaron SC 502 sputter coater then
was utilized to apply a small coating of gold to the specimens. Finally, scanning electron
microscope (JEOL JSM-6380 LA) was used to investigate them.

2.6. Detection of Synergistic Activity between ZnONPs and Fosfomycin Antibiotic

The potential synergism between the bioinspired ZnO-NPs and the fosfomycin an-
tibiotic was evaluated by disk diffusion assay. The MIC of ZnO-NPs (30 µg) was loaded
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onto 8-mm disks, and then negative and positive controls were prepared. After that, the
impregnated disks were placed over the surface of the inoculated plates, and then kept in
incubator at 37 ◦C for 24 h. The synergism (%) was assessed using the succeeding formula:
Synergism (%) = T−C

C × 100, (C: referred to the clear zone of fosfomcyin and T: referred to
the clear zone of the combined fosfomycin and ZnO-NPs.

2.7. Statistical Analysis

The statistical analysis of data was accomplished using GraphPad Prism 8.0, and the
results were stated as means of triplicates ± standard error.

3. Results and Discussion
3.1. Biosynthesis of ZnO-NPs

Figure 1A reveals that the plant extract reduced the zinc nitrate solution resulting
in formation of reduced precipitates of ZnO-NPs (Figure 1). H. sabadriffa flower extract
was informed to be composed of polyphenols and flavonoids as gallic acid, chlorogenic
acid, quercetin-3-glucoside, and protocatechuic acid [43]. Moreover, high content of antho-
cyanins such as delphinidin-3-sambubioside, and cyanidin-3-sambubioside were detected
in the Hibiscus flower extract [44]. Furthermore, the water extract of Hibiscus contains high
percentage of organic acids as citric, hydroxycitric, malic, hibiscus, and tartaric acids as ma-
jor compounds, and also ascorbic and oxalic acids as minor compounds [45]. Communally,
the significant amount of polyphenolic constituents, organic acids, and anthocyanins was
thought to function as reducing, capping, and stabilizing agents of ZnO-NPs (Figure 2) [46].
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3.2. UV-Vis Spectral Analysis of ZnO-NPs

UV-Vis analysis was accomplished to explore the optical characteristics of ZnO-NPs.
The UV spectra of ZnO-NPs exhibited two peaks at 242 and 512 nm. The sharp band
noticed at 242 nm was attributed to plant metabolites, while the wide peak detected at
509 nm was accredited to the surface plasmon resonance (SPR) of ZnO-NPs (Figure 3).
Our results were in line with a prior publication that revealed pure ZnO-NPs biosynthesis
using Punica granatum peels with an emission band at 509 nm [47]. The band gap energy
of ZnO-NPs was appraised by the Tauc plot method (Figure 4). This was achieved by
plotting a graph of (αhν)2 against hν where α = 2.303A/d, A is the absorbance, d is
the thickness of the nanomaterial, h is Planck’s constant and ν is the frequency of light
absorbed [48]. The band gap energy was determined to be 3.8 eV, which was consistent
with prior results [49,50].
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The band gap energy (3.8 eV) was greater than that of a preliminary research (3.4 eV),
which reported the biopreparation of ZnO-NPs with a particle size diameter of 34 nm using
Coriandrum sativa leaf extract. The band gap increases as particle size decreases because
electron-hole pairs are now closer together and coulombic interaction between them cannot
be disregarded, leading to an increase in the kinetic energy, which explains the increase in
band gap energy compared to prior research [51].

3.3. Transmission Electron Microscope Analysis

TEM examination indicated that the bioproduced ZnO-NPs were in hexagonal form
and varied in diameter from 5 to 50 nm (Figure 5). Accordingly, ZnO-NPs had an average
particle diameter of 18.93 ± 2.65 nm (Figure 6). Our findings were in line with those
of an earlier work that showed the biopreparation of ZnO-NPs utilizing a leaf extract
from Malva Parviflora, with avergae size of 18 nm in diameter [52]. However, the ZnO-
NPs avergae size was lesser than that of earlier studies, which showed that the ZnO-NPs
prepared utilizing the leaf powder of Ocimum tenuiflorum and aqueous stem extracts of
Cissus quadrangularis was 50–63 nm and 75–90 nm, respectively [53,54]. The tiny ZnO-NPs
of the prepared nanoparticles demonstrated the bioefficiney of the green technique in
ZnO-NPs preparation.
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3.4. Energy-Dispersive X-ray (EDX) Analysis

EDX analysis was accomplished to find out the key components of ZnO-NPs and
reveal the elemental mapping of the bio-inspired ZnO-NPs. The carbon, oxygen, and
zinc relative mass proportions of ZnO-NPs were determined to be 61.23, 7.62, and 31.15%,
respectively (Figure 7). The stabilizing chemicals in the plant extract used functioned
as capping agents for ZnO-NPs and may be the primary cause of the carbon peak [55].
Furthermore, the carbon peak might be ascribed to the carbon tape employed during
sample processing [56].
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3.5. FTIR Analysis of ZnO-NPs

The major functional groups of ZnO-NPs that correspond to the reducing, stabilizing,
and capping processes were determined using FTIR analysis. The FTIR investigation
demonstrated a broad peak at 3429.94 cm−1, which arises from O-H group of phenolics
(Figure 8). Our outcomes were in agreement with those of a previous investigation, which
disclosed that Mentha mozaffarianii extract was employed to biosynthesize ZnO-NPs in a
green way. That study also found an FTIR peak at 3429 cm−1, which might be accredited to
phenolics’ OH bond [57]. However, the C-C stretching bonds of alcohols and carboxylic
acids were ascribed to the medium FTIR band at 1410.06 cm−1 [58,59], while the band
at 1329.53 cm−1 was allotted to the C-N groups of aromatic amines [60]. However, the
peaks at 2924.56 and 1742.31 cm−1 were correlated to the C-H and C=O groups of alkanes
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and aldehydes, respectively [61,62]. Furthermore, the FTIR bands rises at 1624.74, 956.94,
and 832.32 cm−1 might be ascribed to C = C groups of alkenes [63,64]. Furthermore, the
medium bands noticed at 1237.50 and 1145.03 cm−1 were assigned to the C-N groups of
amines, which were related to the protein capping molecules of the extract [65,66]. The
molecular motions of C-O groups were noticed at the bands located at 1100.92, 1048.07, and
1014.87 cm−1, which were consigned to secondary, primary alcohols, and carboxylic acids
of the extract phytoconstituents, respectively (Table 1) [67–69]. Furthermore, the peaks
at 765.06, and 638.89 cm−1 were related to the C-Cl and C-Br groups of halo compounds,
respectively [70]. However, the band detected at 535.65 cm−1 was ascribed to metal oxide
bonds owing to Zn-O stretching [71].
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3.6. XRD Analysis of the Biogenic AgNPs

X-ray diffraction (XRD) investigation shows the existence of nine peaks with 2θ
values of 32.18◦, 34.65◦, 36.53◦, 47.73◦, 56.82◦, 63.82◦, 66.58◦, 67.72◦, and 69.41◦ (Figure 9)
corresponding to crystal planes of (100), (002), (101), (102), (110), (103), (200), (112) and
(201) correspondingly, according to the Joint Committee on Powder Diffraction Studies
Standards (JCPDS card numbers 008, 82–1042 and 5–0664) [72]. These findings showed the
reflection lines of hexagonal wurtzite structure of zinc oxide nanoparticles. The appearance
of strong and narrow diffraction peaks in the XRD pattern verified that ZnO-NPs were
crystalline in nature [73]. Scherrer’s formula was applied to estimate the crystalline size
of ZnO-NPs as follow: D = (kλ/β cos θ), where D is the ZnO-NPs crystalline size, λ is the
X-ray wavelength (1.54178 Å), K is Scherer’s constant (K = 0.94), θ is the diffraction angle
(36.38◦), β is full width at half maximum (FWHM) of the most intense diffraction peak,
which was assessed to be 0.4125, and The lattice strain of the bioinspired ZnO-NPs was
appraised abased on the succeeding equation: ε = (β)/(4 tanθ) , whereas ε is the lattice
strain. The assessed crystalline size was evaluated to be 21.16 nm, whereas the lattice Strain
(ε) was evaluated to be 0.00548.
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Table 1. Functional groups of ZnO-NPs detected by FTIR analysis.

Peak No. Absorption
Peak (cm−1) Appearance Functional Groups Molecular

Motion

1 3429.94 Strong, broad Alcohols and phenols O-H stretching

2 2924.56 Medium Alkanes C-H stretching

3 1742.31 Medium Aldehydes C=O stretching

4 1624.74 Medium Conjugated alkenes C=C stretching

5 1410.06 Medium Alcohols, carboxylic acid C–C stretching

6 1329.53 Medium Aromatic amines C-N stretching

7 1237.50 Medium Amines C-N stretching

8 1145.03 Medium Amines C-N stretching

9 1100.92 Medium Secondary alcohols C-O stretching

10 1048.07 Medium Primary alcohols C-O stretching

11 1014.87 Medium Esters and carboxylic acids C-O stretching

12 956.94 Medium Alkenes C=C bending

13 832.32 Weak Alkenes C=C bending

14 765.06 Weak Halo compound C-Cl stretching

15 638.89 Weak Halo compound C-Br stretching

16 535.65 Weak Metal oxide bonds Zn-O stretching
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3.7. Zeta Potential Analysis

The hydrodynamic diameter of ZnO-NPs was assessed to be 578.4 nm (Figure 10).
Because the extract capping biomolecules function as a core shell structure for the biogenic
nanoparticles, the hydrodynamic diameter was greater than that determined by TEM
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investigation, leading to the formation of ZnO-NPs aggregates [74]. Furthermore, the large
observed hydrodynamic size in comparison to the size detected by TEM micrographs may
be explained by the deposition of hydrate layers on ZnO-NPs surface [42]. Zeta potential
measurement shows that the negative charge of ZnO-NPs was −4.17 mV (Figure 11), and
the negative charge was ascribed to the active biomolecules that were cap-sealed across the
surface of the biogenic ZnO-NPs [75]. In addition, the negative charge of ZnO-NPs ensure
their good colloidal stability and long term dispersivity [76].
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3.8. Antimicrobial Proficiency of the Bio-prepared ZnO-NPs

Disk diffusion assay was performed to evaluate the antimicrobial proficiency of the
bio-inspired ZnO-NPs against bacterial pathogens. Incidentally, E. coli revealed the maxi-
mum sensitivity to ZnO-NPs at 50 and 100 µg/disk, with estimated clear zones measuring
22.54 ± 1.26 and 25.78 ± 1.29 mm, respectively (Table 2). The K. pneumoniae strain displayed
the lowest sensitivity to the bio-prepared ZnO-NPs at both doses, with average clear zones
measuring 12.45 mm and 14.92 mm, respectively. The bioinspired ZnO-NPs (50 µg/disk)
exposed antibacterial activity against A. baumannii, E. cloacae and S. typhimurium strains, rep-
resenting relative clear zones of 14.96 ± 1.98, 17.64 ± 0.86 and 19.32 ± 1.21 mm, respectively.
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Our outcomes were in line with earlier research, which described the green bio-synthesis
of ZnO-NPs using Mentha mozaffarianii extract and demonstrated a potent bioefficiency
against K. pneumoniae strain with inhibition zones of 14 and 17 mm at ZnO-NP concentra-
tions of 25 and 50 g/mL, respectively [57]. However, the research results contradicted those
of recent research, which concluded that K. pneumoniae was the furthermost sensitive strain
to ZnO-NPs generated using the water extract of Ocimum americanum, followed by E. coli
strain, with clear zones of 33 and 31 mm, respectively [77]. K. pneumoniae demonstrated the
lowermost sensitivity to ZnO-NPs, with a MIC value of 125 g/mL, according to a preceding
investigation that confirmed the bioactivity of ZnO-NPs using Geranium wallichianum leaf
extract. These outcome were in line with the results of the present study [78]. The biogenic
ZnO-NPs revealed the uppermost antibacterial efficacy against E. coli strain, with an esti-
mated clear zone measuring 25.78 ± 1.29 mm in diameter, in contrast to a previous report
that concluded E. coli strain to be the least susceptible to ZnO-NPs, with an inhibitory
zone of 4 mm, and K. pneumoniae to be the most sensitive, with an estimated clear zone of
31.3 mm [79]. Moreover, the biogenic ZnO-NPs demonstrated antimicrobial efficaciousness
against MRSA strain with corresponding clear zones of 13.56 ± 1.34 and 15.22 ± 1.12 mm
at the concentrations of 50 and 100 µg/disk, respectively. A previous study confirmed
the antimicrobial efficaciousness of ZnO-NPs, synthesized using Moringa oleifera extract,
at 10, 20 and 30 µg/disc against MRSA strain, reporting suppressive zones of 6 ± 02,
12 ± 01 and 17 ± 03 mm, respectively [80]. Altogether, the bioprepared ZnO-NPs demon-
strated antibacterial bioactivity due to the effect of reactive oxygen species (ROS) generated
by the biogenic ZnO-NPs [81]. The generation of ROS such as singlet oxygen (1O2) and
hydroxyl radicals (HO•) results in the distraction of cellular components like lipids, pro-
teins, and DNA, as a result of their integration into the bacteria cell membrane [82]. In
addition, there is another proposed mechanism of antibacterial action through the release
of Zn2+ ions, which have a destructive influence on the cellular active transport, amino
acid metabolism, and consequently disruption of the enzymatic system [83]. Collectively,
ZnO-NPs are bactericidal agents that are assimilated on the bacterial surface and thus
disrupt membranes, causing membrane malfunction and leading to the internalization of
ZnO-NPs into bacterial cells, which is influenced by particle size and surface chemistry,
ultimately disrupting various bacterial cellular activities [84]. Intriguingly, the bioinspired
ZnO-NPs have strong antibacterial activity against nosocomial and drug-resistant bacterial
pathogens such as A. baumannii, E. coli, E. cloacae, K. pneumoniae, and MRSA. This suggests
that these biogenic nanoparticles could be used as highly effective antimicrobial agents to
control nosocomial pathogens in ICUs and other health care facilities [85]. Furthermore,
the appealing antibacterial activity of bioinspired ZnO-NPs against food pathogens such as
S. typhimurium and E. coli highlights potential uses of these nanoparticles in food packaging
and food nanotechnology [86]. Accordingly, MIC was determined for the E. coli strain with
the greatest sensitivity to ZnO-NPs. The ZnO-NPs had a MIC of 30 µg/mL against E. coli
and a minimum bactericidal concentration (MBC) of 60 µg/mL. The MIC value of ZnO-NPs
against E. coli strain, which was noticed to be 30 µg/mL, was less than that stated in a
former report, which proved that the bioprepared ZnO-NPs fabricated using Citrus sinensis
peels extract exhibited antimicrobial efficiency against E. coli with a MIC of 40 µg/mL [87].
The ZnO-NPs had a smaller particle size diameter of 18.93 nm in comparison with the
previous study’s relative particle size diameter of 33.1 nm, which might explain why the
MIC value of ZnO-NPs against E. coli was lower. Our results were similar with previous
study, which verified that small-sized nanoparticles exhibited better antibacterial activ-
ity than large-sized nanoparticles [88]. A previous report confirmed that the small-sized
nanoparticles exhibited stronger antibacterial activity due to the easy entrance of ZnO-NPs
into the bacterial cell wall and also the high surface area to volume ratio, which allowed
a high number of ZnO-NPs to interact directly with bacterial cell components [89]. This
explains the high bioactivity of small-sized nanoparticles compared to large ones, as previ-
ously reported [90]. Subsequently, the MIC of ZnO-NPs was tested for their synergism with
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fosfomycin against bacterial pathogens to evaluate the minimal concentration of ZnO-NPs,
which boosted the antimicrobial bioactivity of fosfomycin antibiotic.

Table 2. Antibacterial efficiency of green ZnO-NPs against bacterial pathogens.

Microbial Strains

Inhibition Zone Diameter (mm)

ZnO-NPs
(50 µg/Disk)

ZnO-NPs
(100 µg/Disk) Fosfomycin Negative Control

A. baumannii 14.96 ± 1.98 16.83 ± 1.48 20.56 ± 1.33 0.00 ± 0.00

E. coli 22.54 ± 1.26 25.78 ± 1.29 23.78 ± 0.97 0.00 ± 0.00

E. cloacae 17.64 ± 0.86 19.13 ± 1.48 20.81 ± 1.61 0.00 ± 0.00

K. pneumoniae 12.45 ± 1.73 14.92 ± 1.39 9.01 ± 1.02 0.00 ± 0.00

MRSA 13.56 ± 1.34 15.22 ± 1.12 22.43 ± 1.96 0.00 ± 0.00

S. typhimurium 19.32 ± 1.21 22.48 ± 1.34 28.36 ± 1.19 0.00 ± 0.00

3.9. Detection of the Morphological Alterations of Bacterial Pathogens

Scanning electron microscope was employed to inspect the morphological and ul-
trastructural changes in E. coli and MRSA cells treated with ZnO-NPs. In that regard,
E. coli cells treated with ZnO-NPs were observed to be aberrant, damaged, malformed, and
wrinkled, with a fractured outer surface and fully distorted cell membranes (Figure 12).
The untreated cells were determined to be integral, normal, and rod-shaped, with high
structural integrity and no observed damage. Unlike the control cells, the treated MRSA
cells were observed to be distorted, with cell debris and damages.
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3.10. Synergistic Efficiency of ZnO-NPs with Fosfomycin

The disc diffusion assay was employed to examine the synergistic bioactivity of
greenly generated ZnO-NPs in combination with fosfomycin against different microbes.
Remarkably, the estimated clear zone of ZnO-NPs against E. coli was appraised to be
18.92 ± 0.69 mm, which was considerably larger than that of a former investigation, show-
ing that ZnO-NPs synthesized using Pinus densiflora extracts expressed antimicrobial bioac-
tivity against E. coli strain with a measured clear zone of 15 mm [91]. The measured in-
hibitory zones of the combined ZnO-NPs and fosfomycin were remarkably higher than fos-
fomycin alone, with estimated diameters measuring 36.71 ± 0.65, 32.51 ± 0.82, 31.62 ± 1.32,
23.76 ± 0.96, 20.47 ± 0.93 mm, against S. typhimurium, E. coli, MRSA, A. baumannii, and
K. pneumoniae respectively (Table 3). Accordingly, the mutual bioactivity of fosfomycin
and biogenic ZnO-NPs was twofold higher than fosfomycin alone against K. pneumoniae,
with estimated synergism ratio of 100.29%, whereas antagonistic activity was recorded
between ZnO-NPs and fosfomycin against E. cloacae strain. However, pinpoint colonies
were observed in the inhibitory areas of the fosfomycin in A. baumannii and E. cloacae plates,
which might be related to the fosfomycin heteroresistance (Figure 13) [92]. In summary,
“heteroresistance” occurs when subpopulations of bacterial cells within a bacterial isolate
exhibit higher levels of antibiotic resistance than the susceptible main population [93].
Interestingly, despite the antagonistic and weak synergistic activities of ZnO-NPs with
fosfomycin against E. cloacae and A. baumannii strains, respectively, the inhibitory areas
around the discs of the combined fosfomycin and ZnO-NPs were clear with no signs of the
heteroresistant colonies, in a way that the ZnO-NPs enhanced the antimicrobial efficacy of
fosfomycin and boosted its bactericidal efficiency. The synergistic percentages of ZnO-NPs
and fosfomycin are illustrated in Figure 14. Fosfomycin was discovered and described in
1969 from several strains of Streptomyces spp. Fosfomycin exhibits its bactericidal action
via the inactivation of the cytosolic N-acetylglucosamine enolpyruvyl transferase (MurA),
blocking the production of N-acetylmuramic acid from N-acetylglucosamine, which is the
initial step in the production of the bacterial wall’s peptidoglycan chain [27]. The follow-
ing bacterial pathogens, MRSA, E. coli, and S. typhimurium were sensitive to fosfomycin,
whereas the K. pneumoniae strain revealed resistance to fosfomycin antibiotic, and both
A. baumannii and E. cloacae strains revealed a heteroresistance to fosfomycin. Fosfomycin
principally enters virtually all sensitive bacteria through both the glycerol-3-phosphate
transport system (GlpT) and the hexose phosphate transporter (UhpT) [28]. Accordingly,
the loss or decreased production of these functional transporters, lower affinity to MurA,
and the production of fosfomycin-modifying enzymes are all the main resistance mecha-
nisms to fosfomycin [34].

Table 3. Inhibitory zone diameters of ZnO-NPs with fosfomycin against bacterial pathogens.

The Tested
Strains

Inhibition Zone Diameter (mm)

Fosfomycin ZnO-NPs (MIC) ZnO-NPs (MIC)
+ Fosfomycin

Negative
Control

A. baumannii 20.34 ± 1.07 13.81 ± 0.78 23.76 ± 0.96 0.00 ± 0.00

E. coli 22.87 ± 1.13 18.92 ± 0.69 32.51 ± 0.82 0.00 ± 0.00

E. cloacae 20.59 ± 0.78 16.31 ± 1.02 15.08 ± 1.27 0.00 ± 0.00

K. pneumoniae 10.22 ± 1.43 9.24 ± 0.68 20.47 ± 0.93 0.00 ± 0.00

MRSA 23.15 ± 1.08 11.83 ± 1.29 31.62 ± 1.32 0.00 ± 0.00

S. typhimurium 27.96 ± 0.59 15.64 ± 0.85 36.71 ± 0.65 0.00 ± 0.00
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A preceding article showed the synergistic potency of greenly synthesized ZnO-NPs
with chloramphenicol, cefpirome, polymyxin B, gentamicinm, tetracycline and ampicillin
antibiotics against S. aureus strain with relative increase in fold area of 0.89, 0.66, 0.56, 0.49,
0.29 and 0.24, respectively [94]. Other investigation confirmed the synergistic potency
of ZnO-NPs with cephotaxime, ceftriaxone, cefepime, and ampicillin antibiotics against
K. pneumoniae strain with estimated synergistic percentages of 85.71, 85.71, 57.14, and 40.1%,
respectively [95]. Intriguingly, ZnO-NPs demonstrated a synergistic ratio of 100.29 percent
with fosfomycin against a K. pneumoniae strain, highlighting the potentiality of using this
combination to control nosocomial infections provoked by the resistant K. pneumoniae
pathogen in hospitals and ICUs. An earlier work verified the synergistic potency of ceftazidime
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and ciprofloxacin with ZnO-NPs against the resistant clinical isolate of A. baumannii. This study
attributed the synergistic bioefficiency to the suppression of exporting the antibacterial
agent either by inhibiting efflux pumps or by increasing antibiotic entry into the cell
through breaking the bacterial membrane [96]. ZnO-NPs exposed a synergistic potency
with fosfomycin against the heteroresistant strains of E. cloacae and A. baumannii, indicating
the boosting effect of ZnO-NPs in enhancing the fosfomycin efficiency.
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The bioinspired ZnO-NPs and fosfomycin were hypothesized to exert synergistic
antibacterial activity by targeting distinct cellular targets. Accordingly, fosfomycin in-
hibited the peptidoglycan synthesis in bacterial cell wall by inhibiting the enolpyruvyl
transferase (MurA) enzyme and blocking the production of N-acetylmuramic acid from N-
acetylglucosamine. The bacterial cell membrane was consequently becoming weaker, and
the bioinspired ZnO-NPs’ internalization into the cell became easier. As a consequence of
the bioinspired ZnO-NPs being incorporated into the bacterial cell membrane and causing
membrane malfunction, the bioinspired ZnO-NPs then carried out their bactericidal activity
by generating ROS, which resulted in the disturbance of crucial cellular constituents such
as lipids, proteins, and DNA.

4. Conclusions

The bioinspired ZnO-NPs demonstrated promising antimicrobial and synergistic
efficacy with fosfomycin against nosocomial pathogens, highlighting their potential appli-
cability in the successful management of drug-resistant pathogens in hospitals and critical
care units. In addition, the ZnO-NPs-fosfomycin combination could be applied for control-
ling the nosocomial infections in healthcare facilities and eliminating the drug-resistant
pathogens. Furthermore, the bioinspired ZnO-NPs’ antibacterial ability against food mi-
crobes such as S. typhimurium and E. coli strains highlighted the potential applicability of
these nano-materials in food packaging applications.
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