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Abstract: Urban living space (ULS) is known to be a significant contributor to carbon emissions.
However, there is a lack of studies that have considered the impact of spatial organization indexes
(SOIs) of various scales on urban living space carbon emissions (ULSCE), and so far, no definitive
conclusions have been reached. To address this gap, taking Tianjin as an example, the measurement
methods of ULSCE and SOI at different scales were proposed, and a random forest model was
constructed to explore the effects of SOI on ULSCE. The results indicated that on the district scale,
Beichen had the highest carbon emissions and absorption in 2021, with carbon emissions reaching
1.43 x 108 t and carbon absorption at 7.29 x 105 kg. In terms of area scale, the comprehensive service
area had the highest carbon emissions at 3.57 x 108 ¢, accounting for 47.70%, while the green leisure
area had the highest carbon absorption at 5.76 x 10° kg, accounting for 32.33%. At the block scale,
the industrial block had the highest carbon emissions at 1.82 x 108 ¢, accounting for 54.02%, while the
forest block had the highest carbon absorption at 1.25 x 106 kg, accounting for 91.33%. Each SOI had
varying impacts, with the industrial land ratio (ILR) having the highest order of importance at the
area scale, followed by road network density (RND), residential land ratio (RLR), bus station density
(BSD), public service facilities land ratio (PLR), land mixing degree (LMD), open space ratio (OSR),
and commercial land ratio (CLR). ILR, RND, and RLR were particularly important, each exceeding
10%, with importance values of 50.66%, 17.79%, and 13.17%, respectively. At the block scale, building
area (BA) had the highest importance, followed by building density (BD), building height (BH),
land area (LA), and floor area ratio (FAR). BA and BD were particularly important, with values of
27.31% and 21.73%, respectively. This study could serve as both theoretical and practical guidance
for urban planning to aid the government in developing differentiated carbon emissions reduction
strategies that can mitigate the heat island effect and promote low-carbon healthy urban planning.
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1. Introduction

Urban living space (ULS) serves as the primary location for human living, enter-
tainment, and work, as well as being the major source of carbon emissions [1]. Despite
occupying less than 3% of the Earth’s surface, ULS is responsible for 78% of carbon emis-
sions and pollutants and is continually on the rise [2]. The increase in urban living space
carbon emissions (ULSCE) has significantly contributed to the degradation of urban heat
islands and worsened the effects of climate change [3]. Especially in the summer, the urban
heat island phenomenon can significantly increase the risk of human fatalities due to ther-
mal emergencies and necrosis [4]. Therefore, reducing ULSCE is of immense significance in
combatting global warming and achieving low-carbon development [5].

ULSCE are closely related to the spatial organization index (SOI) which has been
proved by studies [6]. Numerous scholars have examined the effects of SOI on ULSCE,
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primarily focusing on three spatial scales: district, area, and block [7]. Concerning the
district scale, scholars usually utilize exponential decomposition and spatial analysis
methods to investigate the effects of SOI on ULSCE. For example, Quan et al., investigated
the impact of energy intensity, urban and rural public transportation sharing rates, energy
structure, population size, and forest coverage rate on ULSCE, using the logarithmic
mean divisia index decomposition model [8]. Han et al., proposed that the assessment of
district low-carbon levels should prioritize optimizing the proportion of land-use structure,
ecological preservation in areas such as farmland and forests, ecological space planning, and
the interaction between land use and transportation networks [9]. Zheng et al., used multi-
source data to analyze the relationship between district carbon emissions and residential
area, building area, and industrial land type in Beijing and further analyzed the spatial
distribution characteristics of district carbon emissions [10].

At the area scale, studies typically select a specific city as the research sample and
utilize methods such as multiple linear regression or spatial regression to investigate the
correlation between various sources of SOI and ULSCE. The results demonstrate that
urban land-use patterns, density of road intersections, and layout of green spaces have
a significant impact on ULSCE [11]. For example, Xia et al., discovered that compact,
intensive, and composite land-use patterns help to reduce ULSCE and other air pollutants,
whereas the expansion of construction and industrial land is not conducive to mitigating
carbon emissions [12]. Combining multi-source big data, such as mobile signaling data,
and points-of-interest data, Cui et al., analyze the impact of the residential and industrial
land ratio and the number of public transportation stations on ULSCE at the traffic analysis
zone level [13]. According to Sharifi et al., urban green spaces are widely recognized
as effective measures for reducing ULSCE, and expanding green areas is beneficial for
improving air quality [14]. Schweitzer et al., examined the relationship between SOI and
ULSCE, indicating that indicators such as regional centrality, road connectivity, and land-
use mixture can significantly impact ULSCE [15]. Carpio et al., used satellite images and
the geographic information system (GIS) to analyze the relationship between population,
road traffic, vegetation displacement, and the residential and commercial sector ratio and
carbon emissions in the Monterrey Metropolitan area, Mexico, and took them as the key
factors associated with CO, sink loss and CO, emissions [16].

At the block scale, software simulation and statistical analysis methods are frequently
used to analyze the impacts of SOI on ULSCE [5]. For instance, Zhang et al., analyzed the
influence of building shape factors and building area factors on urban block carbon emis-
sions and then predicted the carbon emission based on the machine learning method [2].
Based on software simulation, Zhou et al., discovered that high-density building devel-
opment consumes less energy under similar conditions. They found that for every 1 °C
increase in the heat island intensity, the average heating energy consumption decreases
by 5.04% [17]. Lopez-Guerrero et al., conducted a study and determined that improving
building density and floor area ratio and creating a compact urban space can significantly
impact ULSCE [18]. Leng et al., quantitatively analyzed the impact of SOI on the carbon
emissions of different types of office blocks with simulation software and found that build-
ing energy consumption was closely related to building density and the building shape
coefficient. Among them, the floor area ratio is the most critical factor in saving heating
energy by up to 10.820 kWh/m?/y [5]. Through a combination of energy consumption
simulation and statistical analysis techniques, Xie et al., assessed the impact of SOI on
the ULSCE of university dormitory blocks in Wuhan. The research findings revealed
that different block types could contribute to a significant variation of up to 35.85% in
ULSCE. Furthermore, ULSCE were found to be primarily influenced by three specific SOlIs:
the average length of the block, shape factor, and building density [19].

As shown above, the impact of SOI on ULSCE has been widely explored. However,
due to the different objects and issues chosen for different studies, there remains some
debate over the influence of certain SOIs such as building area, building density, land area,
and building floors on ULSCE, and further empirical studies are needed. Moreover, the
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a fundamental concept in geography, and selecting different research scales often results in
variations in research findings [20,21]. Furthermore, ULSCE encounter distinct challenges

majority of research exclusively investigates the impacts of SOI on ULSCE at a singular
level, inadequately addressing the variances in SOI consequences at diverse scales. Scale is

across various scales. For instance, at the district scale, the focal point is on contrasting
various administrative districts, whereas, at the area scale, the emphasis lies on the different
proportion ratios of various block types within different areas. At the block scale, attention
shifts to the variations in building shapes across various blocks. Additionally, during the
implementation of spatial planning, it becomes crucial to consider the mutual exchange
between different scales to accomplish multi-level collaborative low-carbon spatial plan-
ning. Hence, it is imperative to gauge and incorporate the influence of SOI on ULSCE at

varying spatial scales. Specifically, there is still a large knowledge gap regarding how and
to what extent SOIs affect ULSCE at different scales, to which this study contributes. To

ULSCE. This study can better serve the government in formulating differentiated carbon
2. Materials and Methods
2.1. Study Area

fill existing knowledge gaps, this study uses Tianjin City, China, as a case study. Firstly,
emissions reduction strategies and support low-carbon, healthy urban planning.

the measurement methods of ULSCE and SOI at different scales are proposed. Secondly,

a random forest model is constructed to explore the effects of SOI at different scales on

Tianjin (38°34'-40°15' N, 116°43/-118°04’ E) is located in North China. By the end
of 2022, Tianjin’s total area encompassed 11,917 km?, with a permanent population of
13.63 million and an urbanization rate of 98.76%. It governs 16 districts comprising Bin-

hai, Heping, Hedong, Hexi, Nankai, Hebei, Hongqgiao, Dongli, Xiqing, Jinnan, Beichen,
Wuging, Baodi, Jinghai, Ninghe, and Jizhou. Among these, the central urban area includes

six districts in the city and four surrounding it, constituting not only the core area of urban
development but also the coverage of scale in the study. The six districts in the city are
Heping, Hexi, Nankai, Hebei, Hongqiao, and Hedong. The four districts surrounding the
city are Beichen, Xiqing, Jinnan, and Dongli. Tianjin has always been a classic resource-
based city with high energy consumption and carbon emissions, presenting a pressing
need and tremendous potential for low-carbon transformation and development. Hence,
selecting Tianjin as the study area showcases its typicality (Figure 1).
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Figure 1. Location of the area of this study.
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2.2. Research Data

The multi-source data utilized comprises (1) the 2021 Tianjin Statistical Yearbook,
which primarily presents the energy consumption and other economic and social data of
Tianjin, (2) point of interest (POI) data, (3) road system data, (4) block type data, obtained
from the Tianjin Planning and Natural Resources Bureau, and (5) building data (Table 1).

Table 1. Data sources and description.

Name Description Sources
Industrial POI data Industrial storage block spatial location dataset Baidu map
Road systems of Tianjin Vector data of road traffic system Department of Transportation

Land-use map of Tianjin in 2021 Distribution of different block types Natural Resources Bureau

Urban population data Population of urban residential blocks Public Security Bureau

Rural population data Population of rural residential blocks Public Security Bureau
Residential block data Area, location, perimeter, green, and function Natural Resources Bureau
Agricultural planting area Area, location, type, etc., of agricultural planting Natural Resources Bureau

Building data

Electricity consumption data

Building outline contains name, number, height, area,
perimeter, and floor information
Electricity consumption of Tianjin Statistics Bureau

Construction Bureau

2.3. Methods

The entire process of analysis includes the calculation of ULSCE, variable extraction
of SQOI, statistical analyses, and machine learning method. Firstly, the carbon emission
coefficients method was used to calculate the ULSCE. Secondly, the SOIs were calculated by
defining the measurement methods. Thirdly, the Spearman correlation coefficient method
was adopted to examine the correlation between different types of SOIs and ULSCE. Lastly,
the random forest method was utilized to analyze the effects of different types of SOlIs on
ULSCE at various scales.

2.3.1. Define the Measurement Methods of ULSCE and SOI
e ULSCE Measurement Methods

ULS is a spatial carrier that carries various residents’ activities and is the spatial
projection of the daily activities of urban residents in various places, including residential
space, leisure space, consumption space, work space, public service space, etc. Ji et al.,
introduce a measure of ULS that quantifies a series of concentric circles radiating from
the bedroom, including bedrooms, residences, groups, blocks, areas, and administrative
districts [22]. The concepts of ULS and urban construction land are different. On one hand,
urban construction land only refers to residential land, industrial land, commercial land,
road land, green land, etc., which does not have scale connotation and only focuses on
different types. However, the ULS is similar to the living circle, which can be divided into
different scales according to the size of the activity range. Among them, the determination
criteria for blocks mainly correspond to land-use patches, with 44,138 blocks (Figure 2a).
The determination criteria for areas are determined based on the zoning determined in the
Master Plan of Tianjin Territorial Space, with 1683 areas (Figure 2b). On the other hand,
in terms of type division, although block-scale ULS corresponds to urban construction
land, area-scale ULS contains a variety of urban construction land types and has richer
connotations. Therefore, referring to the studies of Zhang et al. [23], this study first classifies
ULSCE into three major categories at the block scale for calculation, namely, industrial,
road traffic, and others. Secondly, the district and area scales are summarized according to
the types of the included areas and blocks, respectively. Lastly, different methods are used
based on the carbon-emissions-influencing factors as allocation parameters (Figure 3).

Among them, the industrial emissions measurement method is expressed in
Equations (1) and (2).

El']'
C,']' = Eej X — (1)

E;
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where Cj; is the carbon emissions of enterprise i of industry j, and E,; is the total carbon
emissions of industry j. E;; is the energy consumption of enterprise i of industry j, and E; is
the total energy consumption of industry j.

E,j = AD x EF @)

where AD is electricity consumption (kW h), EF is carbon emissions coefficient (CO,/kW h),
and the value is 1.246 kg CO, /kW h.
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Figure 2. Spatial distribution of area and block in Tianjin in 2021. (a) Spatial distribution of area scale

in Tianjin in 2021. (b) Spatial distribution of block scale in Tianjin in 2021.
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Figure 3. The framework of ULSCE measurement methods.

The road traffic emissions measurement method is expressed in Equations (3) and

(4) [24].

Cl']':CX'B]‘X

ﬁ

5j

®)
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where Cj; is the carbon emissions of segment i of the road grade j, C is the total carbon
emissions of the road system, S;; is the area of segment i of the road grade j, S; is the
total area of the road grade j, and B; is the proportion of carbon emissions in total traffic
emissions of grade j.

b= = S o (1=3) @)

i—1(Qj x S;
where §; is the total area of the road grade j, and Q; is the traffic flow of the road grade j.
This study divides road grades into three categories: regional road, urban road, and rural
road. Among them, the traffic flow of regional road is 4500 vehicles /h, the traffic flow of
urban road is 2067 vehicles/h, and the traffic flow of rural road is 500 vehicles/h [23].

Agricultural, residential, comprehensive service, commercial, other, etc., carbon emis-
sions comprise a significant portion of overall emissions, with a concentrated spatial
distribution, high continuity, and a consistent calculation method [25]. For this reason,
these emissions are categorized as other types of carbon emissions [26]. The other emissions
measurement method is expressed in Equation (5) [27].

S;
Y-S

where C; is the carbon emissions of block i of urban residential block, rural residential
block, commercial block, public management and public service block, etc. C is the total
carbon emissions of urban residential block, rural residential block, commercial block,
public management and public service block, etc. S; is the building area of block i.

The agricultural emissions measurement method is expressed in Equation (6) [28].

Ci:CX (5)

Ci = Ce X Si (6)

where C; is the carbon emissions of block i of agricultural block, C, is the carbon emissions
coefficient of agricultural block, and S; is the area of agricultural block i.

The carbon absorption system comprises forest blocks, grassland blocks, water
blocks, and vacant blocks. The ecological absorption measurement method is expressed
in Equation (7) [29].

Ci=Cei X Aj (7)

where C; is the carbon absorption of block 7, and C,; is the carbon absorption coeffi-
cient of block i. A; is the area of block i. A; is sourced from the 2021 Tianjin Statistical
Yearbook and Tianjin Territorial Space Planning. C, is quoted from the IPCC. The
carbon absorption coefficient of forest block, grassland (green) block, water (wet),
and vacant block are 0.6125 tCO,/hm?-a, 0.0205 tCO,/hm?-a, 0.0253 tCO,/hm?.a,
and 0.005 tCO,/hm?.a, respectively [26].

e  SOI Measurement Methods

In compliance with national land planning and control guidelines, in conjunction
with relevant literature research, expert interviews, and comparative analysis of multiple
types of block surveys, this study classified SOIs into two main categories: area and block,
totaling 13 SOIs. The area category comprises land mixing degree (LMD), road network
density (RND), residential land ratio (RLR), commercial land ratio (CLR), industrial land
ratio (ILR), bus station density (BSD), open space ratio (OSR), and public service facilities
land ratio (PLR). The block category encompasses floor area ratio (FAR), building area (BA),
building density (BD), building height (BH), and land area (LA) (Table 2).

2.3.2. Spearman Correlation Coefficient Method

The Spearman correlation coefficient method was originally proposed by Spearman in
1904. It is a statistical analysis method that measures the direction and degree of correlation
between two or more variables. The calculation formula is as follows [40]:



Buildings 2023, 13, 2393

7 of 24

RTSTEEE P

% (xi =) (5 - 9)

®)

where p is the Spearman correlation coefficient; x is the average value of the dataset x;
x; is the i-th data in the dataset x; y is the average value of the dataset y; y; is the i-th data
in the dataset y. The closer the absolute value of the correlation coefficient is to 1 or —1,
the stronger the correlation; the closer the absolute value of the correlation coefficient is to
0, the weaker the correlation. The results show that the absolute value of the correlation
coefficient above 0.8 is a strong correlation. The absolute value of the correlation coefficient
is between 0.5 and 0.8, which is a moderate correlation. The absolute value of the correlation
coefficient below 0.5 is considered a weak correlation or no correlation [41].

Table 2. Measurement methods of SOIs.

Type SOI Formula Description Source
_—2(Aglnay) Ajj is the proportion of Class i block in the j-th zone. N; is the
LMD E= lnf\lj- : number of block types in the j-th zone. el
s Sij is the area of the i-th section of the j-th road in the zone. S is
RND D= jgl si=12...,m the total area of the zone. n is the number of roads in the zone. (301
o, S; is the area of the i-th residential block in the zone. S is the
o - jgl =12 m) total area. n is the amount of residential blocks in the zone. 311
g S; is the area of the i-th commercial block in the zone. S is the
CLR €= El 3i=12...m total area. n is the amount of commercial blocks in the zone. [32]
Area /
s S; is the area of the i-th industrial block in the zone. S is the
e - ]El 3i=12...m total area. n is the amount of industrial blocks in the zone. [33]
BSD p=N N is the number of all public transport stops in the zone. S is [34]
s the total area of zone.
s S is the area of the i-th open space block in the zone. S is the
OSR G= jgl $i=12...,n) total area. 1 is the amount of open space blocks in the zone. [14]
" S; is the area of the i-th public service facilities block in the
PLR P=Y % (i=1,2...,n) zone. S is the total area. 1 is the amount of public service [35]
j=1 facilities blocks in the zone.
AT S; is the above-ground building area within the i-th block. S is
o - jgl 3=12...m the total area. # is the number of blocks in the zone. [36]
o . S; is the above-ground building area within the i-th block. n is
BA M= El Sii=1,2,...,m) the number of blocks in the zone. [57]
Block s S; is the base area of the i-th building in the zone. S is the total
BD B= El $=12....n) area. 1 is the number of buildings in the zone. [38]
BH H=-F (=12...,n F is the total building area in the zone. s; is the base area of the [39]
Y S i-th building in the zone. # is the number of buildings in the zone.
i=1
LA Y = i S;(i=1,2,...,n) §;isthe area within block i. 7 is the number of blocks in the zone. [11]

2.3.3. Random Forest Model

The random forest model, proposed by Breiman, is a machine learning algorithm based
on classification trees [42]. In comparison to GIS overlay analysis, the random forest model
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presents numerous advantages. Firstly, it is not restricted by dimensionality, obviating the
need for data standardization. Secondly, the model possesses a high classification accuracy
that can be optimized and adjusted based on limited training samples to minimize errors.
Thirdly, while preserving its precision, the model performs at a swift pace, and it performs
better processing high-dimensional and big data rather than low-dimensional and small
data. Additionally, the model offers a weight learning mechanism, which shields against
the problem of overfitting in attribute evaluations of large complex nonlinear systems, and
evaluates variable importance with a potent ranking function [43]. The technique flowchart
for the random forest model is shown in Figure 4.

Original training set

v

Bootstrap sampling

Classification| | Classification| | Classification Classification

tree 1 tree 1 tree 1 tree n

{ | |

Optimal classification tree

Figure 4. Schematic diagram of random forest algorithm.

Random forest algorithms can be implemented by using a variety of software pro-
grams, including Matlab, Python, and R languages. This study chose to build a random
forest model based on Python according to data characteristics. The implementation process
of random forest model was as follows:

e  Bootstrap Sampling

A random forest model was constructed, with ULSCE as the dependent variable
and SOI of various spatial scales as the independent variable. Bootstrap sampling was
performed K times on the sample set, and the data were divided into training and test
sets in a 3:7 ratio (with 30% for the test set and 70% for the training set). The training set
and test set were randomly allocated by using the random forest program package in R
language to ensure that the data were evenly distributed in each region. The importance of
each variable is calculated using the model accuracy (R?) of the test set.

e  Parameter Selection and Model Optimization

Before making a decision, the parameters of the random forest model need to be
adjusted to find the optimal parameters, so that the prediction accuracy of the model can
be optimized. The parameters selected in this study include n_estimators, max_depth,
min_sample_leaf, max_features, criterion, and min_samples_split. In order to obtain the
optimal random forest model, the mesh search parameter optimization algorithm was
adopted in this study [44], and the grid search interval range of each parameter was set as
shown in Table 3.
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Table 3. Interval of random forest model parameters.

Parameters Interval
n_estimators (2, 500)
bootstrp True
max_depth (10, 100)
min_sample_leaf (1,10)
max_features (log, N, sprtN)
criterion (MSE, MAE)
min_samples_split (1,10)

In the process of building a random forest model, two important parameters,
max_features and n_estimators, will directly determine the accuracy of the model.
max_features refer to the number of features selected to build each decision tree, while
n_estimators represent the number of decision trees of the final built random forest. Using
the R language plot package, this study can analyze model error and determine stability by
examining correlation graphs as the n_estimators change. In this study, with the increase in
decision trees, the error of training data showed a downward trend of repeated fluctuations.
When the number of decision trees was about 20, the error dropped to a low level, and
then the model fitting began to converge gradually. When n_estimators = 500, the MSE
(mean square error, MSE) essentially tended to a stable state. It shows that the random
forest model can explain the ULSCE to a large extent.

e Importance of SOI

The weights of each feature of each sample in the random forest model were calculated
by SHAP values, and then the absolute average SHAP values of all samples on different
features were calculated, which was used as the importance degree of different influencing
factors of ULSCE [45]. The SHAP value quantifies the contribution of each feature to the
prediction made by the model, calculates the marginal contribution of the feature added to
the model, and then takes the mean, that is, the reference value of the feature, after taking
into account the different marginal contributions of the feature in all the feature sequences.

3. Results
3.1. Spatial Characteristics of Carbon Emissions and Absorption
3.1.1. Spatial Distribution of District Scale Carbon Emissions and Absorption

The spatial distribution of ULSCE after allocation is depicted through the geographic
information system (GIS) framework (Figure 5a). The total annual carbon emissions of
each district are presented in Table 4. As of 2021, Beichen exhibits the highest carbon
emissions amounting to 1.43 x 10® t, representing 42.43% of the total, which is significantly
higher compared to other districts, with Dongli coming in second with carbon emissions of
7.10 x 107 t. Heping, on the other hand, has the lowest carbon emissions with 3.59 x 10°
t. Carbon emissions rank from highest to lowest as Beichen, Dongli, Xiqing, Hexi, Hebei,
Hedong, Nankai, Honggiao, Jinnan, and Heping. Notably, the carbon emissions of the
six districts in the city are considerably lower than those of the four districts around the city;
the combined total carbon emissions of the six districts in the city amount to 8.24 x 107 t,
accounting for 24.44%, while the total carbon emissions of the four districts around the city
are 2.54 x 108 t, representing 75.56%. On one hand, industrial areas in the four surrounding
areas are developing rapidly. For example, these four districts have experienced high rates
of spatial expansion over the past decade, with each district expanding by an average of
3-4 km? ULS yearly. On the other hand, the lack of comprehensive planning and low-
quality infrastructure in the four districts around the city have hindered development,
resulting in a scattered and highly fragmented overall layout, which has a severe impact
on the ecological natural space.
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Figure 5. Spatial distribution of district-scale carbon emissions and absorption in Tianjin in 2021.
(a) Spatial distribution of district-scale carbon emissions in Tianjin in 2021. (b) Spatial distribution of
district-scale carbon absorption in Tianjin in 2021.

Table 4. Carbon emissions/absorption and proportion of different districts in Tianjin in 2021.

Name Carbon Emissions (103 t) Proportion (%) Carbon Emissions (kg) Proportion (%)
Beichen 143,149.22 4243 728,901.17 53.17
Dongli 71,046.26 21.06 487,820.96 35.58
Hebei 18,413.79 5.46 4187.52 0.31
Honggiao 8329.02 2.47 2977.99 0.22
Xiging 34,866.71 10.34 65,689.75 4.79
Hedong 16,804.36 498 4063.26 0.30
Nankai 15,087.98 4.47 7213.76 0.53
Heping 3587.34 1.06 450.02 0.033
Hexi 20,222.17 5.99 5410.84 0.39
Jinnan 5857.36 1.74 64,227.75 4.68

From the perspective of carbon absorption, Figure 5b illustrates the total carbon
absorption of the 10 districts. Among them, Beichen exhibits the highest carbon absorp-
tion in 2021, with a value of 7.29 x 10° kg, accounting for 53.17%. This value is signifi-
cantly greater than that of other districts, followed by Dongli with a carbon absorption of
4.88 x 10° kg, while Heping presents the lowest carbon absorption of 4.50 x 10% kg. The or-
der of carbon absorption from highest to lowest is Beichen, Dongli, Xiqing, Jinnan, Nankai,
Hexi, Hebei, Hedong, Hongqiao, and Heping. Likewise, the carbon absorption of the
six districts in the city is significantly lower than that of the four districts around the
city. The total carbon absorption of the six districts in the city is 2.43 x 10* kg, account-
ing for 1.77%, while the total carbon absorption of the four districts around the city is
1.35 x 10° kg, accounting for 98.23% (Table 4).

3.1.2. Spatial Distribution of Area Scale Carbon Emissions and Absorption

Figure 6a displays the total carbon emissions of the 1683 areas. Notably, the com-
prehensive service areas exhibit the highest carbon emissions, with a carbon emission of
3.57 x 108 t, accounting for 47.70%, significantly surpassing other areas. Next, residential
and living areas follow with carbon emissions of 2.32 x 10® t, accounting for 30.98%. Car-
bon emissions rank from high to low in the following order: comprehensive service areas,
residential and living areas, green leisure areas, commercial and business areas, ecological
control areas, transportation areas, industrial development areas, farmland protection areas,
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and warehousing and logistics areas. This can indicate that the leading function of Tianjin
is a comprehensive service function, emphasizing high-end leadership. Optimizing and en-
hancing the modern service industry, it promotes the innovative and high-end development
of modern service industries such as business services, modern finance, shipping services,
technological innovation, cultural and creative tourism, and the headquarters economy,
as well as cultivating and developing emerging business forms. From an average carbon
emissions perspective, the average carbon emissions of comprehensive service areas are
the largest, which is 5.67 x 10° ¢, followed by residential and living areas with an average
carbon emission of 5.38 x 10° t. From high to low, the average carbon emissions ranking is
comprehensive service areas, residential and living areas, commercial and business areas,
transportation areas, industrial development areas, green space leisure areas, ecological
control areas, storage and logistics areas, and farmland protection areas.
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Figure 6. Spatial distribution of area-scale carbon emissions and absorption in Tianjin in 2021.
(a) Spatial distribution of area-scale carbon emissions in Tianjin in 2021. (b) Spatial distribution of
area-scale carbon absorption in Tianjin in 2021.

The spatial distribution of carbon emissions displays a noticeable disparity. The map
highlights dark areas, which correspond to regions with high carbon emissions that are
predominantly situated in the outer reaches of the city. These areas exhibit an increase in
emissions from the core to the periphery, and the characteristics of carbon emission circle
distribution are very obvious. It is concentrated in industrial centers with a larger area,
as well as surrounding areas of Tianjin University and Nankai University that serve as
professional public service centers. High-emissions areas include Chailou Science Park,
Rongfa Decoration City, Tiannan University, Chentangzhuang industrial Park, Shuanggang
industrial Park, and Balitai industrial Park, etc. Conversely, the light-colored areas on the
map indicate low-carbon-emitting regions, which are primarily situated near the urban
core areas containing high population densities and human activities. However, due to
the relatively dense road network and smaller partition area in the core, overall emissions
remain relatively low.

In terms of carbon absorption, Figure 6b depicts the total amount of carbon absorption
of 1683 districts in Tianjin. Notably, the green leisure areas exhibit the highest carbon
absorption, with a total of 5.76 x 10° kg, representing 32.33% of the total, surpassing other
area types. The residential and living areas follow closely with a carbon absorption of
5.62 x 10° kg, accounting for 31.51% of the total, and ecological control areas take the
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third place, sequestering 5.08 x 10° kg of carbon, representing 28.52%. The ranking of
carbon absorption from high to low is as follows: green leisure areas, residential and living
areas, ecological control areas, industrial development areas, commercial and business
areas, comprehensive service areas, farmland protection areas, transportation hub areas,
and warehousing and logistics areas. This demonstrates that the establishment of green
and leisure spaces in Jincheng has achieved promising outcomes. These efforts should be
integrated with the “One Ring and Eleven Gardens” botanical garden chain to optimize the
supply of green and leisure spaces, as well as to enhance the ecological network and park
system in the core area of Tianjin. In terms of average carbon absorption, residential areas
exhibit the highest average carbon absorption rate of 1.30 x 103 kg, followed by commercial
and business areas with an average carbon absorption rate of 4.14 x 102 kg. The ranking of
the average carbon absorption rate from high to low is as follows: residential and living
areas, commercial and business areas, comprehensive service areas, ecological control areas,
green leisure areas, industrial development areas, farmland protection areas, transportation
hub areas, and warehousing and logistics areas.

The spatial distribution of carbon absorption exhibits a notable imbalance. The map
indicates that regions with high carbon absorption are primarily situated in the northeast
of Beichen. Conversely, the light areas displayed on the map signify low carbon absorption
areas that are primarily concentrated near the urban core area with the most densely
populated regions and human activities. Due to the relatively dense road network in the
core area, coupled with the small size of the sub-area, the overall carbon absorption rate is
relatively low (Figure 6b).

3.1.3. Spatial Distribution of Block Scale Carbon Emissions and Absorption

As per the comprehensive spatial planning of Tianjin, the city has been partitioned
into 44,138 blocks. Table 5 presents the complete picture of carbon emissions generated by
these blocks. Amongst these blocks, the industrial blocks account for the highest carbon
emissions, which amount to 1.82 x 108 t, constituting 54.02% of the total emissions. This
demonstrates a significant gap when compared to other block types. The residential blocks
closely follow, contributing carbon emissions of 7.38 x 107 t, constituting 21.86%. The
ranking of carbon emissions, starting from the highest, is as follows: industrial block,
residential block, urban other block, warehousing block, commercial service industry block,
public management and public service block, public facility block, transportation block,
village other block, special block, cultivated block, garden block, agricultural facility con-
struction block, other block, and other block within the scope of the special block. By
optimizing and reducing carbon emissions originating from industrial and residential
blocks, a reduction of 75% can be achieved. The 