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Figure S1. The SEM images of MoSe2. 

 

 

 

 

Figure S2. The SEM images of CoSe2/NC. 

 

 

 

 

 

Figure S3. The SEM images of MoSe2/CoSe2/NC.
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Figure S4. The TEM and HRTEM images of MoSe2/CoSe2/NCNFs. 

 

 

 

 

 

 

Figure S5. The XRD pattern of MoSe2/CoSe2/NC.
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Calculation process of each substance content in the MoSe2/CoSe2/NCNTs 

In the thermogravimetric measurement, the chemical reactions occurred as follows: 

3CoSe2 + 8O2        Co3O4 +6SeO2                  MoSe2 + 3.5O2        MoO3 + SeO2 

SeO2         Se↑ + O2↑                                    C + O2          CO2↑ 

Therefore, the final product after testing (29.77%) is Co3O4 and MoO3. The increase of mass (25.38%) 

during measurement is mainly due to the inclusion of oxygen atoms. And the loss of mass (93.23%) during 

measurement is mainly due to the disappearance of carbon and SeO2. 

Set the mole number of Co3O4 as a and the mole number of MoO3 as b. Therefore, the following two 

equations can be listed: 

241a + 144b = 36.1 %        256a + 112b = 32.0% 

a = 0.058%                          b = 0.155% 

The mass percent of CoSe2 = 217 × 3 × 0.058% = 38% 

The mass percent of MoSe2 = 254× 0.155% = 40% 

The mass percent of NC = 100% ‒ 38% ‒ 40% = 22 % 

So the contents of MoSe2, CoSe2 and NCNTs are 40%, 38% and 22% in the MoSe2/CoSe2/NCNTs, 

respectively.
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Figure S6. The CV curves of samples at a scan rate of 0.5 mV s-1 in LIBs: (a) MoSe2/CoSe2/NC, (b) 

CoSe2/NC, (c) MoSe2. 

 

 

 

 

 

 
Figure S7. The charge/discharge profiles of samples at a current density of 0.2 A g-1 in LIBs: (a) 

MoSe2/CoSe2/NCNFs, (b) MoSe2/CoSe2/NC, (c) CoSe2/NC, (d) MoSe2.
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Figure S8. Electrochemical performances of MoSe2/CoSe2/NC in LIBs: (a) Cycling performances at 0.2A g-1, 

(b) Rate performances at 0.2-10 A g-1. 

 

 

 

 
Figure S9. (a) Nyquist plots of MoSe2/CoSe2/NC after 100 cycles in LIBs and (b) The relationship between 

Zre and ω−1/2.
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Figure S10. E vs. t curves of the MoSe2/CoSe2/NC for a single GITT during discharge process.  

The lithium diffusion coefficient was measured by using Galvanostatic intermittent titration technique 

(GITT) and calculated based on equation as follows. 
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Where L is lithium ion diffusion length (unit : cm); for compact electrode, it is equal to average thickness of 

pole piece measured, τ is the relaxation tim e (unit : s), and ΔEs is the steady-state potential (unit : V) by the 

current pluse. ∆Et is the potential change (unit : V) during the constant current pluse after eliminating the iR 

drop.
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Figure S11. Electrochemical performances of MoSe2/CoSe2/NC in LIBs: (a) GITT curves at 5th discharge 

and charge process, (b, c) the corresponding Li+ diffusion coefficient at 5th discharge and charge process. 

 

 

 

 

 

 

Figure S12. The CV curves of samples at a scan rate of 0.5 mV s-1 in SIBs: (a) MoSe2/CoSe2/NC, (b) 

CoSe2/NC, (c) MoSe2.
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Figure S13. The charge/discharge profiles of samples at a current density of 0.2 A g-1 in SIBs: (a) 

MoSe2/CoSe2/NCNFs, (b) MoSe2/CoSe2/NC, (c) CoSe2/NC, (d) MoSe2 

 

 

 

Figure S14. Electrochemical performances of MoSe2/CoSe2/NC in SIBs: (a) Cycling performances at 0.2A 

g-1, (b) Rate performances at 0.2-10 A g-1.
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Figure S15. (a) Nyquist plots of MoSe2/CoSe2/NC after 100 cycles in SIBs and (b) The relationship between 

Zre and ω−1/2. 

 

 

 

 

 

Figure S16. Electrochemical performances of MoSe2/CoSe2/NC in SIBs: (a) GITT curves at 5th discharge 

and charge process, (b, c) the corresponding Li+ diffusion coefficient at 5th discharge and charge process. 
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Table S1. Comparison of electrochemical performance in LIBs between MoSe2/CoSe2/NC and previously 

reported literature. 

LIB anode material 
Rate performance 

(mAh g−1) 

Cycling performance 

(mAh g−1) 
Published year 

This work 452 at 10 A g−1 553 after 2000 cycles at 5 A g−1  

MoSe2@NC SNCs[1] 124 at 16 A g−1 501 after 320 cycles at 2 A g−1 2021 

MoSe2@N-C[2] 300 at 10 A g−1 360 after 500 cycles at 5 A g−1 2020 

MoSe2 nanoparticles[3] 423 at 5 A g−1 573 after 200 cycles at 0.2 A g−1 2022 

Mo-MoSe2
[4] 380 at 10 C 550 after 50 cycles at 0.2 C 2020 

NHMCFs/MoSe2
[5] 244 at 10 A g−1 582 after 400 cycles at 1 A g−1 2021 

MoO2@MoSe2@NC[6] 311 at 5 A g−1 468 after 80 cycles at 0.5 A g−1 2021 

MoSe2/MoC/N–C[7] 575 at 4 A g−1 535 after 5000 cycles at 2 A g−1 2020 

MoSe2@NCNFs[8] 250 at 2 A g−1 180 after 500 cycles at 2 A g−1 2024 

Ag/MoSe2
[9] 325 at 2 A g−1 497 after 500 cycles at 0.5 A g−1 2021 

MoSe2/NFC[10] 298 at 5 A g−1 306 after 500 cycles at 2 A g−1 2020 

MWSe[11] 438 at 5 A g−1 1007 after 500 cycles at 0.5 A g−1 2023 

MoSe2@rGO&CNT[12] 126 at 1.2 A g−1 376 after 50 cycles at 0.06 A g−1 2022 
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Table S2. Comparison of electrochemical performance in SIBs between MoSe2/CoSe2/NC and previously 

reported literature. 

SIB anode material 
Rate performance 

(mAh g−1) 

Cycling performance 

(mAh g−1) 

Published 

year 

This work 296 at 10 A g−1 310 after 2000 cycles at 5 A g−1  

MoSe2/SnSe2@C[13] 350 at 1.6 A g−1 324 after 200 cycles at 0.5 A g−1 2023 

MoSe2/N-PCD[14] 266 at 2 A g−1 270 after 1000 cycles at 2 A g−1 2020 

MoSe2 nanoplatelets[15] 196 at 10 A g−1 270 after 2500 cycles at 2 A g−1 2020 

MoSe2/MXene[16] 250 at 10 A g−1 380 after 400 cycles at 2 A g−1 2020 

MoSe2@rGO[17] 251 at 5 A g−1 225 after 100 cycles at 0.5 A g−1 2021 

CoSe2–MoSe2/rGO[18] 393 at 5 A g−1 326 after 500 cycles at 2 A g−1 2022 

P-1T-MoSe2
[19] 275 at 10 A g−1 328 after 1000 cycles at 5 A g−1 2022 

P-MoSe2/N-CNT[22] 169 at 10 A g−1 372 after 300 cycles at 0.2 A g−1 2021 

NC@MoSe2@rGO[21] 200 at 2 A g−1 186 after 100 cycles at 1 A g−1 2021 

PEG-C@MoSe2@CNT[22] 392 at 3 A g−1 212 after 3000 cycles at 2 A g−1 2023 

C@MoSe2@NMWCNT[23] 126 at 10 A g−1 168 after 3600 cycles at 2 A g−1 2023 

MoSe2⊂CNB[24] 124 at 10 A g−1 140 after 7500 cycles at 10 A g−1 2021 
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