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Abstract: The utilization of Concrete-filled steel Tubular (CFST) columns is increasingly widespread.
However, the assessment of the residual bearing capacity of CFST columns currently relies mainly
on costly and time-consuming experiments and numerical simulations. In this study, we propose a
machine learning-based model for rapidly identifying the residual bearing capacity of CFST columns.
The results demonstrate that the predictions of the proposed Stacking-KRXL model align well with
the actual values, with most prediction errors falling within ±10%. The RSquared value of 0.97
significantly surpasses that of other methods. The stability and robustness of the model are analyzed.
Additionally, the Shapley additive explanations method is applied for global and local interpretations,
revealing positive or negative correlations between different parameters and the residual bearing
capacity of CFST columns, mainly influenced by the concrete area in the core region.

Keywords: concrete-filled steel tubular columns; machine learning; residual bearing capacity;
fusion model

1. Introduction

Concrete-filled Steel Tubular (CFST) columns have received extensive attention in the
field of civil engineering in recent years [1–3] and have been widely applied in structures
such as bridges, marine constructions, and mountain constructions. However, in practical
engineering, structural elements may be subjected to various impact loads in addition
to design loads [4–6], such as explosions, vehicle collisions, wave impacts, and rock fall
impacts. The damage caused by these impacts can severely compromise the structural
integrity and lead to loss of bearing capacity, posing a serious threat to human life and
property safety. When structures are subjected to short-duration sustained impact loads,
they undergo significant deformations primarily due to material, geometric, and contact
nonlinearity, making the mechanical and dynamic response analysis of the structures
highly complex [7]. Therefore, predicting the residual bearing capacity of CFST structures
after being subjected to lateral impact loads has become extremely challenging, despite
its potential to provide valuable insights for the design of CFST structures with resistance
to impacts.

Currently, the assessment of the residual bearing capacity of CFST columns sub-
jected to impact loads primarily relies on extensive testing and numerical simulations.
For instance, Zhang et al. [8,9] conducted lateral impact tests and investigated the resid-
ual bearing capacity of damaged specimens, revealing that lateral impacts significantly
reduced the initial stiffness, residual bearing capacity, and ductility of CFST columns.
Hou et al. [10] numerically studied the entire lifecycle of CFST columns and found that
impact loads significantly influenced the residual deformation and bearing capacity of
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CFST columns. Wang et al. [11] investigated square recycled aggregate concrete-filled steel
tubular (RACFST) columns through close-range explosion tests and evaluated the residual
axial bearing capacity. The results indicated that the steel tube thickness and core concrete
strength were the main factors affecting the residual bearing capacity of CFST columns.
Chen et al. [12] experimentally studied the residual bearing capacity of 45 circular CFST
columns under impact loads. They found that impact energy, core concrete strength, and
impact location had significant influences on the residual bearing capacity. Wang et al. [13]
analyzed the residual bearing capacity of CFST columns under lateral impact using numer-
ical simulations and proposed different damage assessment levels and assessment curves
based on the parametric analysis results. Kang et al. [14] numerically investigated the effect
of axial pressure on the residual bearing capacity of CFST columns under impact loads.
The results showed that when the axial compression ratio was less than 0.7, the axial force
enhanced the impact resistance of CFST columns.

In recent years, machine learning (ML) has been widely applied in civil engineer-
ing due to the availability of data and its powerful capabilities in addressing complex
nonlinear problems [15,16]. ML methods offer high accuracy and strong generalization
abilities, enabling the prediction of complex problems without the need for an in-depth
understanding of their physical principles, thus greatly reducing the application barriers for
engineers [17]. Currently, many researchers have applied ML methods to study the impact
resistance of reinforced concrete (RC) structures. For example, Almustafa et al. [18,19]
utilized ML methods to analyze the feasibility of predicting the maximum displacement of
RC columns and FRP-strengthened RC panels under blast loads. Thai et al. [20] employed
a gradient-boosting machine learning (GBML) approach to predict local damage in RC
panels under impact loads. Doan et al. [21] classified the damage patterns of RC panels
under impact loads using artificial neural networks (ANN) and optimized the ANN model
using genetic algorithms (GA) and particle swarm optimization (PSO). Cao et al. [22] in-
vestigated the impact of influential parameters on the impact resistance of fiber-reinforced
concrete using an adaptive neuro-fuzzy inference system. Haruna et al. [23] developed a
support vector machine (SVM) model that accurately predicted the impact resistance of
U-shaped polyurethane-based polymer concrete. Al-shawafi et al. [24] predicted the energy
absorption capacity of Ultra High-Performance Reinforced Concrete (UHPFRC) in the
failure cracking stage using ANN and multiple linear regression (MLR) methods. Although
ML methods have shown certain advantages in analyzing the impact resistance of concrete
structures, the “black-box” nature of ML methods often obscures the relationship between
input variables and output parameters. Users can only observe the final results without
understanding the internal decision-making process of the model. This lack of transparency
in the ML methods leads to a lack of confidence in their application among users, thereby
limiting their application and development in the field of engineering to some extent [25].
To address this, Strumbelj et al. [26] proposed a game-theoretic Shapley Additive Expla-
nations (SHAP) approach for quantifying the contributions of input parameters to output
parameters, which has been widely utilized [17].

In summary, the research on the residual bearing capacity of CFST components after
experiencing lateral impact is currently very limited, mainly focusing on experiments
and numerical simulations, which are costly and time-consuming traditional methods.
There has been no systematic study on the residual bearing capacity of CFST columns
under the impact load using ML methods. Therefore, there is an urgent need to develop a
low-cost, efficient, and comprehensive approach that considers multiple influencing factors
to explore the residual bearing capacity of CFST columns after impact load.

Based on the aforementioned background, this paper proposes an interpretable
Stacking-KRXL fusion model for predicting and interpreting the residual bearing capacity
of CFST columns. The innovations of this study are as follows:

(1) Building a CFST column residual bearing capacity database containing 221 data
samples based on existing research reports.
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(2) This paper proposes a multi-model fusion model based on the Stacking framework for
rapid prediction of the residual bearing capacity of CFST columns under impact loads.
The stability and robustness of the proposed model are evaluated and compared
comprehensively with existing prediction methods.

(3) Applying the Shapley Additive Explanations (SHAP) method to provide global and
local interpretations of the Stacking-KRXL fusion model. The important feature
ranking of CFST column residual bearing capacity under impact load, the influence
relationship between input features and output, and the effects of local samples on
CFST column residual bearing capacity are analyzed.

2. CFST Columns Database and Feature Selection
2.1. CFST Columns Database Establishment

This study aims to rapidly predict the residual bearing capacity of CFST columns
after impact loads and develop corresponding models. To establish the ML model, we
constructed a CFST column database containing 221 data points, based on previous studies
on the impact resistance of CFST columns [12,13,27,28]. It is important to note that the
data used in this database were sourced from the aforementioned four references. This
database includes data on various cross-sectional forms, geometric parameters, material
strength, boundary constraint conditions, and impact energy, which can effectively reflect
the dynamic characteristics of CFST columns under impact loads. It is worth noting that
this study disregards the structural form of filled materials in CFST columns, such as steel
skeleton fillers. This is because fillers exhibit diverse types and significantly differ from
non-filled CFST columns.

2.2. Features Selection

After being subjected to impact loads, CFST columns do not completely lose their
load-bearing capacity and do not collapse immediately. However, impact loads can sig-
nificantly change the mechanical properties of CFST columns, and the magnitude of the
remaining load-bearing capacity will affect the seismic performance and safety of the struc-
ture. Appropriate input features need to be selected to establish a predictive model for the
remaining load-bearing capacity of CFST columns after impact loading. Previous studies
have shown that the remaining load-bearing capacity of damaged CFST columns is mainly
affected by factors such as cross-sectional form, geometric parameters, material properties,
boundary constraints, impact energy, and impact location [12,13,27,28]. Experimental re-
search results indicate that the remaining load-bearing capacity of CFST columns under
lateral impact loads is negatively correlated with impact energy, and positively correlated
with core concrete strength and impact location, with the impact location having the most
significant influence. In addition, specimens with higher impact energy, impact location
closer to the end, and higher concrete strength experience greater initial stiffness and more
severe deterioration in ductility after being subjected to impact loads, resulting in a more
significant reduction in remaining load-bearing capacity, with these three factors having
a cumulative effect. Therefore, this study selected 13 features as input for the ML model,
covering geometric parameters, material parameters, boundary constraints, and impact
parameters. Detailed definitions and descriptive statistics of each feature can be found in
Table 1. The cross-sectional forms of CFST columns mainly include circular and square
shapes, as shown in Figure 1 [29]. The boundary constraint conditions include both ends
fixed, one end fixed and one end simply supported, and both ends simply supported, as
shown in Figure 2. The target feature is the residual bearing capacity (F) of CFST columns
after impact loading.
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Table 1. List of the modeling features extracted from the references in the literature, and statistical
analysis of the values used in the database of this study.

Category Features Unit Features Description Mean Standard
Deviation Minimum Median Maximum

geometric
parameters

t/D (-) diameter-to-thickness ratio 0.04 0.01 0.01 0.04 0.10
L/D (-) slenderness ratio 7.10 3.18 3.37 9.00 15.00
Ac (mm2) Concrete area of the core area 72,589.11 84,662.13 5150.39 63,314.96 767,376.00

As (mm2)
The cross-sectional area of

steel tubular 13,413.44 12,702.26 775.00 10,851.84 45,216.00

β (-) Section type 1.33 0.47 1.00 1.00 2.00

material
parameters

n (-) axial pressure ratio 0.07 0.16 0.00 0.00 0.80

fc (MPa) Cubic compressive strength
of concrete 37.16 12.31 20.10 32.40 75.10

fy (MPa) Yield strength of steel tubes 332.22 42.63 235.00 321.00 690.00
ξ (-) Constraint effect coefficient 1.99 1.12 0.30 2.00 7.29
ρ (-) Steel tube steel content ratio 19.65 8.51 5.00 20.73 56.25

boundary
constraints θ (-) Boundary constraints 2.45 0.65 1.00 3.00 3.00

impact
parameters

E (kJ) Impact energy 339.94 702.83 0.00 138.89 5555.56
τ (-) impact location 0.33 0.13 0.00 0.25 0.66

Output
feature F (kN) the residual bearing capacity

of CFST 6920 7539.38 199.8 5209 59188

Note: β: 1 represents circular CFST column, 2 represents square CFST column; θ: 1 represents both ends fixed,
2 represents one end fixed and one end simply supported, 3 represents both ends simply supported; τ: represents
the ratio of impact location to the length of the CFST column.
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3. Methodology
3.1. Proposed Framework

The overall implementation process for predicting and interpreting the residual bear-
ing capacity of CFST columns under impact load using the Stacking-KRXL fusion model is
shown in Figure 3. It consists of four stages: establishment of the CFST column residual
bearing capacity database, feature selection, construction of the Stacking-KRXL fusion
model, and analysis and discussion of the results. The specific process is as follows:

(1) In the first stage, a CFST column residual bearing capacity database containing
221 data samples was established based on existing research reports on the resid-
ual bearing capacity of CFST columns under impact load [12,13,27,28].

(2) In the second stage, the residual bearing capacity of CFST columns after impact load
is influenced by factors such as cross-section shape, geometric parameters, material
properties, boundary constraints, impact energy, and impact position [12,13,27,28].
Therefore, this study selected 13 input features, including geometric parameters (t/D,
L/D, Ac, As, β), material parameters (n, fc, fy, ξ, ρ), boundary constraints (θ), and
impact parameters (E, τ), as well as the output feature, residual bearing capacity (F).

(3) The Stacking-KRXL fusion model was built with KNN, RF, and XGBoost as the base
learners, and LR as the meta-learner.

(4) The predictive performance of the Stacking-KRXL fusion model was compared with
that of traditional ML models, Bagging ensemble learning, and Boosting ensemble
learning models, and the robustness and stability of the model were tested. The SHAP
method was used to provide global and local explanations for the model.
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3.2. Overview of Machine Learning Models
3.2.1. Linear Regression

Linear regression (LR) is a common ML model used to demonstrate the linear relation-
ship between a predictive target and multiple independent variables. Figure 4a illustrates
the principle of LR. Due to its straightforward linear relationship, LR is widely applied in
regression tasks and is relatively easy to interpret in terms of its parameter explanations [30].
The calculation formula for LR is as follows:

P =
ez

1 + ez , z = β0 + β1X1 + β2X2 + · · ·+ βnXn (1)

where P represents the predicted result, Xi (I = 1, 2, . . ., n) represents the independent
variables, and βi represents the coefficients of the logistic regression.
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3.2.2. K-Nearest Neighbors

The basic idea of the K-nearest neighbors (KNN) algorithm is to find the K-nearest
samples in a given training set based on their distances to the target sample, and then
classify the target sample based on the majority class of those K samples [31]. Figure 4b
illustrates the working principle of this algorithm. KNN can be used for both classification
and regression tasks, with the main difference lying in the decision criterion. In general,
the decision rules of the KNN model can be classified into two types: Majority Voting and
Weighted Voting. Majority Voting selects the class that appears most frequently among the K
nearest neighbors as the predicted class for the sample, which is applicable to classification
problems. On the other hand, Weighted Voting calculates the weighted sum of distances to
the neighboring samples and makes decisions based on the weights. The closer neighbors
have higher weights, indicating a greater influence on the prediction. Weighted Voting is
suitable for regression problems, and the weights can be calculated using methods such
as reciprocal distance and Gaussian kernel function. In regression tasks, the calculation of
distance plays a vital role as it reflects the similarity between samples in the feature space.
Commonly used distance calculation formulas include the Euclidean distance, defined as

L2
(
xi, xj

)
=

(
n

∑
l=1

(
x(l)i − x(l)j

)2
) 1

2

(2)

and the Manhattan distance, defined as

L1 =
(
xi, xj

)
=

n

∑
l=1

∣∣∣x(l)i − x(l)j

∣∣∣ (3)

3.2.3. Random Forest

The Random Forest (RF) algorithm is an improved decision tree algorithm [32]. Its
core idea is to construct multiple random training datasets by using the bootstrap method
to randomly sample the original training data with replacement. Each random training
dataset independently builds a decision tree, which partitions the dataset based on attribute
splits to minimize prediction errors at each leaf node. To increase the diversity between
decision trees, a mechanism of random feature selection is introduced. During each node
split, a random subset of features is considered from all available features. This randomness
enhances the robustness and generalization ability of the model. When predictions are
needed, each decision tree in the Random Forest independently predicts the samples. For
classification problems, the final prediction result is determined by majority voting. For
regression problems, the final prediction value is obtained by averaging the predictions
of each decision tree. Figure 4c illustrates the principle of the Random Forest. During
the training phase, the decision trees use the prediction error metric Gσ as the evaluation
criterion. When Gσ is small, it indicates that using a specific attribute for data splitting
can reduce the dissimilarity between subsets, thereby making it a good choice as a node
attribute.

For a sample set S, the calculation formula for the total variance σ(S) is:

σ(S) =

√
m

∑
i=1

(yi − µS)
2 (4)

where µs is the average of the predicted results in the sample set S, and yi is the predicted
result of the ith sample. Based on the ith attribute value of attribute A, partition the dataset
S into S1 and S2. The calculation formula for Gσ is:

GA,i
σ (S) = σ(S1) + σ(S2) (5)
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The optimal binary split for attribute A is:

min
i∈A

[
GA,i

σ (S)
]

(6)

For a sample set S, calculate the optimal binary split for all attributes and select the
one with the minimum value as the split scheme for the decision tree at this node, where Z
is the set of all attributes. The calculation formula for the minimum value is:

min
A∈Z

{
min
i∈A

[
GA,i

σ (S)
]}

(7)

3.2.4. XGBoost

XGBoost is a distributed gradient-boosting library that optimizes the gradient-boosting
decision tree (GBDT). Its fundamental idea is to combine multiple weak learners to build a
powerful model. These weak learners are designed to collaborate with each other, with
each learner focusing on improving the errors of the previous learner. During the training
process, XGBoost iteratively optimizes the model’s performance. In each iteration, it adjusts
the weights of the subsequent models based on the errors of the previous model, aiming
to reduce the overall error. As a result, the model becomes increasingly accurate after
each iteration. The model principles of XGBoost are illustrated in Figure 4d. It starts with
the combination of weak learners and then continuously refines them through iterative
optimization to achieve a more accurate and powerful model [33,34].

3.3. CFST Columns Residual Bearing Capacity Prediction Model Based on Stacking

Stacking ensemble learning aims to combine multiple weak supervised models to
obtain a strong supervised model, fully leveraging the strengths of individual ML models
to improve the overall prediction accuracy [35]. The stacking strategy can be based on
either homogeneous or heterogeneous learners. Different ML models are learned in batches,
and meta-learning is used for model fusion. The common stacking ensemble framework
consists of two layers, with the base learners in the first layer and the meta-learner in the
second layer. The principle of the stacking algorithm is illustrated in Figure 5.
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The base learning models in stacking-based ensemble learning should satisfy both
diversity and prediction accuracy. Each learner should not only have good predictive
accuracy but also exhibit certain differences, enabling them to complement each other and
achieve better prediction results [36,37]. In this study, the predictive performance of three
categories of single models, including traditional machine learning models (BPNN, LR,
KNN), Boosting ensemble learning (LightGBM, GBRT, XGBoost), and Bagging ensemble
learning (ExtraTree, RF), were compared, as shown in Section 4.1. It can be observed that
the KNN model in traditional machine learning models, the XGBoost model in Boosting
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ensemble learning, and the RF model in Bagging ensemble learning demonstrated the
best predictive performance within their respective categories. Therefore, these three
models, namely KNN, XGBoost, and RF, which performed the best within their respective
categories, were selected as the base learners, ensuring both diversity and good predictive
performance. Specifically, KNN performs well in predicting nonlinear small samples, while
RF and XGBoost are ensemble learning algorithms based on the bagging and boosting
ideas, respectively, using decision trees as a foundation. They have excellent generalization
ability and are less prone to overfitting. As for the meta-learner, LR is chosen as it is a
simple and stable model that can effectively improve prediction accuracy and avoid the
risk of overfitting. Finally, the KNN, RF, XGBoost, and LR fusion model (Stacking-KRXL)
based on the Stacking framework was established. The framework of the damaged CFST
column residual bearing capacity prediction model based on stacking ensemble learning is
shown in Figure 6. The specific steps are as follows:

(1) Divide the 221 data in the CFST columns database randomly into training and testing
sets with a ratio of 7:3, respectively.

(2) Training the base learners. The KNN, RF, and XGBoost base learners are trained using
5-fold cross-validation. Taking the KNN base learner as an example, first, the original
training dataset is divided into five equal-sized subsets: A, B, C, D, E. In the first
round, A is used as the test set, and B, C, D, E are used as the training sets. The KNN
base learner is trained using the data from the training sets B, C, D, E, and the trained
KNN model is used to make predictions for A. The same process is repeated with B, C,
D, E as the test set and the remaining four subsets as the training set. The predictions
obtained from the 5-fold cross-validation are combined to obtain the training dataset
for the second layer of the meta-learner. The RF and XGBoost base learners follow
the same process. The final averages of RSquared, MAE, and RMSE for the 5-fold
cross-validation model are 0.97, 466.23, and 1205.22, respectively.

(3) Training the meta-learner. Generate a new training dataset for the second-layer LR
meta-learner by using the predictions from the first-layer base learners using CFST
columns. These predictions serve as inputs for training the second-layer LR meta-
learner. The final predictions from the second-layer LR meta-learner are used as the
output values of the Stacking fusion model.

3.4. Model Evaluation Criteria

To comprehensively evaluate the predictive performance of ML models on the resid-
ual bearing capacity of CFST columns after impact loads, this study selected the Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), and Coefficient of Determination
(RSquared) as evaluation metrics for regression models. The specific expressions are as
follows:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (8)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (9)

RSquared = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − yi)

2
(10)

where n is the total number of samples, yi is the observed value of the ith sample, ŷi is the
predicted value of the ith sample, and ȳ is the mean value of all observed values. These
evaluation metrics provide quantitative measures of the accuracy and goodness of fit of the
regression models, helping to assess their performance in predicting the residual bearing
capacity of CFST columns accurately.
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4. Analysis of Results and Discussion
4.1. Comparison of Predictive Performance of Various ML Models

To evaluate the performance of the Stacking-KRXL fusion model in predicting the
residual bearing capacity of CFST columns, this study compared it with traditional ML
models (LR, BPNN, KNN), Boosting ensemble learning models (LightGBM, GBRT, XG-
Boost), and Bagging ensemble learning models (ExtraTree, RF). Please note that all models
in this paper were developed using Python and open-source software packages such as
sklearn, shap, xgboost, lightgbm, and mlxtend. The models were implemented with default
parameter settings. Figure 7 shows the scatter distribution of the predicted values (Fp) and
the actual values (Ft) of the residual bearing capacity of CFST columns by the nine ML
models on the training and testing datasets. The black line in the middle of the scatter
distribution represents the complete consistency between the predicted values (Fp) and
the actual values (Ft) of the model, with zero error, and the error ranges of ±10%, ±15%,
and ±20% are indicated. From Figure 7, it can be seen that among the traditional ML
models, the LR model has a large prediction error for the CFST column bearing capacity
below 15,000 kN, especially in the training set. Many scatter points are distributed out-
side the ±20% error range, further demonstrating the significant nonlinear relationship
between the residual bearing capacity of CFST columns under impact load and various
input features. The scatter points of the KNN model show a distinct layered distribution,
and the prediction error is also large when the residual bearing capacity is large. The scatter
distribution of the BPNN model is relatively concentrated, with most scatter points in the
training set falling within the ±20% error range, but there are still many scatter points
distributed outside the ±20% error range in the testing set, indicating the existence of
a certain degree of overfitting. Compared with these three traditional ML models, the
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scatter distribution of the six ensemble learning models is more concentrated. Among
them, the scatter distribution of the ExtraTree, XGBoost, GBRT, and LightGBM models is
relatively scattered as a whole, and the scatter distribution of the RF model is relatively
concentrated except for the scatter points near CFST column residual bearing capacity
of 10,000 kN. The Stacking-KRXL fusion model proposed in this study has a relatively
concentrated scatter distribution in both the training and testing sets, with most scatter
points concentrated around zero error. Only for the scatter points near the CFST column
residual bearing capacity of 12,000 kN in the training set, the scatter distribution is more
scattered, indicating a small prediction error of the model. Compared with the other eight
individual ML models, this model has higher prediction accuracy for the residual bearing
capacity of CFST columns.
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Figure 8 displays the error distribution of the nine ML models. The yellow boxes
represent the interquartile range, the green lines represent the median, the red boxes
represent the mean, and the blue dots represent outliers. From Figure 8, it can be observed
that the error distribution of the nine ML models follows a normal distribution, with the
median of the errors close to zero. Specifically, the outlier distribution is wider for the GBRT,
LightGBM, and ExtraTree models, and the error normal distribution range is wider for the
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LightGBM, BPNN, and LR models. The Stacking-KRXL model has the smallest ranges
for error normal distribution, outlier distribution, and interquartile range. This indicates
that compared to the other eight individual ML models, the Stacking-KRXL model has
significant advantages. Table 2 and Figure 9 show the training time, RMSE, MAE, and
RSquared metrics of the nine ML models on the training and testing sets. From Table 2, it
can be seen that the R-squared values of the LR and BPNN models are both less than 0.8,
and they have the highest RMSE and MAE values on the testing set. The RSquared values
for the XGBoost, KNN, ExtraTree, RF, LightGBM, and GBRT models range from 0.8 to 0.9,
while the Stacking-KRXL model achieves an RSquared value of 0.97. Compared to the four
individual models of KNN, RF, XGBoost, and LR, the RSquared values are improved by
16.9%, 7.8%, 11.5%, and 34.8%, respectively. However, due to the high complexity of the
Stacking-KRXL model, it has the longest running time.
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Table 2. Predictive performance metrics of different ML models in training and test sets.

Models Training Time (s)
Training Set Testing Set

RMSE (kN) MAE (kN) RMSE (kN) MAE (kN) RSquared

BPNN 2.11 1003.22 352.96 3072.62 1010.93 0.79
LR 1.56 1106.52 558.44 3525.52 1020.19 0.72

XGBoost 7.55 3258.65 1200.58 2412.73 1271.81 0.87
KNN 3.31 2863.98 1585.74 2790.61 1459.30 0.83

Stacking-KRXL 12.11 1407.29 444.54 1219.56 489.82 0.97
ExtraTree 5.21 2545.23 1024.82 2541.66 1228.58 0.86

RF 2.21 2221.72 829.03 2117.54 1016.72 0.90
LightGBM 7.23 2255.89 772.35 2845.08 1256.87 0.82

GBRT 5.58 1800.87 731.16 2480.16 1183.79 0.86
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4.2. Checking of Robustness and Reliability for Stacking-KRXL Model

The robustness of the ML model refers to its ability to handle outlier samples and
noise data while maintaining its predictive ability in exceptional conditions. On the other
hand, stability refers to the model’s consistency in performance across different datasets
or environments, indicating its generalization capability. To assess the performance of
the Stacking-KRXL model in terms of robustness and stability, the original dataset of
CFST columns was randomly divided into 30 different training and test sets, following a
7:3 ratio. Each of these training and test sets comprised distinct data samples, requiring the
model to be retrained and tested each time. The MAE, RMSE, and RSquared metrics were
tested under different combination datasets of the Stacking-KRXL model. Based on the
30 training results shown in Figure 10, it can be observed that the predictive performance
of the Stacking-KRXL model exhibits some fluctuations, but overall, it demonstrates high
accuracy. Specifically, in the training set, the MAE of the Stacking-KRXL model remains
stable, fluctuating around 330kN with a standard deviation (St.dev.) of 37.19 kN. In the
testing set, the MAE fluctuates around 600kN, with a St.dev. of 137.20 kN. The RMSE
fluctuates around 1200 kN in the training set, with a St.dev. of 187.77 kN, while in the
testing set, it fluctuates around 1400 kN, with a St.dev. of 346.80 kN. The mean RSquared
value in the testing set is 0.95, with a significantly low St.dev. of 0.02, indicating good
stability of the model, and the maximum RSquared value reached 0.99.

In conclusion, the results obtained from this study demonstrate that the constructed
Stacking-KRXL model possesses good robustness and stability. These results are of
significant importance in evaluating the reliability and robustness of the model in
practical applications.
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4.3. Interpretation of SHAP-Based Residual Load Capacity Model for CFST Columns

ML models are capable of establishing non-linear relationships between input features
and output results. However, the internal workings of these models are often uninter-
pretable, presenting a “black box” characteristic. This significantly reduces the transparency
and reliability of the models, limiting their generalizability and application. However,
understanding the influence of each feature on the predicted results can help us adjust
feature weights or take appropriate actions to enhance the predictive performance of the
model. To address this issue, Štrumbelj et al. proposed a model explanation method
called Shapley Additive Explanations (SHAP) based on game theory [26]. The SHAP-based
analysis can analyse and quantify the relative influence of the individual input parameters.
In this study, we applied the SHAP method to provide both global and local explanations
for the proposed Stacking-KRXL model, aiming to better analyze the relationships between
input features and output features.

4.3.1. Global Interpretation

The global interpretation based on SHAP is to use the SHAP model interpretation
method to explain the importance of features and their impact on the prediction results of
the model. Figure 11 shows the feature importance ranking of the Stacking-KRXL model
based on SHAP values. Among them, a larger SHAP value indicates a greater impact on
the residual bearing capacity of the CFST column. According to Figure 11, we can observe
that the Concrete area of the core area (Ac) has the greatest impact on the residual bearing
capacity of the CFST column, with a SHAP value of 6507.05. Next are the CFST column’s
slenderness ratio (L/D), Cross-sectional area of steel tubular (As), Yield strength of steel
tubes (fy), and impact location (τ). The SHAP values of Boundary constraints (θ), Section
type (β), and diameter-to-thickness ratio (t/D) are relatively small, indicating a smaller
impact on the residual bearing capacity of the CFST column.

In addition, Figure 12 shows the summary plot of input features. The vertical axis
represents the feature importance ranking, and the span of the scatter plot represents the
magnitude of its impact on the residual bearing capacity of the CFST column. The color
gradient from blue to red represents the change in feature values from small to large. From
Figure 12, it can be seen that SHAP increases with the increasing values of Concrete area of
core area (Ac), Cross-sectional area of steel tubular (As), Yield strength of steel tubes (fy),
impact location (τ), Cubic compressive strength of concrete (fc), Constraint effect coefficient
(ξ), axial pressure ratio (n), and Steel tube steel content ratio (ρ), indicating a positive
correlation between these feature values and the residual bearing capacity of the CFST
column. On the other hand, SHAP decreases with the increasing values of slenderness ratio
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(L/D) and Impact energy (E), indicating a negative correlation between these feature values
and the residual bearing capacity of the CFST column.
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4.3.2. Local Interpretation

By analyzing local explanations, we can gain a deeper understanding of how the
model utilizes different features to make predictions and interpret the predicted results of
specific samples. To further study the importance of individual sample features and their
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impact on the residual bearing capacity of CFST columns, this study randomly selected
a sample for SHAP-based local interpretability analysis. Figure 13 shows the graphical
representation of the SHAP values of this sample as the features change, with a baseline
value of 7125. Here, f(x) represents the SHAP value for the current sample’s CFST column
residual bearing capacity. A red arrow pointing to the right indicates a positive influence of
the feature on the CFST column residual bearing capacity, while a blue arrow pointing to
the left indicates a negative influence on the CFST column bearing capacity, with the length
of the arrow representing the extent of the impact. Observing Figure 13, we can conclude
that after the combined effects of various features, the final SHAP value for this sample is
16,075.42. Specifically, when the Yield strength of steel tubes (fy) is 321 MPa, the residual
bearing capacity of this sample decreases. However, when the Cubic compressive strength
of concrete (fc) is 32.7 MPa, the slenderness ratio (L/D) is 3.75, the Section type (β) is 2, the
Concrete area of the core area (Ac) is 5625 mm2, and the cross-sectional area of steel tubular
(As) is 775 mm2, the residual bearing capacity of this sample increases, with Cross-sectional
area of steel tubular (As) having the greatest impact.
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4.3.3. Limitations of SHAP Model Interpretation

SHAP is a widely used method in the field of interpretable machine learning for
explaining model predictions. However, the SHAP model interpretation also has some
limitations, including the following:

(1) Computational Complexity: The SHAP interpretation method requires computing
the Shapley values for each feature, which involves calculating the number of combi-
nations of feature subsets. This results in high computational complexity, making it
challenging to apply on large-scale datasets or complex models.

(2) Potential Conflicting Explanations: In certain situations, the SHAP interpretation
may produce conflicting results. Since the Shapley values are calculated based on the
weighted average of feature subsets, different feature subsets can lead to different
Shapley value rankings. This can result in conflicting interpretations, making the
explanations inconsistent or difficult to interpret.

(3) Limitations in Interpretation: When there are correlations between features, some
approximation algorithms may yield poorer performance. For example, the Kernel
SHAP’s approximation algorithm requires features to be mutually independent, which
is often not satisfied in most cases. This can lead to less accurate “explanatory results”
for black-box models.

(4) Dependency on Model Assumptions: The SHAP interpretation method depends
on the assumptions and preferences of the model. Different model assumptions or
preferences can lead to different interpretation results. Therefore, when using the
SHAP interpretation method, it is crucial to ensure reasonable model settings and
understand the limitations and assumptions of the model.

Hence, when utilizing the SHAP interpretation method, it is important to ensure
appropriate model settings and comprehend the limitations and assumptions of the model.
Despite these limitations, the SHAP interpretation method remains a valuable tool that can
assist in better understanding and explaining model predictions.
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5. Conclusions

To predict the residual bearing capacity of CFST columns under impact loading, this
study proposes an interpretable Stacking-KRXL fusion model. The model combines the
advantages of KNN, RF, XGBoost, and LR four individual models, thus improving the
prediction accuracy of residual bearing capacity. Additionally, the SHAP method is used
for model interpretability analysis, including global and local explanations. The main
conclusions are as follows:

(1) This paper proposes the Stacking-KRXL fusion model, which overcomes the limi-
tations of individual ML models. Experimental results demonstrate that the fusion
model achieves small prediction errors, with the majority of samples having errors
within ±10%. It achieves an RSquared value of 0.97, showing improvements of 16.9%,
7.8%, 11.5%, and 34.8% compared to the constituent KNN, RF, XGBoost, and LR mod-
els, respectively. These findings demonstrate that the Stacking-KRXL fusion model
effectively integrates multiple models, improving accuracy and prediction precision.

(2) In the 30 repeated random training sets and testing set experiments, the predictive
performance of the Stacking-KRXL fusion model showed slight fluctuation but overall
maintained high accuracy. Among these 30 tests, the average RSquared value was
0.95, with a St. dev. of only 0.02, and the optimal RSquared value reached 0.99. This
indicates that the Stacking-KRXL model possesses good robustness and stability.

(3) The interpretability analysis results based on the SHAP method reveal that the Con-
crete area of the core area (Ac) has the greatest impact on the residual bearing capacity
of CFST columns. The next influential factors are the CFST column’s slenderness ratio
(L/D), Cross-sectional area of steel tubular (As), Yield strength of steel tubes (fy), and
impact location (τ). On the other hand, Boundary constraints (θ), Section type (β), and
diameter-to-thickness ratio (t/D) have relatively minor effects on the residual bearing
capacity of CFST columns.

(4) Additionally, All parameters used in the study were found positively correlated with
the residual bearing capacity of CFST, but for slenderness ratio (t/D) and Impact
energy (E).

(5) The Stacking-KRXL model developed in this study enables rapid prediction of the
residual bearing capacity of circular and rectangular cross-section CFST columns
under various constraint conditions subjected to impact loading. To optimize the
model further, future research can explore increasing the sample size in the database,
incorporating additional relevant feature variables, and validating the predictions of
the Stacking-KRXL model through engineering practice.
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