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Abstract: In this study, transient liquid-phase (TLP) bonding was adopted to obtain a reliable reduced-
activation ferritic/martensitic (RAFM) steel joint with Fe-Si-B amorphous foil. The aging tests and
creep tests of the TLP joints were carried out at 550 ◦C to study the microstructural evolution in the
service process. The effect of stress loading on the microstructural evolution of the TLP joint was
investigated. The results show that creep fractures in the TLP joints occur in the base material. The
main factors affecting the creep performance of TLP joints are the recovery of substructures and
the coarsening and deformation of martensitic laths. In addition, the M23C6 carbides in the base
material were coarser than in the weld zone. Compared with aging samples and creep samples
undergoing the same test temperature, the dislocation density in the isothermal solidification zone
(ISZ) increased significantly with increases in the stress level. Furthermore, it is worth noting that the
microstructure of the weld zone changed from large-sized ferrite to a mixed, fine microstructure of
ferrite and martensite, which increases the heat resistance of the TLP joints, and thus results in creep
fractures in the base metal.

Keywords: RAFM steel; TLP bonding; creep; aging; microstructural evolution

1. Introduction

RAFM steel has been intensively used as the preferred structural material for the
first wall of nuclear fusion reactors because of its excellent comprehensive properties,
low thermal expansion coefficient, high geometric stability, high thermal conductivity,
and good radiation-expansion resistance [1–3]. However, because of the severe operating
environment of the long-term, high temperature, load, and 14-MeV neutron irradiation
of a nuclear fusion reactor, the microstructure and performance of RAFM steel will obvi-
ously degrade [4,5]. In order to achieve the safe, efficient, and stable operation of nuclear
fusion reactors, the welding technology and research processes of RAFM steel have be-
come key technologies for the manufacture and commercial application of nuclear fusion
reactors [6–8]. Hence, there are higher requirements for the high-temperature mechanical
properties of the joints. The service temperature of RAFM steel in a nuclear fusion reactor is
about 550~600 ◦C [9,10]. It has been reported that, with the combined effects of high temper-
ature and load, creep deformation is one of the most important factors affecting the service
life of the joints [11]. The precipitated phases undergo precipitation, growth, dissolution,
reaction, diffusion, etc. [12], and grains grow, recrystallize, and recover under long-term,
high temperatures [13]. The microstructural evolution is critical to the high-temperature
creep-resistance of the joint [14].

TLP bonding possesses the advantages of both diffusion bonding and brazing [15,16].
TLP bonding has been widely investigated for nickel-based superalloy, ceramic, carbon steel
and heat-resistant steel [17–20]. Because of the diffusion of the melting point depressants
such as B, Si, and P in the interlayer, the TLP bonding process is generally divided into four
stages: interlayer melting, base-material dissolution, isothermal solidification, and joint
homogenization [15,21]. The TLP joint obviously consists of three separate regions: the

Metals 2022, 12, 1333. https://doi.org/10.3390/met12081333 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met12081333
https://doi.org/10.3390/met12081333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://doi.org/10.3390/met12081333
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met12081333?type=check_update&version=1


Metals 2022, 12, 1333 2 of 17

ISZ (isothermal solidification zone), the DAZ (diffusion-affected zone), and the BM (base
material) [22].

The creep-failure mechanism in the TLP joints composed of a nickel-based superalloy
has been studied widely. Liu et al. [23] studied the creep-fracture mechanism of TLP joints of
a Ni-base, single-crystal superalloy. It was found that a number of micro-porosities nucleate
near the subgrain boundaries during creep deformation. With more creep deformation,
microcracks can initiate at those micropores, resulting in the failure of the TLP joint right at
the bonding zone. It has been recognized that the fine-grained heat-affected zone and the
intercritical heat-affected zone in the fusion-welded joint of 9% Cr steel is the weakest parts
during long-term creep at high temperatures [24]. These two areas form fine grains after
the welding thermal cycle. Due to the segregation of the elements during the thermal cycle,
there are fewer second phases precipitated on the grain boundaries, leading to the instability
of the microstructure during long-term creep tests. Eventually, the creep cracks initiate
and propagate. Therefore, it is of great significance to study the high-temperature-creep
resistance of joints in the high-temperature-load environment. Furthermore, in order to
optimize the microstructure after long-term thermal exposure, it is significant to investigate
the microstructural evolution of the joints during the aging process. A previous study on
the microstructural evolution after the aging process was concentrated on the coarsening
of the grains and the second phases [25].

In our previous study [26], a reliable joint of RAFM steel with a Fe-Si-B interlayer
was been obtained. In addition, the effects of homogenization time on the microstructural
and mechanical properties of the TLP joints were investigated. However, the study on the
high-temperature-creep tests and the grain structural characteristics after the aging process
of the TLP joints of RAFM steel have seldom been reported.

In this work, TLP bonding was employed to join RAFM steel with an Fe-Si-B interlayer.
The microstructural evolution and the creep-failure mechanism of the TLP joints after the
creep test were investigated. Additionally, the grain structural characteristics after the
aging process were investigated. In addition, as compared with the creep samples and
aging samples, the effect of creep stress on the microstructural evolution was studied.

2. Experiments Details

In this study, the chemical composition of RAFM steel and Fe-Si-B amorphous foil as
an interlayer are demonstrated in Table 1. The raw material of RAFM steel was cut into
cylindrical specimens with a size of Φ 40 × 40 mm for the diffusion bonding. Transient
liquid-phase bonding was adopted to join RAFM steel using Fe-Si-B amorphous foil. Prior
to TLP bonding, all jointed surfaces of the RAFM steel were ground with a grinding
machine, and the surfaces of the foil were ground by SiC papers up to #1500. All of the
samples were ultrasonically degreased with acetone and alcohol for 20 min, respectively.
Then, the cylindrical samples were acid-washed with a mixed solution of 20% nitric acid,
5% hydrofluoric acid, and 75% deionized water to remove the oxide film. The TLP bonding
process was carried out in a vacuum diffusion furnace. The TLP joints of RAFM steel with
an Fe-Si-B interlayer were obtained at 1200 ◦C for 30 min. A uniaxial pressure of 0.8 MPa
was applied to the assemblies to keep the joined surface in close contact.

Table 1. Chemical composition of materials for experiments (wt.%).

C Cr W Mn Si V Ta B Fe

RAFM steel 0.04 8.93 1.71 0.44 0.04 0.22 0.073 - Bal

Fe-Si-B interlayer - - - - 5.29 - - 3.00 Bal

The aging tests for the TLP joints were carried out at 550 ◦C for 5 h, 20 h, 100 h, and
500 h, respectively. The creep tests were carried out using a creep-testing machine at 550 ◦C
with 160 MPa, 180 MPa, and 220 MPa loads, respectively. Correspondingly, the creep
samples were numbered as 3-550-160, 3-550-180, and 3-550-220. The aging and creep tests
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were both conducted in an air atmosphere. The size of the creep specimens is shown in
Figure 1. The loading scheme for the creep test was that an incremental tensile load with
a rate of 1 kN/min was applied until the target stress was reached.
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Figure 1. Schematic of the creep specimen (Unit: mm).

To observe the microstructure by optical microscope (OM, Leica DMI 8, Leica, Solms,
Germany) and scanning electron microscope (SEM, S4800, Hitachi, Tokyo, Japan), the speci-
mens were ground to #2000, polished, and etched with a mixed solution of 5% nitric acid,
2% hydrofluoric acid, and 93% water. Transmission electron microscope (TEM, JEM-2100F,
Akishima, Tokyo, Japan) samples were prepared by ion-beam thinning. Electron back-
scattered diffraction (EBSD, JSM-7800F, Hitachi, Tokyo, Japan) specimens were prepared by
electrolytic polishing with a mixed solution of 5% perchloric acid and 95% alcohol. The
creep-fracture morphology was observed by SEM.

3. Results and Discussion
3.1. Microstructural Evolution of TLP Joints during Aging

The microstructures of the TLP joints for the different aging times at 550 ◦C are shown
in Figure 2. We found that the ISZ (isothermal solidification zone) exhibits the typical
morphology of polygonal ferrite due to the chemical composition of the Fe-Si-B interlayer.
Obviously, the prolongation of the aging time has almost no effect on the width of the
ISZ, which may be attributed to the relatively low aging temperature and short aging time.
Besides, holes or pores were not observed in the TLP joints.

Figures 3 and 4 show the maps of the grain-boundary distribution and grain-size
statistics of the TLP joints, respectively. These two figures are both derived from EBSD
analyses. It should be pointed out that the criterion for a low-angle boundary is 4◦~15◦ of
the misorientation angle in degrees. A misorientation angle of less than 4◦ is classified as a
subgrain boundary, which is not shown in Figures 3 and 4. A misorientation angle of more
than 15◦ is judged as a high-angle boundary. Thus, the statistics on the average grain size
only contain the low- and high-angle grains.
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The effect of the grain-size on the material properties is mainly reflected in the fact that
the grain boundary, or lath boundary, increases the resistance of dislocation movement; the
grain boundary, or lath boundary, interacts with the second phase, and there is a change in
grain-boundary strength. The average grain-size of TLP joints is 55 µm, 56 µm, 60 µm, and
65 µm, respectively, for aging 5 h, 20 h, 100 h, and 500 h, as seen in Table 2. Compared with
the sample before aging, the average grain-size of which was about 51 µm, the average
grain-size of the TLP joints aged for 500 h increased by about 27%. It is obvious that the
grain-size of TLP joints increases with the extension of the aging time. Therefore, grain-
coarsening is an obvious characteristic of the microstructural change of TLP joints during
aging experiments.

Table 2. The average grain-size of TLP joints after aging.

Aging Time 0 h 5 h 20 h 100 h 500 h

Average grain-size 51 55 56 60 65

High-temperature aging also has a significant effect on the formation of low-angle
grain boundaries in TLP joints. With an increase in the aging time from 5 h to 500 h,
the ratio of high-angle boundaries decreased from 48.6% to 44%, while the ratio of low-
angle boundaries increased from 51.4% to 56%. Furthermore, the total length of the
high-angle boundaries decreased by 22.6%. It has been reported that the prior austenite
grain boundaries and ferrite boundaries are mainly high-angle boundaries, while the
martensite lath and subgrain boundaries tend to be low-angle boundaries [27,28], which is
consistent with the distribution characteristics of grain boundaries in Figure 3. The decrease
of the proportion of high-angle boundaries may be due to grain-coarsening during high-
temperature aging, resulting in the reduction of the length of high-angle grain boundaries
in a unit area.
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3.2. Creep Behaviors and Microstructural Evolution of TLP Joints during Creep

Figure 5 shows the creep curves of the TLP joints with different stress levels at 550 ◦C.
As shown in Figure 5a, the creep-rupture time of the creep specimens is directly related
to the creep stress. As the stress level decreases, the creep-rupture time of the samples
increases. Generally, according to the change of the creep rate, each creep curve is divided
into three stages: the transient creep stage, the steady-state creep stage, and the accelerated
creep stage. The creep curves in Figure 5b show the obvious three-stage creep characteristics.
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The fractures in creep specimens all occur in the base material, which suggests that
the TLP joints may be stronger than the base material during the creep process. The SEM
images for the fracture morphology of creep-fractured specimens for the different stress
levels are shown in Figure 6. All of the samples exhibit ductile fracture morphology. The
fracture morphology has typical micro-void-accumulation-fracture characteristics. The
sizes and shapes of the dimples are related to the plastic deformation ability, external load,
and temperature. With a decrease in the stress level, the sizes of the dimples become smaller
and shallower.
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The microstructure near the creep fracture for the sample after creep rupture under a
creep stress of 160 MPa is shown in Figure 7. During the high-temperature creep process,
the micro-voids mainly form on the austenite-grain boundaries or on the martensite lath
boundaries. In addition, there are some coarse second-phases near the cavities, which
may be attributed to the fact that the inclusions and the second phases tend to nucleate
preferentially at the grain boundaries. In addition, recrystallized ferrite with relatively
low strength and hardness has a much harder time resisting the creep deformation than
martensite, which leads to creep-void aggregation, crack propagation, and fracture in the
recrystallized ferrite [29].
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As mentioned above, all of the creep samples sustained ruptures in the base material,
rather than in the joint regions. This would be related to the microstructural evolution of the
base material and the joints during the creep process. Figure 8 shows the microstructure of
the creep joints after creep for the different stress levels. It can be seen that creep stress had
a significant effect on the microstructural evolution of ISZ. For the aged samples, as seen in
Figure 2, the ISZ and base metal were well-defined; the former is characterized by polygonal
ferrite, while the latter exhibits the typical morphology of martensitic lath. However, the
absence of a sharp division between the ISZ and base metal was observed in the creeped
samples (see Figure 8), regardless of the creep-stress level. The microstructure of the ISZ is
composed of polygonal ferrite and lath martensite, forming a uniform microstructure with
the base material. Under creep-stress loading, martensite grains in the base metal grow
into the ISZ along the direction of the creep stress, which leads to the grain-crushing of the
polygonal ferrite in the ISZ. Obviously, creep stress is the main factor for the microstructural
evolution for the TLP joints during the creeping process.

Kim et al. [30] indicated that grain-boundary migration during creep in polycrystalline
materials plays a key role in the additional grain-boundary sliding of the elongated grain.
The rapid grain-boundary migration would be favor creep deformation. Furthermore,
grain-rotation-induced grain coalescence and grain-boundary decomposition in the vicinity
of certain triple junctions also contribute to the creep deformation [31]. The micro-hardness
of the base metal is higher than that of the ISZ in the TLP joints of RAFM steel [32]. Thus,
the ISZ would afford more deformation than would the base metal during creep. As a
result, grain-boundary migration accompanied with grain rotation results in the martensite
growing from the base metal into the ISZ so as to coordinate the creep deformation. Due
to this microstructural evolution of the ISZ during creep, creep fractures do not occur
in the TLP joints although the polygonal ferrite in the ISZ is supposed to have a lower
creep-resistance than the martensite in the base metal. Besides, an increase in the stress
level accelerates the creep rate (as seen in Figure 5b), and thus promotes the grain growth
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of the martensite into the ISZ. As a result, the amount of martensite in the ISZ is increased
by the increase of the creep stress (see Figure 9).
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Figure 9 shows the SEM images and the EDS result of the TLP joints for the sample
after creep fracture with a stress of 220 MPa. As shown in Figure 9b, a large number of the
fine and dispersed particles were precipitated at the martensite lath and the prior austenite
grain-boundaries. It is possible to make these particles into M23C6 carbides according to
EDS analysis (marked by a circle in Figure 9b, as seen in Figure 9c). M23C6 carbides can
effectively pin the grain boundaries, preventing the migration of the grain boundaries
during creep-deformation, thereby improving the creep-resistance [33]. However, M23C6
carbides tend to coarsen rapidly at relatively high temperatures. Compared with M23C6
carbide, MX carbonitride has better high-temperature stability and a smaller size. Fine
MX carbonitrides can act as obstacles to dislocation movement and annihilation, thus
promoting a dislocation strengthening effect. Hence, MX particles have a better effect in
improving long-term, high-temperature creep-resistance than do M23C6 carbides. However,
MX carbonitrides are difficult to identify using SEM due to their small size.

The TEM images of the weld zone and base metal after creep fractures for different
stress levels are shown in Figure 10. The sample of base metal for TEM observation was
taken from the creep sample near the fracture, while that of weld zone was taken from
the center line of the joint. The left side of Figure 10 denotes the base metal, while the
right side represents the weld zone. The base metal exhibits the typical morphology of lath
martensite, whereas the weld zone shows the microstructure of polygonal ferrite.

Figure 10. Cont.
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Figure 10. TEM images of the weld zone and base metal after creep-fracture for the different stress
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180 MPa; (c1) base metal, 220 MPa; and (c2) weld zone, 220 MPa.

For the base metal (see the left side of Figure 10), it can be seen that a decrease in
creep-stress results in an increase in the martensitic lath width, which would be due to the
increase in the creep-time. Besides, the decrease in the creep-stress also led to the coarsening
of the precipitates. For the different stress-levels of 160 MPa, 180 MPa, and 220 MPa, the
average widths of the martensite laths were 736 nm, 640 nm, and 582 nm, and the average
sizes of precipitates were 141 nm, 129 nm, and 120 nm, respectively. This would be related
with the creep-time. For lower creep-stress, the creep-time is longer, which promotes the
coarsening of the martensite lath and precipitates.

For the weld zone (see the right side of Figure 10), we found that the higher creep-
stress caused larger polygonal ferrites. For the different stress levels of 160 MPa, 180 MPa,
and 220 MPa, the average sizes of the polygonal ferrites were 970 nm, 721 nm, and 638 nm,
respectively. Furthermore, the increase in the creep-stress results in the decrease of average
size of the precipitates, with 161 nm, 140 nm, and 133 nm for the creep-stresses of 160 MPa,
180 MPa, and 220 MPa, respectively. These results are consistent with those of the base
metal, as indicated in the previous paragraph, which can be also attributed to the difference
in creep-time. It should also be noted that, under a higher creep-stress, the martensite laths
migrated from the base metal to the weld zone, which was also realized in the OM images
(see Figure 8).

Figure 11 demonstrates the inverse pole figure (IPF) and grain-size statistics of the weld
zone for different stress levels. Different colors in the IPF represent different orientations.
From Figure 11a,b, it can be seen that the grain-orientation of the ISZ is various and
uniformly distributed. There is no obvious texture or preferred orientation distribution.
According to the statistical results of the grain-sizes shown in Figure 11d–f, the average
grain-sizes are 32 µm, 28 µm, and 25 µm for 160 MPa, 180 MPa, and 220 MPa, respectively.
With increases in the stress level, the microstructure of the ISZ was significantly refined.
Grain-size may also be an important factor affecting high-temperature creep properties.
Reference [34] has indicated that the prior austenite grain-size plays a key role in the
creep-resistance in 9% Cr steel.
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The grain-boundary distribution map and misorientation statistics of the weld zone
are shown in Figure 12. The contents of high-angle grain-boundaries in the weld zone
were 31.4%, 36.9%, and 40.7% for 160 MPa, 180 MPa, and 220 MPa, respectively. The
high-angle grain-boundaries gradually increased with increasing the stress level. This may
be attributed to the refinement of the grains and the increases in the number of grains
at high stress levels. In addition, the dual effects of temperature and stress made the
martensite-lath coarsening and subgrains recover, accelerating the transition from low-
angle grain boundaries to high-angle grain boundaries [35]. The increase in high-angle
grain boundaries can change the crack-propagation path frequently, thereby effectively
hindering crack-propagation [36].
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3.3. Effect of Stress Loading on the Microstructural Evolution of TLP Joints

During the high-temperature aging process, dislocations are activated, and disloca-
tions multiply and interact to form subgrains. The dislocations are annihilated through
sliding and climbing, reducing dislocation tangles. As a result, the dislocation density
is reduced, and the effect of dislocation strengthening is weakened. The KAM (kernel
average misorientation) quantifies the average misorientation around a measuring point
with respect to a defined set of nearest-neighbor points [37]. The KAM value distribution
can characterize the dislocation density. As can be seen, the blue areas with the lowest
values of KAM indicate a low dislocation density, while the green areas with higher KAM
values indicate a higher dislocation density. The KAM distribution of the joint for different
aging times is demonstrated in Figure 13. The KAM value in ferrite is lower, and the KAM
value in martensite is higher. With increases in the aging time, the dislocation density
gradually decreases and then stabilizes. However, dislocation strengthening is not the
main mechanism of strengthening during creep. A high dislocation density causes a large
number of dislocations to entangle, resulting in local stress concentration and microcracks.
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The KAM distribution map and TEM microstructure of the creep joint for different
stress levels are demonstrated in Figures 14 and 15. When the stress level is 160 MPa, the
KAM value of the ISZ is low and characterizes lower dislocation density; when the stress
level is 220 MPa, the KAM value in the ISZ increases significantly. This may be due to the
fact that high stress causes the grain boundaries of large-sized ferrite grains in the ISZ to
be damaged, and defects, such as dislocations within the grain, increase. The dislocation
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density inside the martensite in the ISZ zone is also higher, which increases the dislocation
density of the weld.
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The trend of the dislocation density change in the KAM is consistent with the phe-
nomenon observed in Figure 15. The dislocation density in the weld gradually increases
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with the increasing stress level. In the ISZ with a low dislocation density, due to the limit of
solute atoms and fine precipitates, the dislocation lines zigzag, indicating that the solute
atoms and fine precipitates increased the resistance of the dislocation movement and made
dislocation-slip difficult. A large number of dislocation movements are blocked at the grain
boundaries or the martensite-lath boundaries. High-density dislocation tangles further
form dislocation walls and even dislocation cells. However, the dislocation density in the
base material region decreases as the stress level increases. This happens because, during
the high-stress creep process, high-density dislocations in dislocation cells are rearranged
in an orderly way to form subgrains, and the substructures recover, thereby reducing the
dislocation density [38].

Two phenomena have been proposed to evaluate dislocation-densities using EBSD
data: geometrically necessary dislocation (GND) and statistically stored dislocation (SSD).
GNDs are generated as excess dislocations within a Burgers circuit to satisfy geometrical
compatibility between the grains and strain gradients due to the geometrical constraints of
the crystal lattice [39]. Usually, high dislocation density regions are generated during defor-
mation to maintain lattice continuity [40]. The KAM value provides a basis for evaluating
the dislocations, and the GND map can be further obtained through the measurement of the
misorientation. There is an overlapping of the areas of higher KAM values with the higher
GND densities, as expected, since GND is similar in nature to KAM [41]. The GND map
can qualitatively evaluate the dislocation density in the grains by the color distribution.
The GND maps of the joint for different aging times are shown in Figure 16. The color
change from dark to light represents the change process of the GND density from low to
high. As shown in Figure 16, the GND density in ferrite is lower, and the GND density
in martensite is higher. The reason for this difference between ferrite and martensite is
attributed to the different mechanical properties of these phases [42]. In general, ferrite
improves the ductility of the material, and martensite increases the strength of the material.
Martensite begins to deform at higher stresses, and that leads to higher GND values for the
martensite phase.
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The dislocation density may be related to stress [43]. The GND maps of the creep joint
for different stress levels are shown in Figure 17. With increases in the stress level, the GND
density of the ISZ increases. Compared with aging samples and creep samples for 550 ◦C,
the stress-loading has an important role in the dislocation density. The dislocation density
increased significantly with the stress-loading.
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4. Conclusions

In this paper, high-temperature creep tests and aging tests of TLP joints for RAFM
steel were carried out. The conclusions can be summarized as follow:

(1) During the high-temperature creep process, the base material area is the weakest part
of the TLP joint for RAFM steel. the stress load is the main factor leading to recovery
and grain-refinement in the weld zone. The microstructure of the weld zone changed
from large-sized ferrite to a mixed microstructure of ferrite and martensite with the
increase of creep stress.

(2) With increases in the stress level, the grains in the weld zone were refined, and the
dislocation density increased.

(3) The creep-fracture mechanism of TLP joints for RAFM steel is micro-void accumula-
tion fracture. Micro-voids are mainly nucleated near M23C6 carbides on the martensite-
lath boundaries and the prior austenite grain-boundaries, forming microcracks.
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