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Simple Summary: The black pine bast scale, Matsucoccus thunbergianae, is a forest pest that causes
widespread damage to black pine; therefore, monitoring this pest is necessary to minimize environ-
mental and economic losses in forests. However, monitoring insects in pheromone traps performed
by humans is labor intensive and time consuming. To develop an automated monitoring system,
we aimed to develop algorithms that detect and count M. thunbergianae from images of pheromone
traps using deep-learning-based object detection algorithms. Object detection models based on deep
learning neural networks under various conditions were trained, and the performances of detection
and counting were compared and evaluated. In addition, the models were trained to detect small
objects well by cropping images into multiple windows. As a result, the algorithms based on deep
learning neural networks successfully detected and counted M. thunbergianae. These results showed
that accurate and constant pest monitoring is possible using the artificial-intelligence-based methods
we proposed.

Abstract: The black pine bast scale, M. thunbergianae, is a major insect pest of black pine and causes se-
rious environmental and economic losses in forests. Therefore, it is essential to monitor the occurrence
and population of M. thunbergianae, and a monitoring method using a pheromone trap is commonly
employed. Because the counting of insects performed by humans in these pheromone traps is labor
intensive and time consuming, this study proposes automated deep learning counting algorithms
using pheromone trap images. The pheromone traps collected in the field were photographed in the
laboratory, and the images were used for training, validation, and testing of the detection models.
In addition, the image cropping method was applied for the successful detection of small objects in
the image, considering the small size of M. thunbergianae in trap images. The detection and counting
performance were evaluated and compared for a total of 16 models under eight model conditions
and two cropping conditions, and a counting accuracy of 95% or more was shown in most models.
This result shows that the artificial intelligence-based pest counting method proposed in this study is
suitable for constant and accurate monitoring of insect pests.

Keywords: pest monitoring; sex pheromone trap; Matsucoccus thunbergianae; deep learning; CNN;
object detection; Faster R-CNN; SSD; insect counting
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1. Introduction

The black pine bast scale, Matsucoccus thunbergianae (Matsucoccus matsumurae), is a
major insect pest of black pine, Pinus thunbergii, in South Korea. The damage caused by
M. thunbergianae to black pine was first reported on the southwest coast of the Korean
Peninsula in 1963 [1]. Since then, the black pine bast scale has been dispersed throughout
several coastal areas of the Korean peninsula [2]. Because of severe environmental and
economic losses, intensive monitoring of the black pine bast scale has been conducted
by the Korea Forest Service since 1983. The primary monitoring of the black pine bast
scale involves surveying the egg sacs laid on pine twigs [2]. However, this method is time
consuming, labor intensive, and requires skilled monitoring. Additionally, it is difficult
to monitor egg sacs located in high places. Consequently, this method does not provide
accurate monitoring data.

Pheromone traps have been widely used as valuable tools to monitor agricultural
and forest insect pests worldwide. The sex pheromone emitted by the female black pine
bast scale was first identified as matsuone, (2E,4E)-4,6-10,12-tetramethyl-2,4-tridecadiene-
7-one [3,4], and Cywin et al. [5] determined the absolute configuration of matsuone as
(2E,4E,6R, 10R)-4,6-10,12-tetramethyl-2,4-tridecadiene-7-one. In our previous studies [6,7],
we developed a simple synthesis method for racemic matsuone and an effective trap to
monitor the black pine bast scale for practical use in a field. The recognition and counting
of insects in these pheromone traps have been mainly performed manually by humans.
The process is labor intensive, and the results of the counting differ depending on the
identification skill of the person [8]. In particular, for small-sized (1.5–2 mm) insects
such as M. thunbergianae, there is a substantial difference in counting results because of
identification skill and fatigue. To avoid labor-intensive manual counting, image-based
automated monitoring methods have been used in many studies [9–18]. The image-based
method captures images of traps and recognizes and counts pests on traps using image
processing. Through this image-based method, the computing system undertakes the
labor-intensive work, and it is also possible to automate counting immediately in the field
using camera-trap systems without bringing the traps from the field into the lap. Further,
there is no difference in counting due to identification skill and fatigue level, and the
counting time can be shortened depending on the algorithm.

Recently, methods based on convolutional neural networks (CNNs) have shown high
performance for tasks such as classification, detection, and segmentation in the field of
vision [19–21]. CNNs are composed of layers such as convolution and pooling so that
spatial information can be used in the network in a similar manner as filter methods in
image processing. In object detection tasks, the proposed CNN-based object detectors
show higher performance than conventional object detection methods. Region-based CNN
(R-CNN), an early CNN-based object detection method, applies CNN to regions proposed
in images, leading to performance improvement compared with existing machine learning-
based methods [22]. Therefore, fast R-CNN with RoI pooling [23] and Faster R-CNN with
RPN [24] have been proposed to improve performance and speed. After the two-stage
object detectors of the R-CNN series, one-stage object detectors such as you only look once
(YOLO) [25] and single-shot multibox detector (SSD) [26] have been developed and have
reduced computing time compared with the R-CNN series. Recently, various CNN-based
one-stage detectors have been developed, such as Retinanet [27] and EfficientDet [28].

These deep-learning-based object detection methods are applied to various vision-
based detection tasks, such as pedestrian detection [29,30], object detection in aerial im-
ages [31–33], and object detection in agriculture [34–36]. Deep-learning-based object de-
tection methods are also applied in aerial-image-based wild animal monitoring studies,
similar to trap-based pest monitoring, and show higher performance than traditional
image processing and machine learning methods [37–40]. Image-based studies for pest
monitoring have used conventional image processing methods and machine learning
classifiers [10–13]. However, recent studies based on deep learning have been increasing.
Conventional image classification and detection methods require the human selection of
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image features, which has limitations compared to CNN-based methods that automatically
learn suitable features according to the tasks. Ding et al. [14] applied the sliding window
method and CNN to detect moths in trap images, and Nam et al. [15] applied an adaptive
threshold and CNN, SSD, sliding window, and CNN methods to detect pests and compared
the results. Nieuwenhuizen et al. [16] used Faster R-CNN to detect trapped insects, and
Chulu et al. [17] identified and classified fall army worm moths based on CNN. In our
previous study [18], we applied several deep learning object detection models, such as
Faster R-CNN, R-FCN, Retinanet, and SSD to detect three types of moths in trap images
and compared the speed and performance of each model.

Although these previous studies were conducted, studies related to the image-based
detection of forest pests are insufficient when considering various types of forest pests,
and studies on methods to improve the performance for detecting small-sized pests are
also insufficient. To optimize the detection model, it is necessary to compare various object
detection models and apply the latest detection models. Therefore, in this study, we applied
deep learning counting methods to monitor M. thunbergianae. Image cropping was applied
to successfully detect small-sized M. thunbergianae, and eight types of deep learning-based
object detection models were trained, and their performances were evaluated. In addition,
the counting accuracy according to each cropping condition and deep learning detector
conditions was evaluated.

2. Materials and Methods
2.1. Data Collection
2.1.1. Chemicals

The synthesis scheme of (6R,10R/S)-matsuone and the sex pheromone of the black
pine bast scale was described in our previous paper [6]. The purity of the matsuone was
above 97%. Butylated hydroxyltoluene (BHT, ≥99%) and hexane (98.5%) were purchased
from Sigma-Aldrich (Milwaukee, WI, USA) and Daejung Chemicals & Metals Co., Ltd.
(Siheung City, Gyeonggi-do, Korea), respectively. BHT was used as an antioxidant.

2.1.2. Trap Collection

Trap collection was conducted in a black pine stand in Gunsan (35◦5755′′ N, 126◦3320′′

E), Jeollabuk-do, Korea. Eight-sided sticky traps (Korea Institute of Pheromone, Daejeon
City, Korea) were used for the field experiments (Figure 1). The trap consisted of four
plates (130 mm width × 20 mm height), which were inserted into the cross vanes. Papers
covering both yellow sticky sides (11 cm width × 15.5 cm height) of each plate were
removed after the installation of the pheromone trap. Cable ties (8.8 mm width) were used
to tie the frame of the trap to a pine tree stem. Matsuone (400 µg) and BHT (400 µg) were
dissolved in hexane and loaded onto a rubber septum (Wheaton Scientific, Millville, NJ,
USA). Pheromone traps were installed 50 cm above the ground on 25 March 2020. We
collected the plates on 7 April 2020, and transferred them to the laboratory.
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Figure 1. Eight-sided sticky trap: (a) installed pheromone traps; (b) captured M. thunbergianae.

2.1.3. Image Acquisition

The collected traps were photographed in a dark room using a photographing system
with 4-way LED lighting, as shown in Figure 2. A color camera (α-6000, Sony Co., Tokyo,
Japan) was attached to the top of the system, and photographs were taken at a resolution
of 6000 × 4000 pixels. Figure 3 shows some of the trap images.

Figure 2. Trap photographing system.
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Figure 3. Samples of pheromone trap images.

2.2. Data Preparation

For 50 of the collected trap images, annotations were performed for the four coordi-
nates (xmin, ymin, xmax, ymax) of the ground truth bounding boxes of M. thunbergianae.
In 50 images, 23,056 targets were annotated, and the size of the ground truth bounding box
of M. thunbergianae was 60 × 60 pixels on average.

The annotated trap images were divided into a training set, a validation set, and a test
set, as shown in Table 1. The training set was used for training the object detectors, the vali-
dation set was used for the evaluation of the detectors according to the parameter changes,
and the test set was used for the performance evaluation of the optimized detectors.

Table 1. Number of images and M. thunbergianae of datasets.

Train Set Validation Set Test Set

Images 30 10 10
M. thunbergianae 13,419 5071 4566

2.3. Detector Training and Evaluation

Detecting small objects is a challenging task in object detectors, including deep-
learning-based detectors. Compared with the image size, smaller objects result in less suc-
cessful detection. In our trap image dataset, the resolution of images is 6000 × 4000 pixels,
whereas the size of the M. thunbergianae is only 60 × 60 pixels on average, which can lead
to a decrease in detection performance. One way to overcome this problem is to crop the
image [40,41]. Because the cropped image has a larger object size relative to the image size
than the uncropped image, the detection performance can be increased by cropping. Addi-
tionally, cropping and detecting images can increase object detection performance; however,
it has the disadvantage of slowing down detection speed as detection must be performed
multiple times. Considering this, to compare the detection speed and performance for
cropping conditions, our detectors were trained by cropping the entire 6000 × 4000 images
under the conditions of 12 × 8 and 6 × 4. Figure 4 shows cropped trap images with two
different cropping conditions. A Quadro RTX-6000 GPU (Nvidia Corp., Santa Clara, CA,
USA) was used for model training, validation, and testing.
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Figure 4. Cropped pheromone trap images: (a) 12 × 8 cropping condition; (b) 6 × 4 cropping condition.

Convolutional object detection models have differences in speed and accuracy depend-
ing on the configuration of the model [42]. Several factors affect the speed and accuracy,
such as the type of meta-architecture, the type of feature extractor, and the input size. It is
necessary to select and fine-tune a model that is suitable for the conditions required for the
detection tasks. Therefore, in this study, we used 16 model conditions of four model types,
two input sizes, and two cropping conditions. Model configurations according to model
types and input sizes were Faster R-CNN Resnet 101, with input sizes of 1024 and 512;
EfficientDet D0 and D4, which have input sizes of 512 and 1024, respectively; Retinanet 50,
with input sizes 1024 and 640; and SSD MobileNet 2, with input sizes of 640 and 320. The
code for the process was constructed based on the TensorFlow Object Detection API [42].
(The code constructed by this study will be copyrighted as software in the year 2021, and
the algorithm will be available upon request after the copyright has been obtained). For
the robustness of the model, transfer learning was applied using pretrained weights with
the COCO dataset and data augmentation techniques such as vertical and horizontal flip,
random crop and pad, contrast, and brightness adjustment.

The trained models were evaluated using the average precision (AP) metric. The
average precision is an evaluation metric widely used in object detection and is the average
of the precision values according to the change in the recall value in the precision-recall
distribution of the model. In the matching process between ground truth boxes and
detected boxes, the acceptance of the box localization, considered as the correct detection,
varies according to the intersection of union (IoU) threshold. The IoU is an indicator of
how much the two boxes overlap and is calculated by dividing the overlap area by union
areas. In this study, APs were calculated for IoU thresholds of 0.5 and 0.3. The reason for
evaluating the threshold of 0.3 as well as the commonly used threshold of 0.5, is that the
importance of accurate box localization is less than that of general object detection tasks in
the case of counting purposes. The precision and recall used in the calculation of AP are
given in Equations (1) and (2), where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives.

Precision (%) =
TP

TP + FP
×100 (1)

Recall (%) =
TP

TP + FN
×100 (2)
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2.4. Counting Accuracy Evaluation

Manual counting was performed on 30 traps to evaluate the counting accuracy. The
30 traps consisted of 10 traps each with less than 300, 300 to 500, and more than 500 M. thun-
bergianae. The counting was conducted by a person skilled in counting M. thunbergianae
and was used as the basis for evaluating the counting accuracy of the detection model.

The detection accuracy of the detector was evaluated on the original trap images
(noncropped images), and for this purpose, the sliding window method was used. For
each cropping condition, the original image was scanned and detected with a window
of 500 × 500 for the 12 × 8 cropping condition and 1000 × 1000 for the 6 × 4 cropping
condition. The overlap of the scanning was set to 100 pixels, which is larger than the size of
M. thunbergianae; therefore, M. thunbergianae at the edge of the window could be completely
contained inside the next window. Considering the overlap, the 6000 × 4000 trap images
underwent 150 scans of 15 × 10 in the 12 × 8 cropping condition and 35 scans of 7 × 5
in the 6 × 4 cropping condition. Nonmaximum suppression (NMS) was performed to
eliminate duplicate detections in overlapping areas. If an object is cut at the end of one
window, only a part of the object is detected. In this case, the detection box has a low IoU
with the same target’s detection box in the next window; therefore, duplicate detection
is not removed by the NMS. To remove duplicate detections, when the box coordinates
were located at the end of the window, the detection box was removed. Figure 5 shows a
flowchart of our trap image counting algorithm.

Figure 5. Flowchart for trap image counting.
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The object detector can adjust the intensity of detection by adjusting the detection score
threshold and the number of detected boxes changes according to this value. Therefore,
10 of the 30 images were used to determine the score threshold value for optimal counting
for each model, and the counting accuracy was evaluated for the remaining 20 images based
on the determined score threshold. The counting error was calculated using Equation (3).

counting error(%) =
N

∑
i=1

∣∣∣∣Ci − Ĉi

Ci

∣∣∣∣×100 (3)

where Ci is the number of manually counted M. thunbergianae in the ith trap, and Ĉi is the
number of detected M. thunbergianae by the object detector in the ith trap. Figure 6 shows
an overall schematic of the study.

Figure 6. Schematic of the training and evaluation process.

3. Results

Tables 2 and 3 list the test results of each model trained according to the 12 × 8 and
6 × 4 cropping conditions, respectively. Overall, the 12 × 8 crop-image-based detector
resulted in higher AP. In the case of the 12 × 8 cropping condition, both the IoU thresholds
of 0.5 and 0.3 resulted in similar APs regardless of the structure of the detection model.
In the case of SSD MobileNet v.2 with a 320 input size, the inference time is seven times
faster than that of Faster R-CNN Resnet 101 with a 1024 input size and EfficientDet D4
models, but APs were similar. This trend was similar to that of the models based on the
6 × 4 cropped image. Except for SSD MobileNet v.2 with a 320 input size, the AP difference
was approximately 2–3% in both IoU thresholds 0.5 and 0.3 in the 6 × 4 cropping condition.
In the case of SSD MobileNet v.2 with a 320 input size, APs were lower than those of
the other models when applied on 6 × 4 cropped images by 5–7% at the IoU threshold
of 0.5 and 8–11% at the IoU threshold of 0.3. Figures 7 and 8 show the detection result
image of Faster R-CNN Resnet 101 with a 1024 input size model under the 12 × 8 and
6 × 4 cropping conditions, respectively.
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Table 2. Test results of M. thunbergianae detectors (12 × 8 cropping condition).

Model Input Size Inference Time
(ms)

AP (%)

IoU:0.3 IoU:0.5

Faster R-CNN Resnet 101 1024 78.26 89.78 85.63
Faster R-CNN Resnet 101 512 39.64 89.58 84.32

EfficientDet D4 1024 86.74 89.26 84.79
EfficientDet D0 512 25.58 88.36 83.79

Retinanet 50 1024 30.97 89.35 84.40
Retinanet 50 640 20.56 89.86 86.40

SSD Mobilenet v.2 640 15.28 89.02 84.76
SSD Mobilenet v.2 320 11.82 89.46 84.54

Table 3. Test results of M. thunbergianae detectors (6 × 4 cropping condition).

Model Input Size Inference Time
(ms)

AP (%)

IoU:0.3 IoU:0.5

Faster R-CNN Resnet 101 1024 79.58 87.13 82.92
Faster R-CNN Resnet 101 512 41.48 85.04 80.18

EfficientDet D4 1024 90.33 84.87 81.22
EfficientDet D0 512 26.12 85.30 80.21

Retinanet 50 1024 33.52 86.58 82.62
Retinanet 50 640 21.85 85.33 81.71

SSD Mobilenet v.2 640 16.83 85.75 81.35
SSD Mobilenet v.2 320 12.22 79.87 72.05

Figure 7. Detection result images of the 12 × 8 cropping condition (0.5 score threshold).
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Figure 8. Detection result images of the 6 × 4 cropping condition (0.5 score threshold).

Figure 9 shows cases in which errors occurred during detection. Figure 9a–c shows
error cases in which target objects were not detected. As shown in Figure 9b,c, when several
insects were overlapped, these false negatives mainly occurred. There were many cases
where it was difficult for even skilled researchers to distinguish whether it was M. thunber-
gianae or not because of overlapped insects, and most of the detection errors were in these
cases. Figure 9d shows wings of insects that were mistakenly recognized as M. thunbergianae.
These false-positive errors occurred less frequently when compared with false-negative
errors. The types of errors in the 12 × 8 cropping condition and 6 × 4 cropping condition
were similar and tended to occur more frequently in the 6 × 4 cropping condition.

Figure 10 and Tables 4 and 5 show the counting time and counting error regarding
cropping conditions and model configurations. Similar to the detection evaluation results,
the 12 × 8 cropping models showed a counting error of 2–3%, which is lower than the
counting error of the 6 × 4 models, which was 3–9%. Among the 12 × 8 cropping models,
Faster R-CNN Resnet101 with a 1024 input size showed the lowest counting error at 2.11%,
and the other 12 × 8 cropping models showed counting errors of 2.35–3.69%. In the case
of counting time, the 12 × 8 cropping models showed a range of 3.63–14.14 s, and the
6 × 4 cropping models showed a range of 1.19–3.92 s. This difference in counting time
is because the 12 × 8 cropping model has 150 windows inspected during scanning, and
the 6 × 4 model has 35 windows inspected. In the manual counting process, there were
some differences in counting times according to the number of target insects included in
the trap. The average counting times were 199, 198, and 501 s for each population range
of less than 300, 300 to 500, and more than 500. These counting times are approximately
8–27 times longer than the counting time of Faster R-CNN Resnet 101 with a 1024 input
size of the 12 × 8 cropping condition (14.14 s) and 85–276 times longer than the counting
time of SSD MobileNet v.2 with a 640 input size of the 6 × 4 cropping condition (1.4 s).
As in the detection accuracy evaluation, the counting errors of the models under the
6 × 4 cropping condition were similar except for SSD MobileNet v.2 with a 320 input
size. SSD MobileNet v.2 with a 320 input size showed a counting error of 6.694%, which
was 2–3% higher than that of the other 6 × 4 cropping condition models. Except for SSD
MobileNet v.2 with a 320 input size under the 6 × 4 cropping conditions, all models in the
two cropping conditions showed more than 95% counting accuracy. Figure 11 shows a
trap image that was detected with our sliding window algorithm (Faster R-CNN Resnet101
with a 1024 input size of the 12 × 8 cropping conditions).
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Figure 9. Detection errors: (a–c) false negatives; (d) false positives.

Figure 10. Counting error–counting time graph of detection models: (a) 12 × 8 cropping condition; (b) 6 × 4 cropping
condition.
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Table 4. Counting error results of the 12 × 8 cropping condition.

Model Input Size Counting Time (s) Counting Error (%)

Faster R-CNN Resnet 101 1024 14.14 2.11
Faster R-CNN Resnet 101 512 9.17 3.69

EfficientDet 1024 14.44 3.37
EfficientDet 512 5.29 3.42
Retinanet50 1024 6.58 3.30
Retinanet50 640 4.78 2.95

SSD Mobilenet v.2 640 3.81 2.32
SSD Mobilenet v.2 320 3.63 3.32

Table 5. Counting error results of the 6 × 4 cropping condition.

Model Input Size Counting Time (s) Counting Error (%)

Faster R-CNN Resnet 101 1024 3.90 3.95
Faster R-CNN Resnet 101 512 2.50 4.02

EfficientDet 1024 3.92 4.70
EfficientDet 512 1.68 4.21
Retinanet50 1024 1.88 3.83
Retinanet50 640 1.45 3.74

SSD Mobilenet v.2 640 1.40 3.65
SSD Mobilenet v.2 320 1.19 6.69

Figure 11. Detection results of the trap image (Faster R-CNN Resnet101 with a 1024 input size,
a 12 × 8 cropping condition, and a 0.5 score threshold).

4. Discussion

In this study, we applied object detection methods based on deep learning for auto-
mated pest monitoring. In particular, for the successful detection of M. thunbergianae, which
is a small-sized insect, a method of cropping was applied to the original image. Accord-
ingly, detection and counting accuracy were evaluated for two cropping conditions and
eight model conditions. As a result, it was confirmed that deep learning object detection
methods can be successfully applied to monitor M. thunbergianae.

Our detection and counting performance results show that the fast models can per-
form similarly to the slow models when the number of cropping is sufficient (in the
12 × 8 cropping condition). When comparing the 12 × 8 cropping condition with the
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6 × 4 cropping condition, the 12 × 8 cropping condition resulted in higher overall AP
because the object size relative to the image size increased. In the case of the 6 × 4 cropping
condition with the IoU threshold of 0.3, most of the models showed 84–85% APs, showing
a small difference compared with the 12 × 8 cropping condition, which showed 89% APs,
but the SSD MobileNet v.2 model with an input size of 320 showed a low AP of 79.87%.
This is because the size of objects in the 6 × 4 cropping images was too small for the
light model such as SSD MobileNet v.2 of a 320 input size. In the detection error cases,
false-negative errors were more common than false-positive errors. Most of the errors
occurred in cases where it was difficult to recognize M. thunbergianae manually because
several insects overlapped or the shape of the insect was unclear. Although M. thunber-
gianae has various shapes and there are many other trapped insects similar in appearance
to M. thunbergianae, most of the detected images showed successful detections.

The counting accuracy results using deep learning object detection methods showed a
similar tendency to that of the detection performance evaluation. Overall, the 12 × 8 crop-
ping condition showed a lower counting error than the 6 × 4 cropping condition, and SSD
MobileNet v.2 with a 320 input size model under the 6 × 4 cropping condition showed a
higher counting error than the other models. Except for SSD MobileNet v.2 with a 320 input
size model, other models had 95.3–97.89% counting accuracy, demonstrating that deep
learning-based object detectors can be successfully used to monitor the population of
M. thunbergianae.

In this study, two cropping conditions (12 × 8, 6 × 4) were used, and it was confirmed
that both the detection accuracy and counting accuracy of the 12 × 8 cropping condition
were higher than those of the 6 × 4 cropping condition. However, as the number of
windows increases with an increase in the number of croppings, the image processing
takes longer; therefore, the detection speed decreases. Thus, it is necessary to determine
the cropping condition and model considering the speed–accuracy tradeoff according to
the computing system and the required speed. Although the 12 × 8 cropping condition
showed a higher overall performance than the 6 × 4 cropping condition, the results of the
6 × 4 cropping condition also have high performance. Though excluded from the results
of this study, when testing the 3 × 2 cropping results for some models, the APs of the
3 × 2 cropping condition were approximately 60–70%. Thus, when cropping is less than
6× 4, it can be confirmed that the performance drops sharply, and it seems that somewhere
between the 6 × 4 cropping condition and 3 × 2 cropping condition is the boundary line of
this sharp drop.

Recently, there have been many studies related to pest detection based on deep
learning [14–18]. The studies are different in factors such as target insect type, size, imaging
conditions, number of classes, and evaluation metrics; therefore, it is difficult to compare
quantitative accuracy between studies. In previous studies that evaluated the counting
accuracy in a similar manner to this study, the counting accuracy was 90.86% [43] and
92.6% [44]. Our study differs from previous studies in that the results were compared using
various types of deep learning object detection models, and the cropping method applied
for the detection method was optimized for small insects. Through this approach, a high
counting accuracy of 95.3–97.89% was obtained, and the results were presented considering
the tradeoff between the speed and accuracy of the model. These counting accuracies are
high values compared with human errors during the manual counting process.

The trap images in this study were taken using fixed lighting conditions in the labora-
tory, and these images were used for model training and evaluation. Therefore, images
were taken in a much more organized environment than the actual outdoor environ-
ment, and the accuracy of the trained model may be reduced in the images of the actual
environment. Additionally, in the case of the models applied in this study, especially
one-stage models, there are structures to detect multiscale objects. In this study, the size
of the target object relative to the image size is almost determined, and thus optimization
through structural modification is possible. In consideration of this, some scale parameters
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were fine-tuned, but it seems that it is possible to optimize accuracy and speed through
additional structural modifications.

In a subsequent study, to acquire models that can be applied in the field, it is necessary
to add and train the data acquired from the actual field, and they should also be applied to
the validation and test process. For this, research on the optimal environment, such as the
configuration of the trap device in the field or the selection of the optimal camera system are
also required. In this study, because a high-resolution camera was used, the performance of
the model could be improved by cropping images. However, in the case of low-resolution
images, the performance increase by cropping is likely to be small. Therefore, according to
the specifications of the camera system, it is necessary to optimize the field of view and
cropping conditions of the images. Moreover, it is necessary to optimize the model structure
in consideration of the speed–accuracy required by the purpose and field environment.

5. Conclusions

To improve the labor-intensive and time-consuming shortcomings of manual counting
for pheromone trap monitoring, this study developed counting algorithms from pheromone
trap images for detecting M. thunbergianae. To detect M. thunbergianae, various deep learning
object detection models were applied for conditions such as meta-architecture, feature
extractor, and input size. Additionally, for the detection algorithm optimized for small
objects, image cropping was applied, and the results of the models were compared. For
model robustness, transfer learning and data augmentation were applied during training,
and hyperparameters were fine-tuned through the validation process. After training,
the detection and counting performances of the model were evaluated, and the speed
and accuracy for each condition were obtained. As a result, the counting accuracy of
M. thunbergianae was 97.89% in the highest model, which shows that the deep learning
object detection model and image cropping method can be very effective in counting
M. thunbergianae. In addition, because the target speed and accuracy of the model may
differ depending on the type of task or computing system performance, the speed and
accuracy of various conditions were also compared. The results of our study confirmed
that constant monitoring can be achieved with accurate performance using the AI-based
pest detection system.
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