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Simple Summary: Our study evaluates the global risk of Aeolesthes sarta establishment using mecha-
nistic and correlational niche models. The pest, known to affect various hardwood trees, poses a threat
to international trade due to its quarantine status. The CLIMEX model, based on species-specific
physiological thresholds, and MaxEnt model, using species occurrences and climatic data, project
its potential distribution. Both models align well with the current distribution, predicting broader
ranges in the central and southern hemispheres, excluding extreme northern regions. Future climate
changes may expand its range, particularly in Europe and North America, where its host species are
present. Temperature and precipitation are key factors influencing its distribution. These models
offer valuable insights for policymakers and trade negotiators to make science-based decisions on
pest management and trade agreements, aiding in monitoring potential pest introductions globally.

Abstract: A precise evaluation of the risk of establishing insect pests is essential for national plant
protection organizations. This accuracy is crucial in negotiating international trade agreements
for forestry-related commodities, which have the potential to carry pests and lead to unintended
introductions in the importing countries. In our study, we employed both mechanistic and correlative
niche models to assess and map the global patterns of potential establishment for Aeolesthes sarta under
current and future climates. This insect is a significant pest affecting tree species of the genus Populus,
Salix, Acer, Malus, Juglans, and other hardwood trees. Notably, it is also categorized as a quarantine
pest in countries where it is not currently present. The mechanistic model, CLIMEX, was calibrated
using species-specific physiological tolerance thresholds, providing a detailed understanding of
the environmental factors influencing the species. In contrast, the correlative model, maximum
entropy (MaxEnt), utilized species occurrences and spatial climatic data, offering insights into the
species’ distribution based on observed data and environmental conditions. The projected potential
distribution from CLIMEX and MaxEnt models aligns well with the currently known distribution of
A. sarta. CLIMEX predicts a broader global distribution than MaxEnt, indicating that most central and
southern hemispheres are suitable for its distribution, excluding the extreme northern hemisphere,
central African countries, and the northern part of Australia. Both models accurately predict the
known distribution of A. sarta in the Asian continent, and their projections suggest a slight overall
increase in the global distribution range of A. sarta with future changes in climate temperature,
majorly concentrating in the central and northern hemispheres. Furthermore, the models anticipate
suitable conditions in Europe and North America, where A. sarta currently does not occur but where
its preferred host species, Populus alba, is present. The main environmental variables associated with
the distribution of A. sarta at a global level were the average annual temperature and precipitation
rate. The predictive models developed in this study offer insights into the global risk of A. sarta
establishment and can be valuable for monitoring potential pest introductions in different countries.
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Additionally, policymakers and trade negotiators can utilize these models to make science-based
decisions regarding pest management and international trade agreements.

Keywords: pest risk analysis; Aeolesthes sarta; species distribution modeling; CLIMEX; MaxEnt; insect
pest; quarantine pest; climate change

1. Introduction

Climate change has resulted in severe weather occurrences like droughts and floods,
exerting extensive impacts on the global ecosystem [1]. These effects include escalating sea
levels [2], shifts in crop production regions [3,4], and alterations in species distribution [5–7].
As per the Intergovernmental Panel on Climate Change (IPCC), Earth’s temperature is
anticipated to increase by approximately 1.4 to 5.8 degrees Celsius between 1990 and 2100.
Moreover, precipitation levels are forecasted to rise to 1.0% in mid- and high-latitude areas
and 0.3% in tropical zones [8]. The shifts in climate have significantly changed species
phenology, biodiversity, potential distribution range, and habitats [1]. These changes have
also led to the invasion of exotic species and the extension of the growing period, primarily
attributed to temperature increases [2,6]. Climate, recognized as the paramount factor
governing growth and development [9], heavily impacts pests due to climate change [4].
Consequently, pests can expand their range, resulting in heightened damage to human
livelihoods [1].

Aeolesthes sarta (syn. Trirachys sartus), commonly known as Sarta longhorned beetle
(SLB), is a prominent member of the Cerambycidae family [10]. This polyphagous beetle
species primarily targets broadleaved tree species from the genera Populus, Juglans, Acer,
Salix, Malus, Platanus, and Ulmus [10]. The larvae of the A. sarta feed internally on both
live and dead plant tissues, resulting in structural damage to host trees and obstructing
the flow of nutrients and water [11]. Consequently, this damage leads to the demise of
multiple branches and, ultimately, the entire tree [10,12,13]. Aeolesthes sarta is believed
to have originated in Pakistan and the western regions of India, extending its significant
distribution into Afghanistan, Iran, and other Central Asian countries [14,15]. It can thrive
in forests up to 2000 m above sea level [10,16]. The region’s warm temperatures and the
presence of preferred host tree species create an optimal environment for its proliferation [4].
This species poses significant challenges, particularly in hot and arid climates [17].

In Central Asia, the longhorn beetle emerges as a significant pest, causing substantial
damage to various broadleaved trees [10]. Populus alba (from genus Populus) stands out
as a primary host species repeatedly targeted and harmed by A. sarta within its native
territories [10,18–22]. A. sarta exhibits a distinctive ability to attack and reproduce on the
main stem and large branches [19]. Infestations are particularly noticeable in highland
forests, leading to declines in poplar tree populations. Despite being a vital wood source for
industries [21], poplar trees face destruction by the A. sarta borer, rendering them unsuitable
for industrial purposes [20]. In the Mustang, Balochistan area, a survey of 200 P. alba trees
revealed severe infestation in 100%, with 34% being destroyed [20]. Populus alba appears
as a dominant host species afflicted by A. sarta in the Mashhad and Zahedan regions of
Iran, with infestation rates reaching 100% and mortality rates recorded at 49% and 11%,
respectively [19].

A. sarta demonstrates a broad feeding range, targeting 15 distinct types of trees, thereby
establishing itself as one of India’s most prominent pests of hardwood tree species, and
impact extends across natural and artificial forest stands [23]. It stands out as one of the most
destructive pests affecting walnut trees (Juglans regia) in India [24]. Furthermore, A. sarta
attacks have caused substantial economic losses in Turkmenistan in apple orchards and
shelter belts [25,26]. Certainly, in Tashauz, Turkmenistan, this beetle has been responsible
for the demise of many tall trees at urban sites [27]. Its infestations have become pervasive
in Tajikistan’s Beshkent and Vakhsh Valleys, with few trees remaining unaffected [28].
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In Pakistan, similar to numerous other broadleaved tree species, including genera like
Populus, Salix, Acer, and Platanus, among others, shelter belts and apple orchards have been
notably infested by the A. sarta [10,18,29]. This beetle is identified as one of Pakistan’s lethal
poplar borers [20], causing substantial harm to numerous Populus plantations across the
country [20–22].

Assessing the potential geographical distribution of a species primarily relies on
species distribution models (SDMs) [30]. These models encompass mechanistic approaches
like CLIMEX and correlative methods like MaxEnt [31]. CLIMEX focuses on the species’
ecophysiological response to its environmental niche, while MaxEnt emphasizes the sta-
tistical relationship between species occurrence sites and environmental variables [32].
CLIMEX, grounded in physiological parameters and biological traits, aims to elucidate
the climate impact on invasive species [33–35]. MaxEnt, a machine learning algorithm,
predicts the species’ probability distribution with maximum entropy while considering
environmental constraints [36]. These models are commonly used for species damaging to
agriculture [37–39]. Relying solely on one model may expose vulnerabilities to the limita-
tions of invasive species characteristics, algorithmic applications, and data availability [31].
Combining mechanistic and correlative models has been shown to yield more stable and
accurate outcomes [31,32,40].

Choosing A. sarta as a subject species for this research holds significant importance
for several key reasons: (1) A. sarta stands out for its profound ecological and economic
ramifications as a forest pest, impacting various tree species across diverse regions [10];
(2) given its sensitivity to climate variables, A. sarta’s distribution is poised to undergo sig-
nificant shifts due to climate change, rendering it a pivotal focus for predictive modeling [6];
and (3) delving into the potential distributional changes of A. sarta under climate change
scenarios holds promise for informing strategic pest management approaches, thereby
mitigating its adverse effects on forest ecosystems and human livelihoods. Accordingly, we
have constructed four possible research questions for this study: (a) which SDM model,
CLIMEX or MaxEnt, provides more accurate predictions of A. sarta distribution under
current climatic conditions? (b) How do the predictions of A. sarta distribution differ be-
tween the CLIMEX and MaxEnt models when considering future climate change scenarios?
(c) What are the key environmental variables driving the distribution of A. sarta according
to each SDM model? (d) How do the uncertainty levels vary between the predictions of
CLIMEX and MaxEnt models for A. sarta distribution under climate change scenarios?
This study uses historical occurrence data to compare CLIMEX and MaxEnt models in
predicting A. sarta’s current distribution. It evaluates the models’ sensitivity to climate
change scenarios, identifies significant environmental variables, and validates predictions
against independent datasets. Additionally, it examines uncertainties’ impact and forecasts
population shifts under varied climate scenarios, informing pest management strategies.

2. Materials and Methods
2.1. Aeolesthes sarta Distribution Datasets

Data on the global distribution of A. sarta before 3 March 2024 were collected from
various reputable sources, including the Centre for Agriculture and Bioscience International
(CABI → https://www.cabi.org/ (accessed on 3 March 2024)), the Global Biodiversity
Information Facility (GBIF → https://www.gbif.org/ (accessed on 3 March 2024)), Euro-
pean and Mediterranean Plant Protection Organization (EPPO → https://gd.eppo.int/
(accessed on 3 March 2024)), scientific databases like Science Direct and Web of Science,
as well as the published literature. In cases where published research lacked precise
geographic co-ordinates for positive sites, co-ordinates were determined using Google
Earth (https://www.google.com/earth/, accessed on 4 March 2024) and Google Maps
(https://www.google.com/maps/preview, accessed on 4 March 2024). Duplicate occur-
rences were excluded from the dataset. To mitigate sampling bias and spatial autocor-
relation in the model, we employed the ENMTools 1.0 software (https://github.com/
danlwarren/ENMTools accessed on 10 March 2024) and Species Distribution Model (SDM)

https://www.cabi.org/
https://www.gbif.org/
https://gd.eppo.int/
https://www.google.com/earth/
https://www.google.com/maps/preview
https://github.com/danlwarren/ENMTools
https://github.com/danlwarren/ENMTools
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Toolbox v2.5 of ArcGIS 10.7. Occurrence data underwent spatial rarefaction, setting a
minimum distance of 30 km between each record to enhance model quality [41,42]. Out of
51 known occurrences, 48 were finalized to run both models.

2.2. Climatic Data

The meteorological data utilized for the CLIMEX model were sourced from CliMond
(https://www.climond.org/ accessed on 10 March 2024), encompassing a spatial resolution
of 10 min and spanning the period from 1960 to 1990 [43]. These data, formatted for CLIMEX
interpretation, comprised comprehensive monthly averages of minimum and maximum
temperatures, precipitation, and relative humidity values at 9 a.m. and 3 p.m. over 30 years.
The current bioclimatic variables (bio1–bio19, 1960–1990) necessary for the MaxEnt model
were obtained from the WorldClim website (http://www.worldclim.org/ accessed on
10 March 2024) at a 10 min resolution.

In projecting the potential distribution of A. sarta globally under future climate change
scenarios for 2070, the CLIMEX model leveraged the Special Report on Emissions Scenarios
(SRES) A1B and A2 alongside the global circulation model (GCM) CSIRO-Mk3.0 (CS) from
the Center for Climate Research. The A1B SRES depicts a future world with a balanced
emphasis on all energy sources, encompassing fossil fuels, renewable energy, and nuclear
power. Conversely, the A2 SRES provides insights into demographic, technological, and
economic variables associated with greenhouse gases (GHG) (da Silva et al., 2017) [44].
The future climate data used for the MaxEnt model comprised the bioclimatic variables
(bio1–bio19 CCSM4 (community climate system model) dataset) projected for 2070 under
the Representative Concentration Pathway (RCP) 6 and 8.5 scenarios as outlined in the
Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5). These
datasets are accessible via the CMIP5 and WorldClim website (http://www.worldclim.org/
accessed on 11 March 2024). RCPs are categorized into four types (RCP-2.6, RCP-4.5,
RCP-6.0, and RCP-8.5), delineated by their approximate total radiative forcing in 2100, with
higher values indicating more severe warming [45].

In terms of CO2 concentration projections by the end of this century, the A1B SRES
assumes an increase to 720 ppm (parts per million) compared to 670 ppm (RCP-6), while
the A2 SRES assumes a higher concentration of 846 ppm compared to 936 ppm (RCP-8.5).
Regarding the predicted temperature rise associated with these scenarios, the A1B SRES
forecasts an approximate temperature increase of around 4 ◦C compared to RCP-6 (3 ◦C),
while the A2 SRES anticipates a higher temperature rise of about 6 ◦C compared to RCP-8.5
(5 ◦C) [45,46]. The prediction results for future climate indicate that the A1B SRES scenario
aligns closely with Representative Concentration Pathway RCP-6 [6], while the A2 SRES
scenario corresponds to RCP-8.5 [31]. Due to the absence of RCP scenario data in the
CliMond database, we opted for these two future scenarios as the basis for climate variables
in CLIMEX models under projected future climate conditions.

2.3. Species Distribution Models (SDMs)

The ‘Compare Location’ function within CLIMEX version 4.0 (Hearne Scientific Soft-
ware, Australia) was employed to conduct simulation analysis. CLIMEX utilizes biological
parameters and climate variables to predict the suitable distribution area of a species,
utilizing a combination of inductive and deductive methods for fitting, as outlined by
Finch et al. [47]. The model evaluates the climatic optimum for the target species at the
designated location by computing an ecoclimatic index (EI), which spans from 0 (indicating
unsuitability) to 100 (representing suitability year-round). Given the dynamic nature of
climate across various regions, achieving a perfect score of 100 is challenging. The EI
value is derived not only from the stress index (SI) and annual growth index (GI) but also
from the stress interaction index (SX), contributing to a more comprehensive calculation
formula: EI = SI × GI × SX [37]. We compiled all parameters in Table 1 and assessed their
sensitivity. The supplementary data file ‘SDF’ provides a comprehensive overview of the
parameter estimation process outlined by Hayat et al. [6]. To offer a detailed description of

https://www.climond.org/
http://www.worldclim.org/
http://www.worldclim.org/
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the favorability of various regions for A. sarta, we categorized the ecoclimatic index (EI)
values into four distinct groups: unsuitable habitats (EI = 0), marginal suitable habitats
(0 < EI ≤ 15), suitable habitats (15 < EI ≤ 30), and highly suitable habitats (EI > 30) [6].

Table 1. Parameter values used in the CLIMEX model for Aelosthes sarta.

Parameters Code
Values

Aeolesthes sarta

Te
m

pe
ra

tu
re

Limiting low temperature (◦C) DV0 10

Lower optimal temperature (◦C) DV1 15

Upper optimal temperature (◦C) DV2 37

Limiting high temperature (◦C) DV3 40

M
oi

st
ur

e
In

de
x Limiting low soil moisture SM0 0

Lower optimal soil moisture SM1 0.001

Upper optimal soil moisture SM2 1.5

Limiting high soil moisture SM3 2.5

D
ia

pa
us

e
In

de
x Diapause induction day length DPD0 12

Diapause induction temperature
(◦C) DPT0 13

Diapause termination
temperature (◦C) DPT1 10

Diapause development days DPD 90
Summer or winter Diapause DPSW 0

Cold Stress
CS temperature threshold (◦C) TTCS 9

CS temperature rate THCS −0.00001

Heat Stress
HS temperature threshold (◦C) TTHS 41

HS temperature rate THHS 0.005

Population degree day PDD 700
Source: [6,7].

MaxEnt 3.4.4 (available at https://biodiversityinformatics.amnh.org/open_source/
maxent/ accessed on 12 March 2024) was utilized to forecast the global distribution range
of A. sarta across varied climatic conditions. MaxEnt functions by discerning correlations
between documented occurrence points and background data within specified constraints,
as detailed by [48]. Renowned for its capacity to incorporate diverse variables like climatic
data, offer multiple metrics for model performance evaluation, and provide user-friendly
software operation, MaxEnt has been widely employed in predicting species distribu-
tion [49]. A comprehensive set of 19 bioclimatic variables was acquired from the WorldClim
website (http://www.worldclim.org/ accessed on 12 March 2024) and initially employed
as potential predictors (Table 2).

The best variables for the final model were identified using the following methods
to mitigate multicollinearity among correlated and redundant environmental variables.
Initially, the percentage contribution values of the 19 variables to the model were computed
by establishing an initial model. The existing records of A. sarta and the 19 environmental
variables were uploaded to the initial model, with the ‘random test percentage’ set at 25%.
Jackknife analysis assessed variable importance, while default values were retained for the
remaining model parameters.

In the second step, attribute values of the 19 variables at each of the 51 distribution
points were extracted utilizing ArcGIS 10.7 (ESRI, Redlands, CA, USA). Subsequently,
all values were imported into IBM SPSS Statistics 26 to compute Pearson correlation
coefficients between any two variables. Finally, variables underwent screening: if the

https://biodiversityinformatics.amnh.org/open_source/maxent/
https://biodiversityinformatics.amnh.org/open_source/maxent/
http://www.worldclim.org/
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correlation coefficient exceeded 0.8, the variable with the highest contribution value was
preserved in the initial model, while another variable was omitted [48]. Six environmental
factors (out of 19) were selected for inclusion in the final model after screening (Figure 1).

Table 2. List of environmental variables used in MaxEnt modeling.

Environmental Variable Interpretation

bio1 Annual mean temperature
bio2 Mean diurnal range (mean of monthly (max temp − min temp))
bio3 Isothermality (Bio2/Bio7) (*100)
bio4 Temperature Seasonality (standard deviation * 100)
bio5 Max Temperature of Warmest Month
bio6 Min Temperature of Coldest Month
bio7 Temperature Annual Range (Bio5–Bio6)
bio8 Mean Temperature of Wettest Quarter
bio9 Mean Temperature of Driest Quarter
bio10 Mean Temperature of Warmest Quarter
bio11 Mean Temperature of Coldest Quarter
bio12 Annual precipitation Seasonality
bio13 Precipitation of Wettest Month
bio14 Precipitation of driest month
bio15 Precipitation Seasonality (Coefficient of Variation)
bio16 Precipitation of Wettest Quarter
bio17 Precipitation of Driest Quarter
bio18 Precipitation of Warmest Quarter
bio19 Precipitation of Coldest Quarter

Source: http://www.worldclim.org/ (accessed on 12 March 2024).
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To build the final model, we optimized the Regularization Multiplier (RM) and Feature
Class (FC) parameters in the R 3.6.3 software using the Kuenm (https://github.com/
marlonecobos/kuenm accessed on 24 April 2024) package [50]. The model can be smoothed
out and its overfitting reduced by optimizing these two parameters. The model was chosen
with consideration for three key factors: complexity (AICc values), predictive ability
(low omission rates), and statistical significance (partial ROC). Following the selection of
statistically significant candidate models, the set of models was further narrowed down
based on their missing rate (<5%). Ultimately, final models were determined by selecting
those with delta AICc values of ≤2.

The final model was executed using the 10-fold bootstrapping crossover method for
current and future conditions. Model performance was assessed using the average area
under the receiver operating characteristic curve analysis (AUC). Typically, AUC values
below 0.6 signify unqualified performance, 0.6 to 0.7 indicate poor performance, 0.7 to
0.8 indicate medium performance, 0.8 to 0.9 indicate good performance, and values above
0.9 indicate high performance [51]. The model simulations were visualized and reclassified
using ArcGIS 10.7 software. The potential distribution of A. sarta was mapped based
on the probability (p) of occurrence, ranging from 0 to 1. The Maximum Test Sensitivity
Plus Specificity (MTSPS) threshold was utilized to reclassify the probability (p) into four
categories: unsuitable habitats (p ≤ MTSPS), marginal suitable habitats (MTSPS < p ≤ 0.35),
suitable habitats (0.35 < p ≤ 0.65), and highly suitable habitats (p > 0.65) [31,48].

2.4. Creation of Combined Distribution Maps

Combination maps of two models for two periods were generated using the ‘spatial
analysis tools’ functions in ArcGIS 10.7. Climate-suitable regions were identified using a
binary suitability threshold: areas where the outputs of CLIMEX had EI > 0 and the outputs
of MaxEnt had p > 0.341 were selected.

3. Results
3.1. Model Performance

Based on the Kuenm package’s optimization results, the feature classes (FC) with
threshold (T), product (P), quadratic (Q), and regularization multiplier (RM) equal to
1.9 were the optimal MaxEnt model parameters for our data (Table 3). The test AUC values
from the 10-fold cross-validation of the final model are depicted in Figure 2. The AUC
values were 0.95, signifying the strong performance of the MaxEnt model in predicting
the potential distribution areas of A. sarta. Under current climatic conditions, the potential
distribution area forecasted by the CLIMEX model encompassed all recorded known
distributions of A. sarta globally. Similarly, the prediction results of MaxEnt indicated that
all occurrence records fell within the predicted range. These findings suggest that the
prediction results of both models demonstrated good accuracy.

Table 3. The best candidate models filtered by the Kuenm package.

Rank FC RM Partial ROC Omission Rate at 5% AICc Delta AICc

1 QPT 1.9 0 0.046 9508.12 0

3.2. Potential Distribution of A. sarta under Current Climatic Conditions Using CLIMEX
and MaxEnt

Under current climatic conditions, the CLIMEX model forecasts that the potential
distribution areas predominantly encompass central and southern countries across the
world map, with central African, southern Asian, and most northern hemisphere coun-
tries deemed unsuitable (Figure 3). The projected proportions for highly suitable, suit-
able, marginally suitable, and unsuitable areas are 27.07% (36.41 million km2), 9.15%
(12.30 million km2), 4.84% (6.51 million km2), and 58.94% (79.28 million km2), respectively,
relative to the total global land area (Figure S1).

https://github.com/marlonecobos/kuenm
https://github.com/marlonecobos/kuenm
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Conversely, the outcomes generated by the MaxEnt model demonstrate a more con-
servative distribution, primarily concentrated in the central regions of the world. Only
three countries—Australia, Chile, and Argentina—in the southern hemisphere are deemed
suitable, while the rest of the world is predicted to be unsuitable (Figure 3). The projected
proportions for highly suitable, suitable, marginally suitable, and unsuitable areas are
1.95% (2.62 million km2), 2.48% (3.34 million km2), 6.39% (8.59 million km2), and 89.18%
(119.94 million km2), respectively, relative to the total global land area (Figure S1).
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3.3. Potential Distribution of A. sarta under Future Climatic Conditions Using CLIMEX
and MaxEnt

The CLIMEX model forecasts that, under future climatic conditions in both climate
change scenarios, potential distribution areas will primarily be located in the central
and southern parts of the world. However, the range of suitable habitats is projected to
shift towards the northern hemisphere and contract towards the southern hemisphere.
Nonetheless, countries with known potential distribution areas of A. sarta will likely remain
suitable habitats for this pest (Figure 4). Regarding area distribution under the SSP370 and
SSP585 climate change scenarios, a notable increase has been observed in suitable habitat
(0.29 and 0.34 million km2), marginal suitable habitat (0.32 and 0.51 million km2), and
unsuitable habitat (1.27 and 1.22 million km2). However, the highly suitable habitat area
under both climate change scenarios is anticipated to decrease significantly by −1.88 and
−2.06 million km2, respectively (Figure S1).
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The MaxEnt model forecasts that, under future climatic conditions in both climate
change scenarios, potential distribution areas will primarily be located in the central parts
of the world. However, the range of suitable habitats is projected to shift towards the
northern hemisphere, with significant changes expected in Asia, Europe, and North Amer-
ica, while contracting towards the southern hemisphere. Despite these shifts, countries
with known potential distribution areas of A. sarta will likely remain suitable habitats for
this pest (Figure 4). Regarding area distribution under the SSP370 and SSP585 climate
change scenarios, a notable increase has been observed in highly suitable habitat (0.30 and
0.23 million km2), suitable habitat (0.82 and 0.66 million km2), and marginal suitable habi-
tat (3.73 and 2.34 million km2). However, the unsuitable habitat area under both climate
change scenarios is anticipated to decrease significantly by −4.84 and −3.23 million km2,
respectively (Figure S1).

3.4. Net Change in Aeolesthes sarta Global Distribution under Future Climate Using CLIMEX
and MaxEnt

The net change in Aeolesthes sarta’s global distribution under future climate scenarios
differs between the CLIMEX and MaxEnt models. In the CLIMEX model, net losses
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predominantly occur in the central regions, shifting toward the southern hemisphere, while
net gains predominantly occur towards the northern hemisphere. Conversely, the MaxEnt
model indicates net losses primarily concentrated in the southern hemisphere and net
gains mainly in the central regions of the world. CLIMEX forecasts reveal a contraction of
suitable habitats from the center towards the northern hemisphere. Meanwhile, MaxEnt
projections highlight a slight shift in suitable habitats towards the northern hemisphere
but predominantly in the central regions, particularly Asia, Europe, and North America
(Figure 5).
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Figure 5. Net gain and loss of Aeolesthes sarta potential distribution under future climate for CLIMEX
and MaxEnt models.

3.5. Combined Prediction Maps of the Two Models

The combined distribution maps (Figure 6) illustrate that, under current and future
climate conditions, the intersected climate-suitable regions of the CLIMEX and MaxEnt
models predominantly encompass the central and southern countries of the world. Notably,
the results of the CLIMEX projections include all those from the MaxEnt model. With
anticipated future climate changes, the intersecting areas shift primarily northward and are
concentrated in Asia, Europe, and North America, indicating a significant alteration in the
distribution patterns of suitable habitats.

Under historical and future climate conditions, the output results (EI) of the CLIMEX
model demonstrated heightened sensitivity to changes in DV0 (limiting low temperature
◦C), suggesting that low temperatures significantly influence the distribution of A. sarta.
Conversely, the MaxEnt model highlighted the significance of Bio3 (isothermality) in
model construction, underscoring the importance of temperature dynamics (Figure 7). The
CLIMEX model predicts a broader global distribution of A. sarta compared to MaxEnt.

3.6. Effect of Environmental Factors

At the global level, the top environmental variables associated with A. sarta dis-
tribution were ranked as follows: isothermality, temperature seasonality, mean annual
temperature, and precipitation seasonality. These variables made average contributions of
33.1%, 24.5%, 21.7%, and 17% to the model, respectively (Table 4). The jackknife tests of
variable importance further confirmed that the variables isothermality, temperature season-
ality, mean annual temperature, and precipitation seasonality exhibited higher predictive
power than others. This was evident from their high training, test gain, and AUC values,
indicating their significant contribution to the model’s predictive accuracy (Figure 8).
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Table 4. The bioclimatic variables percentage contribution and permutation in the final
MaxEnt model.

Variable Percentage Contribution Permutation Importance

bio03 33.1 25.4
bio04 24.5 34.6
bio01 21.7 15.8
bio15 17 6.4
bio09 3.3 16.5
bio19 0.4 1.3
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Figure 8. The relative importance of the environmental variables based on the jackknife test. The
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A. sarta model.

The likelihood of A. sarta presence exhibits distinct trends based on mean annual
temperature. It sharply increases from 0 to 13 ◦C, peaks at 14 ◦C, and declines rapidly
beyond 15 ◦C (Figure 9A). Additionally, areas with moderate temperature uniformity
throughout the year, where seasonal changes contribute significantly to annual temperature
variation, show higher probabilities of A. sarta presence (Figure 9B). Similarly, regions
characterized by consistent temperatures year-round and minimal seasonal fluctuations
display increased probabilities of A. sarta presence (Figure 9C). Furthermore, the probability
peaks between −10 ◦C and 17 ◦C, with the highest likelihood observed at 18 ◦C, diminishing
sharply after 20 ◦C (Figure 9D). Areas with significant precipitation variability, indicative
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of distinct wet and dry seasons or irregular rainfall patterns, exhibit higher probabilities
of A. sarta presence (Figure 9E). Lastly, regions experiencing low precipitation during the
coldest quarter of the year also show elevated probabilities of A. sarta presence (Figure 9F).
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Figure 9. Response curves of the best predictors of A. sarta in the MaxEnt model: (A) mean annual
temperature (bio1; ◦C), (B) isothermality (bio3), (C) temperature seasonality (bio4), (D) mean temper-
ature of the driest quarter (bio9; ◦C), (E) precipitation seasonality (bio15), and (F) precipitation of
coldest quarter (bio19; mm).

The CLIMEX model forecasts a greater growth index in regions where the A. sarta is
observed. This outcome is attributed to the heat and cold stress indexes, which elucidate
why A. sarta avoids extremely cold northern latitudes and hot desert regions in Africa and
certain parts of Australia (Figure 10).
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4. Discussion and Conclusions

In this research, two models were employed to forecast the potential distribution range
of A. sarta worldwide, thereby mitigating the limitations of relying on a single model. The
CLIMEX model specifically examines the correlation between species distribution and en-
vironmental factors, incorporating ecophysiological data that influence population growth
rates across four stress indicators: hot, cold, dry, and wet [52]. CLIMEX stands out for its
ability to forecast invasive species even with limited distribution data, leveraging biological
characteristics of the species alongside climatic information [6]. This feature constitutes a
primary advantage of the model. Moreover, CLIMEX offers simplicity in operation and
allows for fine-tuning predicted distribution ranges based on actual data. It can also be
updated to reflect changes in invasive species’ biological parameters, thereby enhancing the
accuracy of predictions. However, defining the relationship between biological parameters
and growth rates is a user-driven task, introducing subjectivity into the simulation results
and making them susceptible to the modeler’s biases [6,7]. The mechanistic physiologically
based approach of CLIMEX, along with its independence from presence background data,
has resulted in a dearth of corresponding evaluation metrics [32].

In contrast, MaxEnt primarily relies on independent data concerning species distribu-
tion and environmental variables for its predictions. Its key advantage lies in its ability to
incorporate a wider array of environmental variables, including soil and elevation factors,
without necessitating comprehensive knowledge of the species’ biological characteristics.
However, the model’s accuracy may be influenced by the number of species distribution
sites available [53]. The relative occurrence rate (ROR), as defined by Fithian & Hastie [54],
corresponds to the raw output generated by the MaxEnt model. Predicted ROR values are
primarily depicted by creating intricate, highly nonlinear response curves derived from the
model’s formulas. This process underscores that the model integrates both statistical and
machine learning approaches. The selection of environmental characteristics, discretization,
and sample size significantly influence the prediction outcomes. Consequently, there is a
risk that the model may diverge from macroecological patterns [55]. Early et al. [56] empha-
size that using species range projections for prevention strategies warrants using multiple
modeling techniques. These techniques should rely on independent or semi-independent
data regarding the known distribution of species. Moreover, the output results from dif-
ferent models should be formally comparable. Consequently, combining the prediction
results from various models can enhance the accuracy of range predictions.

Our study addresses the pressing need for accurate models predicting the potential
distribution of economically significant pests, which is crucial for conducting pest risk
assessments and is essential for facilitating international trade. We have pioneered the
global assessment of potential risk for A. sarta establishment, successfully employing
correlative niche models like MaxEnt and semi-mechanistic niche models like CLIMEX.
Our approach holds promise for assessing other agricultural and forest pests of quarantine
concern. The MaxEnt model leveraged A. sarta occurrences and a comprehensive set of
environmental spatial data layers, while CLIMEX utilized published physiological tolerance
data specific to A. sarta alongside built-in climate data layers to predict the potential for
establishment. Notably, both models accurately predicted A. sarta’s known occurrences.
However, they did not project suitable environmental conditions in countries situated in
extreme northern hemispheres, African deserts, and Australia primarily due to the adverse
effects of extreme chilling temperatures or excessively high temperatures in these regions,
which hinder A. sarta development or diapause regulation. The models have forecasted
suitable conditions in several countries where A. sarta is not currently present, such as in
various European and North American countries, where its preferred host species, Populus
alba, is found (refer to Figure 11). Among the environmental variables considered, average
annual temperature and precipitation rate emerged as the top factors associated with
A. sarta distribution. These findings underscore the importance of climatic conditions in
determining the potential range of A. sarta and highlight areas where proactive measures
may be necessary to prevent its establishment.
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Figure 11. Current climatic suitability for the growth of Populus alba at a global scale modeled by
CLIMEX. Most countries with suitable environmental conditions have a known distribution of P. alba.
Please refer to Hayat et al. [6] for details.

4.1. Assessment of CLIMEX and MaxEnt Models

The disparity in prediction results between CLIMEX and MaxEnt can be attributed to
their distinct methodologies. CLIMEX primarily relies on the biological parameters of the
species, while MaxEnt necessitates specific species distribution sites for modeling. CLIMEX
characterizes the relationship between the environment and distribution by incorporating
ecophysiological parameters that govern species survival and population growth rates [57].
Following the invasion of A. sarta into other Asian countries, changes occurred in the
heating and chilling points relative to its native range in the subcontinent. Consequently,
CLIMEX parameters were readjusted to extend the predicted distribution of the model to
cover all known occurrences. In contrast, the MaxEnt model employs complex, nonlinear
functions to fit species responses to the relevant environment. These functions involve
transformations applied to independent variables, and the fitted function is defined by six
feature classes: linear, product, quadratic, hinge, threshold, and categorical [58]. This
complexity accounts for the different outputs and approaches between CLIMEX and
MaxEnt. Indeed, several factors can contribute to differences in prediction results among
models. These factors include the algorithm used in the model, spatial errors in species
occurrences, multicollinearity among environmental variables, and genetic variation among
species [59]. The interaction of these elements can influence the accuracy and reliability
of model predictions, highlighting the importance of considering various factors and
employing multiple modeling techniques when assessing species distribution and potential
range expansion.

4.2. Global Projections of A. sarta Distribution under Current and Future Scenarios

The predictions generated by both models under current climatic conditions closely
align with the currently known global distribution of A. sarta and its preferred host plant,
P. alba (Figures 3 and 11). For instance, both models accurately projected A. sarta dis-
tribution in countries such as Pakistan, Iran, India, China, Afghanistan, Turkmenistan,
Tajikistan, Uzbekistan, and Kazakhstan, consistent with reported occurrences in these
regions [10,14,15,25,26,28]. Under future climatic conditions, both models anticipate a
highly suitable area concentrated in central regions of the world, with significant exten-
sions toward the northern hemisphere and contractions toward the southern hemisphere
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(Figure 5). While the CLIMEX model predicts a larger area than MaxEnt, both models’
overall accuracy remains high. This alignment between model predictions and observed
occurrences underscores the effectiveness of both CLIMEX and MaxEnt in forecasting
the potential distribution of A. sarta under changing climatic conditions. The disparities
observed in spatial predictions between the CLIMEX and MaxEnt models can be attributed
to several factors. These include utilizing different types and spatial resolutions of climatic
datasets, variations in the complexity of model fitting, and specific assumptions inherent to
each model [58,60].

4.3. Caveats and Uncertainties

The findings of this study should be approached with caution due to the inherent
uncertainties associated with niche models. Niche model predictions can be influenced
by various factors, including the quality of occurrence data, potential sampling bias, reso-
lution of spatial data layers, species characteristics, and spatial autocorrelation [61,62]. It
is important to note that the physiological temperature and moisture thresholds derived
from laboratory studies for A. sarta may not encompass the full spectrum of genetic and
phenotypic variability present in A. sarta populations worldwide. The CLIMEX param-
eters used in modeling also introduce uncertainties, as highlighted in the literature [63].
The MaxEnt model is susceptible to variations from diverse decisions made during its
calibration process. Choices such as the selection of background points, determination
of extent, setting the value of the regularization multiplier (RM), and choosing feature
types exert significant influence on the outcomes of the model predictions [64,65]. Our
validation of MaxEnt predictions, employing a semi-mechanistic CLIMEX model, indicates
that the decisions made during the calibration process for the A. sarta MaxEnt model were
suitable. This affirmation is supported by the broad alignment between model projections
and observations across significant regions (Figure 3). Climate change is anticipated to
influence the distribution of A. sarta, as projected by the CLIMEX and MaxEnt models.
With the rise in global temperatures, regions exhibiting marginal suitability for A. sarta
(with an average annual temperature of 10 ◦C) are expected to become more conducive to
its presence. Conversely, areas experiencing higher average annual temperatures (>37 ◦C)
will likely become unsuitable for A. sarta. Further studies are warranted to explore the
potential impacts of climate change on the distribution and biology of A. sarta. Temperature
and moisture level changes can influence insect pests’ population growth rates, extend the
number of generations, prolong the development season, and alter forest–pest synchrony
and interspecific interactions [66]. Improving the temporal resolution of climate data may
be necessary for more accurate predictive models of insect pest establishment. Monthly
averaged climatic data, such as those provided by WorldClim [67], may not adequately
capture the critical physiological requirements of certain insect pests, which may necessitate
finer resolution data at the weekly or daily level [68]. Beyond the influence of a suitable
climate, the probability of an insect pest establishing itself in new geographical areas is also
impacted by factors such as propagule pressure (the number of individuals introduced to
a novel region), the presence of host plant species, and various abiotic factors and biotic
interactions. These interactions include competitors and natural enemies [69,70]. Our mod-
els predicted climatic suitability in several regions, where A. sarta currently does not occur
(e.g., in Europe and North America—while all those regions have well-established P. alba
plantations), which may be because of very low propagule pressure, dispersal barriers, and
natural enemies in these regions [3]. The propagule pressure in different parts of the world
depends on the frequency and amount of timber/furniture imports and the likelihood of
these wood logs infested with A. sarta.

4.4. International Trade Implications for Biosecurity

Our findings hold significant implications for guiding pest risk assessments conducted
by national plant protection organizations, monitoring efforts to prevent unintentional
introductions of A. sarta in various countries and informing policymakers and trade nego-
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tiators to make science-based decisions. By strategically co-ordinating and concentrating
efforts across susceptible areas, we can mitigate the risk of A. sarta incursions. Even in
regions like Europe and North America, where A. sarta currently does not exist, our results
can facilitate the implementation of effective monitoring and surveillance programs to
detect potential pest introductions via trade from currently infested countries or areas
with high climatic suitability. Furthermore, the maps generated from our study can aid
in identifying areas most suitable for area-wide pest suppression strategies, including the
sterile insect technique or eradication efforts. Targeting regions with established popula-
tions of A. sarta on the extreme margins of climate suitability can enhance the efficacy of
suppression and eradication initiatives. Our research provides valuable insights that can
inform proactive and strategic pest management practices globally.

Authors should discuss the results and how they can be interpreted from the perspec-
tive of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects15050324/s1, Fitting of CLIMEX parameters for A. sarta,
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