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Abstract: The effect of pre-weld heat treatment on the microstructure and low-temperature impact
toughness of the coarse-grained heat-affected zone (CGHAZ) after simulated welding was system-
atically investigated through the utilization of scanning electron microscopy (SEM) and electron
back-scattering diffraction (EBSD). The Charpy impact test validated the presence of an optimal
pre-weld heat treatment condition, resulting in the highest impact toughness observed in the CG-
HAZ. Three temperatures for pre-weld heat treatment (690, 720 and 750 ◦C) were used to obtain
three different matrices (Steel 1, Steel 2, Steel 3) for simulated welding. The optimal pre-weld heat
treatment is 720 ◦C for 15 min followed by water quench. Microstructure characterization showed
that there is an evident microstructure comprising bainite (B) in Steel 1 and Steel 2 after pre-weld
heat treatment, while the addition of martensite (M) with the pre-weld heat treatment temperature
exceeds Ac1 by almost 60 ◦C (Steel 3). These differences in microstructures obtained from pre-weld
heat treatment influence the refinement of high-temperature austenite during subsequent simulated
welding reheating processes, resulting in distinct microstructural characteristics in the CGHAZ. After
the optimal pre-weld heat treatment, Steel 2 subjected to single-pass welding thermal simulation
demonstrates a refined microstructure characterized by a high density of high-angle grain boundaries
(HAGBs) within the CGHAZ, particularly evident in block boundaries. These boundaries effectively
prevent the propagation of brittle cracks, thereby enhancing the impact toughness.

Keywords: wind power steel; simulated welding; pre-heat treatment; impact toughness; CGHAZ

1. Introduction

Wind power, as a renewable energy source, demonstrates substantial potential for
future advancement. And in recent years, with the rapid development of wind power
generation, in order to ensure the operational safety of wind power equipment (tubular
steel tower), not only have the steel tube towers serving as supporting structures become
increasingly larger, but also higher-strength advanced steel materials have been developed
and utilized [1–3]. Research has revealed that TMCP steel plates exhibit superior service
performance compared to conventionally processed steel plates in large wind turbine
support structures [4–6]. Additionally, due to the fact that towers are predominantly
constructed using methods of medium-thickness plate curling and welding, the key point
of safety and stability throughout the operational lifespan of towers has shifted from
the base material to the weld joint. And, it is widely acknowledged that the weld joint
represents the region where materials are subjected to the welding thermal cycles, marked
by rapid heating and variable cooling rates with high peak temperatures. These conditions
have the potential to disrupt the optimal balance between high strength and toughness in
the base material, which can disrupt the optimal balance of high strength and toughness in
the base metal. Specifically, the coarse-grained heat-affected zone (CGHAZ) located within
the weld joint consistently exhibits the worst toughness due to the formation of coarse
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austenite grains and undesirable microstructure [7,8]. Previous studies have extensively
investigated the influence of parameters such as alloy composition, welding heat input,
cooling rate, post-weld heat treatment, etc., on the microstructure and properties of weld
joints [9–12]. Moreover, studies have also found that pre-weld heat treatment can also affect
the microstructure and mechanical properties of weld joints [13,14]. Furthermore, some
studies have suggested that pre-weld heat treatment needs to be compatible with both the
welding process and subsequent post-weld heat treatment to achieve favorable post-weld
microstructure and mechanical properties [14,15]. From this, it can be seen that in addition
to welding process parameters and alloy composition, the post-weld heat treatment for
base materials and the degree of matching between post-weld heat treatment and welding
process are also crucial.

Currently, the steels designed for wind power application with yield strengths of
500 MPa and a thickness of 25 mm are processed using the thermo-mechanical controlled
process (TMCP); in special cases, pre-heating treatment is adopted. However, for this
type of steel, research on the effect of pre-weld heat treatment on the microstructure and
properties before and after welding remains insufficient. Therefore, this article prioritizes
research on pre-weld heat treatment. Additionally, the optimal welding process for this
novel thick-plate wind power steel was prioritized through simulated welding methods.
By investigating the influence of different pre-weld heat treatment conditions on the mi-
crostructure of the CGHAZ after welding, as well as its low-temperature impact toughness,
we provide theoretical and experimental bases for the development and application of
wind power steel with high strength and good impact toughness. Furthermore, the mi-
crostructure visualization technique was employed to elucidate the correlation between the
crystallographic structural entities and the paths of brittle crack propagation [16,17], such
as blocks, and to elucidate the mechanisms impeding crack propagation.

2. Materials and Methods

In this study, the steels designed for wind power application with yield strengths
of 500 MPa were used. This material features a thickness of 25 mm and was processed
using the thermo-mechanical controlled process (TMCP). This composition adheres to a
low-carbon plus micro-alloying philosophy, incorporating trace amounts of niobium (Nb)
and titanium (Ti), consistent with a targeted alloy design system for enhanced material
properties. The detailed chemical composition of the steel is presented in Table 1. The Ac1
and Ac3 temperatures of Q500 MPa grade wind power steel were calculated using JMatPro
software (v12.1). As shown in Figure 1, the Ac1 temperature was determined to be 693 ◦C,
while the Ac3 temperature was found to be 824 ◦C.
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Table 1. Chemical composition of the studied steel (wt. %).

C Si Mn P S Cr + Ni + Nb + Ti

0.09 0.22 1.6 0.008 0.002 0.532

First, in order to investigate the influence of different pre-weld heat treatment condi-
tions on the microstructure and impact toughness of CGHAZ, three proper temperatures
below Ac3 (690 ◦C, 720 ◦C, 750 ◦C) for quenching were chosen according to previous
studies [18,19]. After 15 min in a vertical-type furnace, followed by water quenching, steels
(Steel 1, Steel 2, Steel 3) with three different microstructures were obtained. After the heat
treatments, welding simulation experiments (heat input: 20 kJ/cm) were conducted on
three steels using a Gleeble-3500 (GTC, Dynamic Systems Inc., Poestenkill, NY, USA), with
an average heating rate of 130 ◦C/s and a peak temperature of 1300 ◦C, to emulate the
thermal cycling characteristic of CGHAZ during welding (Figure 2). The heating rate for
simulated welding was determined according to the actual welding parameters employed
for wind power steel, aligning with previous research [20].
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Figure 2. Welding simulation process.

After welding simulation experiments, low-temperature toughness and hardness
tests were conducted separately for the steel matrices and the thermal simulated sam-
ples. Hardness evolution from the CGHAZ to base material (BM) was measured using
a 100 gf load and a dwell time of 15 s. And the hardness testing experiment was con-
ducted under room-temperature conditions. Standard impact specimens with the size of
10 mm × 10 mm × 55 mm of both steel matrices (Steel 1, Steel 2, Steel 3) and thermal
simulated samples were prepared to assess the Charpy V-Notch (CVN) impact toughness
at the temperature of −60 ◦C.

Then, to observe the microstructures, the matrices and the regions subjected to welding
simulation were, respectively, extracted from the steels that underwent pre-weld heat treat-
ment and the welding-simulated samples. Scanning electron microscopy (SEM, TESCAN,
Brno, Czech Republic) was utilized to observe the microstructures of the matrices, the weld-
ing simulation regions and the fracture surfaces obtained by Charpy impact tests. Among
these samples, the matrices and welding simulation regions were mounted, mechanically
polished and etched using 4% nital solution. The electron back-scattering diffraction (EBSD,
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Oxford Instruments, Oxford, UK) analysis was conducted to both acquire crystallographic
information regarding the transformation structure and investigate the correlation between
crystallographic structure and crack propagation behavior in simulated CGHAZs, using
TESCAN CLARA field emission SEM (TESCAN, Brno, Czech Republic) at an acceleration
voltage of 20 kV, with a step size of 0.2 µm. All the samples for EBSD analysis underwent
both mechanical and electrolytic polishing processes. To accomplish the visualization and
digitization analysis of crystallographic features, both the HKL Channel 5 software and pro-
grams developed using MATLAB (version 2021, MathWorks, Natick, MA, USA) software
were utilized. At the same time, by combining the above analysis and characterization ap-
proaches, the differences in impact toughness obtained from different samples were elucidated
considering both microstructure transformation and crack propagation mechanisms.

3. Results and Discussion
3.1. Microstructure of the Matrix after Heat Treatment

Figure 3 shows the typical microstructure obtained from the matrix of the three steels
(Steel 1, Steel 2 and Steel 3), corresponding to three different heat treatment temperatures
(690 ◦C, 720 ◦C, 750 ◦C). Figure 3b, 3d and 3f are zoomed-in views of the regions in Figure 3a,
3c and 3e, respectively. It can be found that the matrix of Steel 1 and Steel 2 is composed
of bainite (B), and the matrix of Steel 3 is mainly composed of typical bainite (B) with a
small amount of martensite (M) and martensite/austenite (M/A) constituents. As Steel
1 is subjected to the heat treatment temperature of 690 ◦C, slightly below the Ac1, followed
by water quenching, it leads to the precipitation of coarse cementite, accompanied by the
merging of bainitic laths (Figure 3a,b). Steel 2 undergoes the heat treatment process at a
temperature of 720 ◦C, slightly above the Ac1, also followed by water quenching. Due
to the low degree of superheat, a minimal proportion of austenite is formed, resulting in
a microstructure primarily consisting of bainite (B), with few martensites (M) observed.
Additionally, with the heat treatment temperature of 720 ◦C, which is 30 ◦C higher than
690 ◦C, the diffusivity of carbon is enhanced, leading to the precipitation of a larger
number of cementite particles with larger particle sizes (Figure 3c,d). In comparison to
Steel 1 and 2, Steel 3 is subjected to the heat treatment temperature of 750 ◦C, surpassing
the Ac1 by approximately 60 ◦C. Consequently, an austenite reversion occurs, leading to
the formation of reverted austenite. During the subsequent cooling process, the reverted
austenite transforms into martensite (M), resulting in the microstructure of the Steel 3 matrix
primarily consisting of bainite (B), and an amount of martensite and martensite/austenite
(M/A) constituents (Figure 3e,f). In this work, the microstructural morphology of the
matrix after intercritical heat treatment is consistent with previous studies [18,19,21–24].

3.2. Mechanical Properties and Impact Toughness of the Matrix after Heat Treatment

Figure 4 shows the low-temperature impact toughness and strength of the three steels
(Steel 1, Steel 2 and Steel 3) and base material (BM), respectively. It is evident that the
yield strength of Steel 1, Steel 2, Steel 3 and base material is 544, 520, 651 and 584 MPa,
and the tensile strength of Steel 1, Steel 2, Steel 3 and base material is 640, 651, 864 and
667 MPa, respectively. Additionally, the difference in the elongation percentage among
the three steels is minimal, with values of 13.4% (Steel 1), 15.5% (Steel 2), 14.6% (Steel 3)
and 15.3% (base material), respectively. Notably, the matrix of Steel 3 exhibits higher yield
strength and tensile strength compared to Steel 1, Steel 2 and base material, especially
tensile strength. This is attributed to the fact that, after undergoing the heat treatment at
750 ◦C, the matrix structure of Steel 3 contains a certain amount of martensite, while the
microstructures of Steel 1 and Steel 2 consist of bainite. This is also the reason why the
elongation of Steel 3 is slightly lower than Steel 1, Steel 2 and base material (Figure 4). In
addition, based on the impact toughness test results (Figure 4), it can be found that even if
the test temperature is reduced to –60 ◦C, the low-temperature impact toughness of the
three experimental steels can still exceed 300 J with 314.7 J (Steel 1), 321.7 J (Steel 2) and
301.1 J (Steel 3), respectively. Furthermore, the differences in impact toughness among the
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matrix of three steels are not significant, the presence of martensite in the microstructure of
Steel 3 contributes to the slightly lower impact toughness. However, the low-temperature
impact toughness of the base material is relatively low. This indicates that the matrix of
experimental steels after heat treatment has excellent comprehensive properties.
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3.3. Impact Toughness of the Simulated CGHAZ

Figure 5 displays the impact toughness of simulated CGHAZs with the same heat
input (20 kJ/cm) using the three steels (BM, base metal) subjected to three different pre-
weld heat treatment processes as a welding matrix. It is evident that the impact toughness
of Steel 2 is the highest of the three and reaches 241.1 J. In comparison, the impact toughness
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of the CGHAZ decreased by 41% for Steel 1 (141.7 J) and 67% for Steel 3 (79.7 J), respectively.
It indicates that there is an optimum pre-weld heat treatment condition before the welding
of the steel in this study. With the higher or lower pre-weld heat treatment temperatures,
the low-temperature impact toughness of the CGHAZs will be affected, significantly. These
results are further supported by the examination of impact fracture morphology, as shown
in Figure 6. Additionally, after undergoing three different heat treatment processes, the
impact toughness of the matrices of Steel 1, Steel 2 and Steel 3 have relatively small
errors, but the errors in the simulated CGHAZs are larger. This is because the different
regions of the simulated welding samples undergo varying thermal cycles, resulting in
significant differences in the microstructure of the simulated weld heat-affected zone (HAZ),
including the CGHAZ, fine-grained heat-affected zone (FGHAZ) and so on. This complex
microstructural composition can lead to potential errors in impact toughness.
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Figure 6 shows the SEM morphology of the impact fracture. Figure 6a, 6d and
6g represent the overall morphology of impact fracture of Steel 1, Steel 2 and Steel 3,
respectively. As shown in the zoomed-in views of Steel 1 and Steel 2, the fracture surface
of the CGHAZs exhibits both ductile and brittle fracture characteristics, with the dimple
(Figure 6b,e) and cleavage (Figure 6c,f) patterns distributed. By contrast, the fracture
surface of the CGHAZ (Steel 3), the complete cleavage fracture morphology is presented
(Figure 6g,h,i), indicating the lowest low-temperature impact toughness. It can also be
observed that the area fraction of dimple fracture morphology in the CGHAZ of Steel
2 (Figure 6d) is larger than that of Steel 1 (Figure 6a), which is in line with the trend of
low-temperature impact toughness variation. Moreover, the dimple fracture morphology
is characterized by numerous small-sized dimples and a lesser number of large shallow
ones. Some large dimples are accompanied by smaller ones, resulting in an inconsistent
dimple size distribution (Figure 6b,e). During impact testing, dimples demonstrate strong
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energy absorption capabilities. Hence, the CGHAZ of Steel 2 exhibits relatively higher
impact toughness.

Previous studies have shown that the microstructural transformations during the
welding process influence the microstructure of the HAZ, especially within the CGHAZ,
consequently affecting its low-temperature impact toughness [25–27]. In this study, the
low-temperature impact toughness obtained in the CGHAZs of Steel 1, 2 and 3 are quite
different, which should be influenced by the difference in microstructures. Since the
experimental steels used in this study have identical compositions and the simulated
welding processes are also identical, the differences in the microstructural characteristics
within these CGHAZs are inevitably attributed to the differences in the microstructures of
the matrix for welding resulting from different heat treatment conditions before simulated
welding. In addition, the low-temperature impact toughness is not only determined by
the phase transformation but is also related to the grain boundary density. These will be
discussed in detail in the following paragraphs.

3.4. Hardness of the Simulated CGHAZ

Figure 7 depicts the hardness distribution across different regions of three steel plates
after simulated welding, showing minimal overall differences among the three samples.
Notably, although Steel 1, Steel 2 and Steel 3 exhibit different matrix microstructures, their
hardness differences are minimal, lower than 7 HV. The average hardness value of the
BM (Steel 1) reaches 201 HV due to its matrix microstructure being composed of lath
bainite (LB). Meanwhile, due to the increase in lath bainite (LB) in Steel 2, the spacing
between laths is smaller than in Steel 1, resulting in a slight increase in the average hardness
value to 207 HV. Additionally, although the content of lath bainite (LB) decreased in the
matrix of Steel 3, the presence of martensite ensures that its average hardness value still
reaches 200 HV. The hardness values of the CGHAZ are approximately the same, with
hardness values fluctuating within a range from 280 HV (CGHAZ of Steel 3) to 290 HV
(CGHAZ of Steel 1). This consistency is attributed to the existence of lath bainite (LB)
within the CGHAZ.
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3.5. Microstructure of the Simulated CGHAZ

Many studies have indicated that the microstructure of the welded CGHAZ influences
its impact toughness [27–29]. Furthermore, under the same welding thermal simulation
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process, the prior austenite grain (PAG) affects the microstructural characteristics within
the CGHAZ after cooling during the welding process. The morphology and sizes of PAGs
in the CGHAZ of Steel 1, 2 and 3 were measured by analyzing and processing the EBSD
images using AZtecCrystal software (v2.2). As shown in Figure 8, the grain boundaries of
the prior austenite grain within the CGHAZ of the three steels are prominently visible, with
relatively large grain sizes. Among them, after the simulated welding, the CGHAZ of Steel
3 exhibits the largest size of prior austenite grain (PAG) (Figure 8c), with an equivalent
circular diameter of approximately 78 µm, while the CGHAZ of Steel 2 exhibits the smallest
PAG size (Figure 8b), with an equivalent circular diameter of approximately 62 µm.
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The differences in the size of the prior austenite grains in CGHAZs are attributed to
the variations in the microstructural characteristics of the welding matrix, which result
from different heat treatment processes before simulated welding. Previous studies clarify
that the initial microstructure significantly influences the austenite reversion even when the
alloy and temperature are consistent [30]. As shown in Figure 3e,f, Steel 3 as the welding
matrix consists of martensite (M), resulting in the formation of acicular austenite during
the austenite reversion. Generally, acicular austenite exhibits the same orientation as the
prior austenite grains, leading to the memory effect which does not facilitate the refinement
of austenite grains during the welding process [21,31–34]. This is the primary reason for
the CGHAZ of Steel 3 exhibiting the largest PAG size (Figure 8c). In the austenite reversion
from martensite, two typical morphologies of austenite were widely observed, which are
fine acicular and coarse globular austenite [35–37]. Specifically, at high degrees of superheat,
acicular austenite forms near the Ac1. As the temperature increases, thin acicular austenite
grains grow along the lath or block boundaries and hold a near Kurdjumov–Sachs (K-S)
orientation relationship (OR) with its neighboring martensite matrix, restoring the prior
austenite grain shape and size, resulting in the inheritance of the coarse prior austenite
grain. Nevertheless, the prior austenite grains within the CGHAZs of Steel 1 and 2 are
smaller than the ones of Steel 3. And this difference is also attributed to the difference in
the microstructure of the welding matrix. As shown in Figure 3, there is a coarse cementite
particle distribution in the matrix of Steel 1 and Steel 2, which is conducive to the nucleation
of reverted austenite, subsequently leading to the refinement of austenite grains. It was
reported that pre-tempering [36] or slower heating rates [37] influence the cementite (θ)
particle distribution and composition, and cementite (θ) particles play key roles in the
austenite reversion. Theoretical analysis indicates that the coarser cementite particles have
a higher potency for austenite nucleation [30], and thus the coarsening of the cementite
particles obtained by pre-weld heat treatment at 690 ◦C and 720 ◦C in this work promotes
its formation during the simulated welding process, leading to the refinement of austenite
grains. Furthermore, the cementite particles in the matrix of Steel 2 are not only larger than
those in Steel 1 but also have a greater quantity, resulting in the differences in the size of
the prior austenite grains in CGHAZs between Steel 1 (Figure 8a) and Steel 2 (Figure 8b).

The differences in the size of the prior austenite grains can result in differences in
the microstructure of the CGHAZs, thereby affecting the impact toughness (−60 ◦C) of
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CGHAZs. After simulated welding experiments, as shown in Figure 9, the microstructures
in the CGHAZs of the three steels are predominantly composed of lath bainite (LB). In
the CGHAZ of Steel 1 (Figure 9a) and Steel 3 (Figure 9c), the bainitic lath is longer, almost
running through the entire austenite grain, whereas in Steel 2 (Figure 9b), the bainitic lath
is shorter, forming a greater number of microstructures with different orientations.
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The size of prior austenite grains exerts a certain influence on the nucleation and
growth of bainite. Bainite nucleation primarily occurs at the prior austenite grain bound-
aries, followed by growth within the grains. And, the effective nucleation area of the grain
boundaries per unit volume, denoted as Svo (mm−1), can be mathematically expressed as
Equation (1) [38].

Svo = 2000⁄dγ (1)

where dγ represents the size of austenite grains. In this study, when the size of the prior
austenite grains decreases from 78 µm in Steel 3 to 62 µm in Steel 2, the parameter Svo
increases from 25.6 mm−1 to 32.3 mm−1. The smaller-sized prior austenite grains provide a
higher density of effective grain boundaries for the nucleation of bainite in the matrix [39].
Within a coarse austenite grain, the bainite transformation exhibits a distinctive two-stage
nucleation behavior. The first stage involves primary laths nucleating at the boundaries
and growing toward the interior of the austenite grain. The subsequent stage comprises
the nucleation of secondary laths, which attach to the primary laths and grow in the
other direction. Additionally, in the absence of influence from other bainitic laths, bainitic
laths will grow to the grain boundary, forming bainitic laths that traverse the entire grain.
Otherwise, they will form shorter bainitic laths with different orientations [39]. Therefore,
there is a certain relationship between the length of bainitic laths and the size of austenite
grains, which increases with the increasing size of austenite grains [40].

3.6. Crystallographic Structure and Grain Boundary Analysis of the Simulated CGHAZ

To further elucidate the influence of different sizes of prior austenite grains on the
microstructure and low-temperature impact toughness of CGHAZs, Figure 10 displays the
inverse pole figures (IPF) and the maps of grain boundary distribution. Different colored
lines are used to outline the grain boundaries with different orientations, where the white
line denotes the interface with orientations ranging from 5 to 15 degrees, the black line
is the interfaces with orientations ranging from 15 to 45 degrees, and the yellow line is
the interfaces with orientations of more than 45◦. Comparing the IPF and grain boundary
distribution diagrams, it can be found that with the change in the size of the prior austenite
grains affected by the changes in the microstructural characteristics of the welding matrix,
the morphology and grain boundary distribution appear to change greatly. The CGHAZ of
Steel 2 obtained from simulated welding has a higher density of high-angle grain bound-
aries (HAGBs) and finer microstructures than those of Steel 1 and Steel 3. On the contrary,
if the size of the prior austenite grains increases, the density of HAGBs decreases, especially
in the CGHAZ of Steel 3 (Figure 10f), indicating a significant coarsening of the effective
grain size consisting of many low-angle grain boundaries (LAGBs). Previous research
has indicated that the misorientation of the high-angle boundaries has the capability to
arrest brittle cracks. Specifically, those interfaces exceed 45 degrees, which consistently
exhibits specific misorientations within the corresponding prior austenite grain [41]. And
this series of crystallographic structural evolution is principally governed by the bainite
variant selection.
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Moreover, research indicates that the variant selection within refined austenite grains
significantly contributes to the increase in high-angle grain boundary (HAGB) density [42].
For the 500 MPa wind power steel investigated in this study, the lath microstructure
characteristics indicate that the internal structure of each prior austenite grain should
satisfy or approximately satisfy the characteristics of the coherent phase transformation.
Therefore, there exist packet boundaries, block boundaries and sub-block boundaries [43].
As illustrated in Figure 11, the boundary densities in the CGHAZ of three steels were
calculated. Overall, in the CGHAZ of Steel 2, the high-angle grain boundary (HAGB)
length is the longest, and the low-temperature impact toughness of the CGHAZ is the
highest (Figure 11b,d). Significantly, the density of the block boundaries in the CGHAZ
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of Steel 2 is also the highest due to the most refined prior austenite grains obtained in this
study (Figure 8b). And, with the increasing size of the prior austenite grains, the density of
the block boundaries in the CGHAZs decreases.
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3.7. Correlation between Crystallographic Structure and Brittle Crack Propagation Path

Figure 12 shows the secondary cracks that emerge on the fracture surface governed by
the LB structures in the CGHAZ of Steel 1 (Figure 12a,d,g), Steel 2 (Figure 12b,e,h) and Steel
3 (Figure 12c,f,i). With the increasing size of the austenite grain, the bainite transformation
structure exhibits a greater tendency to form block or packet units characterized by a
parallel arrangement, consequently resulting in a notable increase in the likelihood of
brittle crack propagation parallel to the block during the impact test, leading to a decrease
in the absorption energy of crack propagation. This ultimately reflects that, despite all three
samples having LB structure, the propagation path differs due to variations in structural
arrangement in crystallography. The crack paths in the CGHAZ of Steel 1 (Figure 12a) and
Steel 3 (Figure 12c) are relatively straightforward, while the crack path in the CGHAZ of
Steel 2 (Figure 12b) is more tortuous. This is because of the difference in the density of
block boundaries in the CGHAZ. The block boundaries significantly increased the density
of HAGBs, thereby effectively hindering brittle crack propagation at the boundaries of Bain
zones and inducing a tortuous propagation path.
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A previous study found that the presence of high grain boundary misorientation
does not necessarily guarantee a high angular deviation in cleavage crack propagation,
not all of the prior austenite grain boundaries (PAGBs) are effective in impeding crack
propagation [44]. In certain cases, the cleavage crack propagation may occur across the
adjacent grains without exhibiting any angular deviation, even though their interface is a
prior austenite grain boundary (PAGB), which belongs to HAGBs. However, due to their
significantly higher density compared to PAGBs, the boundaries within austenite grains
play a leading role in crack propagation. Additionally, previous studies have also indicated
that the size of the austenite grain and the proportion of microstructure also affect the
impact toughness [45,46]. Therefore, in this study, the impact on crack propagation cannot
be discussed solely by using PAGBs or the boundaries inside the austenite grain, and both
must be combined for analysis.

From Figure 12i, it is also evident that there is minimal plastic deformation surround-
ing the propagation path of these secondary cracks, indicating that the fracture facet
corresponding to the crack is primarily a cleavage fracture rather than a dimple. Nev-
ertheless, the crack was ultimately arrested at the PAGB (Figure 12f). By contrast, from
Figure 12h, there exists notable plastic deformation along the propagation path of secondary
cracks, suggesting that the fracture facet associated with the crack is dimple fracture rather
than cleavage. In addition, this crack was eventually arrested inside the grain instead of
at the PAGBs (Figure 12e). Additionally, secondary cracks in the CGHAZ of Steel 1 and
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Steel 3 deviated three times each, while cracks in the CGHAZ of Steel 2 deviated four
times. This is attributed to the lower density of HAGBs in Steel 1 and 3, whereas relatively,
Steel 2 contains a higher density of HAGBs, including prior PAGBs. Due to the excellent
performance of HAGBs in hindering crack propagation, they can absorb the energy during
crack extension. Therefore, when cracks propagate to HAGBs, a significant reduction in
internal energy occurs, effectively inhibiting further crack propagation. Furthermore, the
LB structure exhibits an interactive arrangement in the CGHAZ of Steel 2, which promotes
the continuous deflection of brittle crack propagation, thereby enhancing the propagation
resistance and increasing the impact absorption energy. This is close to the outcomes of
the impact test (Figure 5). The presence of large cleavage facets on the fracture surface of
both Steel 1 and 3 can be attributed to their coarse microstructures characterized by a low
density of HAGBs. Conversely, the reduced size of cleavage facets observed in Steel 2 can
be attributed to the microstructural refinement within the CGHAZ.

In summary, the difference in microstructural proportions does affect the low-temperature
impact toughness, particularly in the case of actual welded joints. This study focuses on
improving the welding matrix through heat treatment processes, which consequently leads
to the improvement of microstructures within the CGHAZ, aiming to enhance the impact
toughness of welded joints. Understanding the impact of the welding matrix on the post-
weld microstructure and the mechanisms through which various microstructures affect
both crack propagation and low-temperature impact toughness is helpful in guiding actual
welding engineering. Therefore, for achieving excellent comprehensive properties in both
base material and welding HAZ concurrently, it is essential to appropriately match the
pre-welding heat treatment with the welding process. Currently, for the new 500 MPa-grade
high-strength wind power steel, under the condition of a heat input of 20 kJ/cm, favorable
low-temperature impact toughness can be achieved. The strength and toughness of both the
matrix and HAZ are excellent, demonstrating good overall performance. Additionally, the
actual welding experiments on samples subjected to pre-weld heat treatment are currently
in progress, and the research results on the microstructure and properties of actual welded
samples will be published gradually in the future.

4. Conclusions

1. The optimal pre-weld heat treatment process suitable for 500 MPa-grade wind power
steel was determined. The results of simulated welding experiments also demonstrate
that the welding process with a heat input of 20 kJ/cm, matched well with the pre-
weld heat treatment process in this study, resulting in excellent overall mechanical
properties and low-temperature toughness before and after welding. This study
provides experimental data support for subsequent actual welding experiments and
engineering applications, which is of guiding significance.

2. The wind power steel, with a strength grade of 500 MPa, processed by the TMCP
method, demonstrates an optimum heat treatment before welding (720 ◦C for 15 min
followed by water quenching). After pre-weld heat treatment, the yield strength of
the steel matrix also meets the requirement of 500 MPa. The yield strength reaches
520 MPa, the tensile strength reaches 651 MPa, and the impact toughness at −60 ◦C
reaches 321.7 J. Additionally, it also ensures the excellent impact toughness of the
post-weld CGHAZ.

3. The microstructure of the welding matrix significantly influences the microstructure
and properties of the post-weld CGHAZ. After pre-weld heat treatment at 720 ◦C, the
post-weld microstructure can achieve the best impact toughness, while at 750 ◦C and
690 ◦C, the impact toughness is relatively lower, especially at 750 ◦C. This is attributed
to the formation of martensite in the matrix obtained from the 750 ◦C pre-weld heat
treatment, which leads to the coarsening of austenite during the welding process.

4. The microstructure of the welding matrix after the pre-weld heat treatment at 720 ◦C
consists of bainite (B) and acicular ferrite (AF), with a certain amount of cementite
particles. These microstructural characteristics are helpful in controlling the refine-
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ment of austenite grains during the welding process. Therefore, using steel plates
treated at 720 ◦C as the welding matrix results in a microstructure of CGHAZ domi-
nated by lath bainite, with a high density of high-angle grain boundaries (HAGBs).
These boundaries effectively prevent the propagation of brittle cracks, especially the
block boundaries.
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