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Abstract: In recent years, the outbreak of infectious diseases has highlighted the need for improved
planning of hospital buildings. Traditional planning for infectious disease hospitals only considers the
impact of wind and pollutant diffusion, without analysing pollutant diffusion under different thermal
conditions. To reveal the distribution of pollutants in infectious disease hospitals under different
thermal conditions, this study conducted wind tunnel tests and numerical analyses of pollutant
diffusion in the environment surrounding an infectious disease hospital in Changsha, China. The
results show that the pollutant concentration mainly depends on the local wind speed. In the range
of Rb = −1.25 to 1.25, the concentration of pollutants was mainly affected by the disturbance of the
flow field in areas with rough surfaces, where the effect of the thermal stability of the atmosphere on
pollutant diffusion was relatively small. However, in relatively flat regions, the thermal stability of
the atmosphere played a significant role in pollutant diffusion around the buildings.

Keywords: wind tunnel test; wind environment; numerical simulation; pollutant dispersion; thermal effect

1. Introduction

Environmental problems caused by industrial waste gases, urban heat islands, and
aerosol viruses have seriously threatened human health worldwide. In the past decades,
many scholars have studied the diffusion of pollutants in the environment surrounding
buildings [1–4]. The research methods mainly include wind tunnel tests [5,6], numerical
simulations [7–10], and field measurements [11]. In 2011, Liu et al. (2011) analysed the
wind environment in a residential community using field measurements, considering the
influence of thermal conditions on the wind environment in detail [12]. Although the field
measurement method can directly obtain flow field information, it has not been widely
applied owing to the associated expense and difficulty of maintaining the measurement
devices. Nardecchia et al. (2016) used numerical simulation methods to study the flow
field around buildings, considering different thermal conditions [13], and Xie et al. (2006)
used numerical simulations to study the effects of solar radiation on the diffusion of
urban street valley pollutants [14]. However, owing to the uncertainty of the calculation
parameters, numerical simulations often require wind tunnel tests and field measurements
for verification [15,16]. With the rapid development of experimental technology, research
on pollutant dispersion has developed rapidly. Ou et al. (2003) found that the concentration
of pollutants is mainly affected by the inflow velocity [17]. Hajra and Stathopoulos (2012)
reported that the height and spacing of downstream buildings are critical parameters
influencing pollutant diffusion [18]. Gousseau et al. (2011) conducted a case study of
a Montreal, Canada, community, analysing the pollutant diffusion near the ground to
compare the results with those of numerical simulations [19]. Liu et al. (2010) used a wind
tunnel test to study pollutant diffusion in the environment surrounding a typical building
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in Hong Kong and analysed the impact of the windows on the results [20]. To date, most
pollutant studies have concentrated on urban street valleys and urban communities [21–23];
there is a notable lack of analysis of viral diffusion in the environment surrounding hospitals.
During the 2003 outbreak of severe acute respiratory syndrome (SARS), the virus that is
responsible for SARS was found on the windows and exterior walls of uninfected residents’
homes [9,24], indicating that it was able to diffuse into the air. Niu and Tung (2008) and
Gao et al. (2008) reported that the virus transmission rate from a standard room to adjacent
upper rooms was 7%. Later [25,26], Liu et al. (2010) and Wang et al. (2010) used wind
tunnel tests to determine that the virus can spread in the horizontal and vertical directions
around a building [27].

Although many researchers have used wind tunnel experiments to study pollutant
dispersion, the effects of thermal conditions are rarely considered, because it can be chal-
lenging to apply the similarity ratio to such effects in wind tunnel tests. Chao et al. (2020)
studied pollutant dispersion using simple standard models, considering the effect of the
thermal condition, and pointed out that high buoyancy can effectively reduce the con-
centration of pollutants on the windows of a building [28]. However, different thermal
conditions were not reflected in Chao’s study. Meanwhile, owing to the limitations of the
experimental resolution, it has been difficult to determine the mechanism by which viruses
spread. Therefore, numerical simulations are required to analyse the spread of viruses
among buildings. Unstable and neutral atmospheres have primarily been studied [29–37],
while very few studies have dealt with an atmosphere under stable conditions [38–42], and
studies targeting the diffusion of viral pollutants under atmospheric conditions owing to
thermal effects have not been reported to date.

Therefore, to address the limitations of previous research, this study conducted a
comprehensive wind tunnel test and numerical analysis of pollutant diffusion in the
environment surrounding an infectious disease hospital in Changsha, China, taking into
account various thermal conditions. The paper is structured as follows: Section 2 briefly
introduces the wind tunnel test setup, while Section 3 presents a detailed analysis of the
experiment. Section 4 analyses the numerical simulation of the wind field and pollutant
dispersion mechanism. Section 5 presents the conclusions.

2. Introduction of the Wind Tunnel Test
2.1. Wind Tunnel Test Setup

The wind tunnel tests were carried out at the Wind Engineering and Wind Environ-
ment Research Centre of Changsha University of Science and Technology. Figure 1 shows
the cross-section of the wind tunnel, which is 10.0 m wide and 3.0 m high. The wind speed
can be adjusted from 1.0 m/s to 18.0 m/s. To ensure the stability and reliability of the wind
at low speeds, a system of variable angle fan blades was used.
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Figure 1. Wind tunnel.

During the test, the horizontal pedestrian-level wind (PLW) velocities were measured
using Irwin probes. A schematic diagram of an Irwin probe is shown in Figure 2a, in which
the pressure value at the top is labelled P1 and the pressure value at the groove part is
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labelled P2. According to the Irwin probe theory [43–45], the relationship between the
probe-measured pressure and the applied wind velocity can be expressed as follows:

v = α
√

p1 − p2 + β (1)

where v is the wind velocity at the test height, and α and β are calibration coefficients.
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Figure 2. Irwin sensors.

Prior to the test, the probe device setup shown in Figure 2b was used to calibrate the
Irwin probe, with the resulting calibration coefficients being shown in Figure 2c. During
the test, an electronic pressure scan valve was used to measure the wind pressure at a
frequency of 350 Hz for 1 min, and a Cobra probe was used to measure the wind profile by
the three-dimensional moving frame.

The temperature was adjusted using carbon fibre heating plates, as shown in Figure 3.
The size of the plate is 2 m × 0.9 m, and 20 plates were employed to provide the temperate.
The temperature range of the plate ranged from 0 ◦C to 60 ◦C. The temperature of the
carbon fibre heating plate was calibrated within an accuracy margin of ±1 ◦C.
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The wind tunnel tests used methane (CH4) as a tracer gas to simulate pollutant
diffusion. The methane was emitted from a gas mixer (Figure 4a) located in front of the
target building group. A low-power negative pressure air pump (Figure 4b) was employed
to collect the air to the air bags, and gas chromatography (Figure 4c) was adopted to analyse
the tracer gas concentration. The mixing ratio of tracer gas to air was 1:9. The overall
schematic of the wind tunnel test is shown in Figure 5.
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Figure 5. Schematic of pollutant dispersion wind tunnel test. NOTE: 1. Wind tunnel; 2. wedge;
3. roughness element; 4. air pump; 5. methane supply tank; 6. flowmeter; 7. spiral tube; 8. magnetic
bead glass bottle; 9. pollutant emitter; 10. building model; 11. fixed frame; 12. collecting rake;
13. monitoring tube; 14. delivery pump; 15. collecting bags; 16. chromatographic analyser; and
17. computer.

2.2. Similarity Conditions of Wind Tunnel Test

Wind tunnel tests must strictly control the similarity ratios of the parameters so that
the test results can be scaled to a natural flow. When the simulation region is smaller than
5 km, Rossby (Ro) can be ignored. Because air is the medium of both the test model and the
natural flow, Péclet (Pe) and Schmidt (Sc) can also be ignored. The value of Re for the target
building is defined as

Re =
ρuL

µ
(2)

where ρ is the density of air, u is the velocity of the incoming flow, L is the model building’s
length, and µ is the viscous coefficient of air.

It is difficult to satisfy the similarity of Re in a wind tunnel test. Fortunately, the typical
sections of the target building are primarily rectangular, and their flow field characteristics
do not change significantly over a wide range of Re values. Lateb et al. (2013) pointed
out that when the Re of a wind tunnel model is greater than the critical Re, the turbulent
structure of the boundary layer can be fully developed, and the effect of Re on the field
flow can be ignored [10]. The critical Re, defined as ReH, is approximately 1.1 × 104; in
the present study, Re was approximately 2 × 105, which means that the flow field in the
wind tunnel test had little effect on Re. To effectively consider the influence of the ground
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temperature effect on the flow field, the Rb (Richardson number) is applied to represent
the intensity of the thermal condition owing to the ground surface temperature, and is
defined as

Rb =
gh0

u2
0

(Tb − Ts)

T0
(3)

where g is the gravitational acceleration, h0 is the model height, and Tb is the temperature at
the top of the building. Ts is the temperature at the ground surface. u0 is the wind velocity
at h0, and T0 is the average absolute temperature.

2.3. Geometric Model and Test Cases

An infectious disease hospital in Changsha was used as the case study, with a model
scale ratio of 1:200, and the blockage rate was 2% in the wind tunnel test. A uniform wind
velocity of 1.2 m/s was set as the inlet velocity. In all tests, 110 Irwin probes were used
to capture the average wind velocity at a height of 2 m. During the test, the heating plate
was used to create four different thermal conditions (Rb = 0, −0.17, −0.28, and −0.38) for
the investigation of the building flow field distribution. Simultaneously, the flow field and
pollutant concentration field for different building orientations were analysed in detail.
The specific cases investigated in the wind tunnel tests are listed in Table 1. The hospital
model and pollutant concentration monitoring points are shown in Figure 6.

Table 1. Wind tunnel test cases.

Factor Cases Description Rb Building Orientation

Thermal effect

1 Average wind speed: 1.2 m/s 0 0◦

2 Average wind speed: 1.2 m/s −0.17 0◦

3 Average wind speed: 1.2 m/s −0.28 0◦

4 Average wind speed: 1.2 m/s −0.38 0◦

Building orientation

5 Average wind speed: 1.2 m/s 0 0◦

6 Average wind speed: 1.2 m/s 0 45◦

7 Average wind speed: 1.2 m/s 0 90◦

8 Average wind speed: 1.2 m/s 0 135◦
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3. Experimental Results and Discussions
3.1. Wind Field

As discussed in Section 2.2, the dimensionless distribution of a flow field does not
change with the wind velocity within a specific range of Re. The mean wind velocity
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ratio (MVR) is defined as the ratio of the PLW velocity ui at monitoring point I to the inflow
velocity u0 at the same height and can be expressed as follows:

MVR =
ui
u0

(4)

The MVR values corresponding to different thermal conditions are compared for the
prevailing wind direction in Figure 7, in which it can be observed that Rb mainly affected
MVR values below 0.6. When the MVR was greater than 0.6, the thermal effect had little
impact on the wind field distribution.
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To determine the effect of the thermal condition on the wind profile, a detailed analysis
of the wind profile at point 16 (shown in Figure 6b) was carried out, and the resulting
longitudinal-direction dimensionless wind profile is shown in Figure 8, where href = h/h0,
uref = u/u0, h0 = 0.5 m, and u0 is the wind speed at the height h0. It can be observed
in Figure 8 that the shear wind height at point 16 was approximately 0.5href, and the
average wind velocity at the shear height was approximately 0.2uref. Meanwhile, it can
also be observed that the wind speed sharply increased between the heights [0.5href, 0.8href].
Generally speaking, the influence of Rb on the downwind wind speed was small, the main
reason for this being that it was limited by the conditions of the wind tunnel test, and
the degree of atmospheric instability was relatively low, so that the wind speed did not
change significantly.
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3.2. Tracer Gas Concentration Field

Methane was used as the tracer gas in this study. The methane concentration profile at
point 16 was measured during the wind tunnel tests, and the results are shown in Figure 9,
in which Cref = C/C0, where C is the methane concentration at the measurement height
and C0 is the methane concentration at the roof height. It can be observed in the figure
that the methane concentration was relatively high near the ground but decreased to
nearly zero at the height of the building roof as the fresh air moving above the building
diluted the tracer gas. The figure also shows that the methane concentration value in the
height range [0.65href, 1.2href] exhibited no noticeable change according to the Rb value.
However, when the height was less than 0.65href, the concentration of methane initially
increased and then decreased as the Rb value increased. The methane concentration
exhibited its maximum value at Rb = −0.28. Overall, with the increase in the Rb number,
the concentration of pollutants did not change monotonously. The main reasons are that the
monitoring point is located in the building complex, the surface wind field is disordered,
and the pollutant concentration is affected by the coupling effect of the complex wind field
and thermal effects.
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3.3. Impact of Building Orientation on Tracer Gas Diffusion

To analyse the effect of different building layouts on pollutant concentrations, four
different building orientations were applied to building 3, as shown in Figure 10, to obtain
the resulting distributions of the methane tracer gas around the building according to
the thermal condition, as shown in Figure 11. It can be observed in the figures that
under 0◦, the wind speed at point 16 was relatively low, but the methane concentration
was the highest, indicating that pollutant concentration is inversely proportional to wind
speed. Figure 11 also shows that the methane concentrations at points 12 to 14 were
relatively large when Rb = −0.28, indicating that pollutants are not easily diffused under
this condition, which is consistent with the results shown in Figure 9. Figure 12 shows the
pollutant concentration profiles at point 17, which indicate that pollutant concentrations
decrease with increasing heights. For a building orientation angle of 45◦, the methane
concentrations decreased faster than for the other orientations, primarily because at 45◦, the
ventilation corridor of the building structure was aligned with the dominant wind direction,
promoting pollutant diffusion. In addition, Figure 11 shows the concentration distribution
of measuring points 12, 13, and 14. It is found from the figure that the concentration of
pollutants in this area was significantly higher than those of measuring points 2, 3, and 4,



Buildings 2024, 14, 1185 8 of 17

mainly because these measuring points are affected by surface obstacles. The wind speed
was relatively low, and the methane concentration at measuring point 13 was lower than
those of measuring points 12 and 14. The reason is that measuring point 13 is located in
the ventilation corridor of the building, and the accelerated flow field is conducive to the
diffusion of pollutants. Therefore, it is recommended that architectural planners lay out
buildings so that ventilation corridors align with the predominant wind directions in order
to maximise the pollutant diffusion.
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4. Numerical Simulation of Wind Environment and Pollutant Diffusion
4.1. Control Equation and Turbulence Model

The Reynolds-averaged Navier–Stokes (RANS) equations are commonly used to
model turbulence in wind environment simulations of actual residential areas. The shear
stress transport (SST) k–ω turbulence model is an approximation of the RANS equations
that is suitable for calculating the inverse pressure gradient and separated flow and has
been widely used in recent years. The SST control equation can be expressed as

∂

∂t
(ρk) +

∂

∂xj
(ρkuj) =

∂

∂xj
(Γk

∂k
∂xj

) + Gk − Yk + Sk (5)
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∂

∂t
(ρω) +

∂

∂xj
(ρωuj) =

∂

∂xj
(Γω

∂ω

∂xj
) + Gω − Yω + Dω + Sω (6)

where xj represents the spatial coordinates of points (i, j = 1, 2, 3); t is the time; ρ is the
air density; υ is the air viscosity coefficient; p is the air pressure; k and ω are the turbulent
kinetic energy and turbulent kinetic energy dissipation rate, respectively; Г, Гk, and Гω are
the effective diffusion coefficients for the velocity, k, and ω, respectively; Gk and Gω are the
generation terms of k and ω, respectively, and Yk, Yω are the corresponding dissipation
terms; Dω is the cross-diffusion of ω; and Si, Sk, and Sω are self-defining terms.

In this study, pollutant diffusion was modelled by the component transport mode,
chemical reactions between components were not considered in the simulation process,
and the mass conservation equation was applied as follows:

∂ρcs

∂t
+ div

(
ρ
→
u cs

)
= div(Ds Grad(ρcs)) + Ss (7)

where cs is the volume concentration of the component, ρcs is the mass concentration, Ds is
the diffusion coefficient, and Ss is the production rate.

4.2. Calculation Domain and Grids

The numerical model corresponding to the wind tunnel tests is shown in Figure 13a.
FLUENT software was used for the numerical simulations in this paper [46]. The domain
size and meshes used in this study were determined according to the Architectural Institute
of Japan guidelines. The inlet was set at a distance of 6H (H is the building height) from the
building centre, the outlet was set at a distance of 22H from the building, and the height of
the calculation domain was 6H. The coordinate origin was set at the bottom centre of the
building model. A 7.8-million-cell polyhedral mesh was used in this study and is shown
in Figure 13b. In the horizontal direction, local meshes were refined near the building
and wake areas to accurately capture the changes in the flow fields around the building
model. The mesh size near the surface was 0.0025 m, the largest mesh size in the horizontal
direction was 0.3 m, and the stretching ratio was 1.2. The y+ of the mesh that was attached
to the building surface and ground was less than 1. Three mesh systems with different
resolutions were evaluated to verify grid independence, and the mesh system adopted in
the present study met the grid independence requirements.
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Core i9-7980 XE processor. The finite-volume method and the second-order central differ-
ence scheme were used for the convective and viscous terms, and a second-order implicit 
scheme was employed for the unsteady term. The semi-implicit pressure-linked equations 
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4.3. Boundary Condition and Parameter Setting

All calculation cases were performed on a workstation with a 12-core 24-thread Intel
Core i9-7980 XE processor. The finite-volume method and the second-order central differ-
ence scheme were used for the convective and viscous terms, and a second-order implicit
scheme was employed for the unsteady term. The semi-implicit pressure-linked equations
(SIMPLE) algorithm was used to solve the discretised equations, as shown by Ferziger and
Peric (2002) [47]. The computational parameters and details of the boundary conditions are
presented in Table 2.

Table 2. Boundary conditions.

Name Boundary Conditions

Inlet Velocity inlet 1.2 m/s
Outlet Outflow ∂

(u,v,w,p,k,ω)
∂x = 0

Top surface Free slip wall w = 0, ∂(u, p, k, ω)/∂z = 0
Bottom surface No slip wall u = 0, v = 0, w = 0, ∂p/∂n = 0

Side surface Symmetric boundary v = 0, ∂(u, p, k, ω)/∂z = 0
Building and mountain surface No slip wall u = 0, v = 0, w = 0, ∂p/∂n = 0

4.4. Results and Discussion
4.4.1. Validation of Numerical Simulation

To verify the simulation results, the simulated wind profile at point 16 on the hospital
building was compared with the experimental results, as shown in Figure 14. It can be seen
that the numerical simulation of the longitudinal velocity was generally in good agreement
with the experimental results.
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Similarly, the methane tracer gas concentrations that were obtained by the numerical
simulation were compared with those obtained in the wind tunnel test along the height
of the building at point 16, as shown in Figure 15. The numerical simulation results
were found to be consistent with the experimental results. Near the ground, the tracer
gas concentration was considerably higher in the numerical simulation than in the wind
tunnel test, primarily because the wind speed was relatively high in the wind tunnel test,
promoting tracer gas diffusion. The general agreement of the wind and methane tracer gas
concentration profiles therefore confirmed the accuracy of the numerical simulation.
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4.4.2. Distribution of Wind Field and Temperature Field

To determine the influence of different thermal conditions on pollutant dispersion in
the simulation, five Rb values (Rb = −1.25, −0.45, 0, 0.45, and 1.25) were used to analyse
the flow field in the case study. Figure 16 shows the PLW MVR contours according to
different thermal conditions, in which it can be observed that the dimensionless flow field
distribution maintained the same trend regardless of the thermal condition. However,
in open areas, such as locations A and B, the dimensionless wind speed increased under
decreasingly stable thermal conditions: the maximum MVR was obtained when Rb = −1.25,
and the minimum MVR was obtained when Rb = 1.25. This indicates that unstable thermal
conditions (represented by negative Rb values) cause a higher wind speed near the ground,
promoting the diffusion of pollutants, whereas stable thermal conditions (represented by
positive Rb values) have the opposite trend.
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To further explore the mechanism by which the thermal condition affects the pollutant
concentration distribution, the temperature profiles of the same five points were analysed
along the height direction, as shown in Figure 17, in which Tref is the absolute temperature. It
can be seen in the figure that point A was not disturbed by the surface, and the temperature
was basically the same as the inlet flow. Points B, C, D, and E were leeward of the building
model, where the temperature distribution exhibited an obvious change below 0.6href. The
temperature below 0.6href was completely different from the inlet temperature, especially at
points D and E, following inconsistent trends. Thus, the change in pollutant concentration
exhibited no obvious regularity according to the thermal condition.
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4.4.3. Distribution of Pollutant Concentration

Figure 18 shows the pedestrian-height pollutant concentration distribution around
the hospital according to the thermal condition. It can be observed that the flow field was
influenced by a complex terrain, and the diffusion of pollutants around the hospital was
contained within an area that was about 260 m long, or about four times the characteristic
length of the building, as indicated by the dotted line. In region C, located behind building 3,
the flow field was blocked by the surrounding mountainous terrain, allowing pollutants
to readily accumulate in the area. Furthermore, Figure 18 indicates that the pollutant
concentration was significantly higher under stable thermal conditions than under unstable
thermal conditions.
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Figure 19 shows the pollutant concentration distribution along the y = 0 sectional plane
according to the thermal condition, in which it can be observed that the pollutant concen-
tration decreased with increasing longitudinal distance. In Figure 19, the mountainous area
and buildings are both in region D, where the flow field is highly disturbed by this complex
terrain. In contrast, region E is a relatively flat area, where the flow field is relatively stable.
The figure indicates that the concentration of pollutants in region D first increased and then
decreased with increasingly unstable thermal conditions, representing a notable deviation
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from the conventional atmospheric stability theory. In region E, the pollutant concentration
decreased consistently with increasingly unstable thermal conditions. Therefore, in an
area with significant surface roughness, the concentration of pollutants will be affected
considerably by the disturbance of the surface wind field, and the effect of the thermal
stability of the atmosphere on the pollutant diffusion is relatively small. However, in
relatively flat regions, the thermal stability of the atmosphere plays a significant role in
pollutant diffusion.
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A local quantitative analysis of the pollutant concentration around building 3 was
then conducted, with the results being shown in Figure 20. It can be observed that the
blocking effect of the building prevents the air inside the yard from flowing readily, and the
pollutant diffusion exhibits no apparent law according to the thermal condition. However,
in the relatively open location at the tail of the building, the pollutant concentration is
monotonically related to the thermal condition. The concentration of pollutants reached
its maximum under stable thermal conditions, when Rb = 1.25. Such stable conditions
generally occur in the morning or evening during winter, at which time special attention
should be paid to the hazards posed by pollutants.

To quantitatively evaluate the pollutant concentration in different regions, measure-
ments were collected at different heights at five points, labelled A, B, C, D, and E, along the
y = 0 sectional plane of the simulation model, as shown in Figure 21. Point A was selected
on the left of the mountain, where the flow field was not disturbed by surface roughness;
the concentration of pollutants mainly remained below 0.25href, and the pollutant concen-
tration increased with increasingly unstable thermal conditions. Point B was selected in
the ventilation corridor; the pollutant concentration was relatively low, with its maximum
value occurring near 0.3href and increasing consistently with increasingly unstable thermal
conditions. Points C, D, and E were selected downwind of the hospital, where the wind
field was significantly influenced by the terrain; as a result, the pollutant concentrations ex-
hibited no obvious regularity, but were considerably affected by the thermal stability of the
atmosphere. In areas with significant surface roughness, the pollutant concentration was
affected by the interaction between the thermal conditions and complex surface turbulence,
so the diffusion mechanism was more complex.
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5. Conclusions

This study conducted experimental and numerical analyses of the outdoor wind
environment around an infectious disease hospital in Changsha, considering the effects of
thermal conditions. The wind field and pollutant concentration distributions were obtained
according to the thermal stability of the atmosphere, and the following conclusions were
obtained accordingly:

(1) The results of the wind tunnel tests showed that the thermal conditions had little
effect on the longitudinal component of the wind profile in the range of Rb = 0 to 0.38.
The absolute value of the methane tracer gas concentration depended on the local
wind speed. The maximum methane concentration occurred near the ground and
decreased with increasing height. The influence of the thermal conditions on the
methane tracer gas concentration mainly occurred below 60% of the building height;
the pollutant concentration tended to be stable at heights that were greater than the
building height.

(2) The wind tunnel tests were able to capture the influence of the building layout on
pollutant concentrations around the case study hospital, indicating that the coupling
effects between the building shape, local wind speed, and direction should be consid-
ered in hospital planning. An orientation in which the building ventilation features
were aligned with the dominant wind direction was most conducive to the reduction
in pollutant concentrations.

(3) Detailed flow field distributions around the case study hospital under different ther-
mal conditions were obtained using verified numerical simulations. The results
indicated that the concentration of pollutants was mainly affected by the disturbance
of the flow field in areas with large surface roughness, and the effect of the thermal
stability of the atmosphere on pollutant diffusion was relatively small in the range of
Rb = −1.25 to 1.25. In relatively flat regions, the thermal stability of the atmosphere
played a significant role in pollutant diffusion.
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