

Article From Biodiversity to Musketry: Detection of Plant Diversity in Pre-Industrial Peloponnese during the *Flora Graeca* Expedition

Chrysanthi Chimona 🔍, Sophia Papadopoulou, Foteini Kolyva, Maria Mina and Sophia Rhizopoulou *🕑

Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece

* Correspondence: srhizop@biol.uoa.gr; Tel.: +30-210-7274513

Abstract: As the interest in natural, sustainable ecosystems arises in many fields, wild plant diversity is reconsidered. The present study is based on extant literature evidence from the journey of John Sibthorp (Professor of Botany, Oxford University) to Peloponnese (Greece) in pre-industrial time. In the year 1795, Peloponnese was a botanically unknown region, very dangerous for travellers and under civil unrest, in *conjuncture* with a pre-rebellion period. Our study reveals approximately 200 wild plant taxa that were collected from Peloponnese localities in 1795, transported to Oxford University (UK), and quoted in the magnificent edition *Flora Graeca Sibthorpiana* of the 19th century. Moreover, these plants currently constitute a living collection in Peloponnese, confirmed according to updated data on the vascular Flora of Greece. The presented lists constitute a source of information for plant biologists, linking the past to the present, shedding light on the study of adaptive traits of wild Mediterranean plants and revealing the temporal dimension of natural history. Nowadays, increasing and thorough understanding of the considered plants' functionality to abiotic and biotic environmental stimuli provides a new framework of sustainability and management options.

Keywords: archives; botanical collection; Greece; landscape; pre-rebellion period

1. Introduction

In the 18th century, travelers' journey to Greece was also a journey through its history. The naturalists' travels were explorations, linked to searching for specimens of natural history. The travelers' observations became a way of identifying and revealing cultural and economic changes that have occurred over the last centuries. The botanical expeditions and the collections of specimens connected observations and descriptions with landscapes and environmental conditions; plants had been there for thousands of years, linked to the history and adapted to abiotic and biotic conditions of the localities [1–5].

John Sibthorp (1758–1796), Professor of Botany in the University of Oxford, decided to travel to unexplored areas of Greece, collecting and recording botanical specimens in the late 1780s and 1790s; at that time, Greece was an unknown region, very dangerous and difficult to visit owing to diseases, civil unrest, and bandit groups—known as armatoloi and klephts– that included illiterate peasants, artisans, and local clergy, together with the local notables and landowners in Peloponnese [6–8].

Sibthorp's main interest was linked to plants known since the classical antiquity and mainly quoted in the texts of Dioscorides (1st century AD) [9–14]. During the first exploration from 1786 to 1787, Sibthorp was accompanied by the Austrian painter Ferdinand Lucas Bauer (1760–1826) as his draughtsman [6,7]; this was a time when travelers were accompanied by a professional artist, whose work supplemented their discoveries with visual evidence [15–18]. Actually, the magnificent, illustrated edition *Flora Graeca Sibthorpiana* (hereafter *FGS*), published from 1806 to 1840, contains botanical hand-coloured engravings that are important icons of the Mediterranean flora [7,19,20].

John Sibthorp and his companion undertook a second botanical expedition to the Levant from 1794 to 1795. During this journey, they arrived in Peloponnese (Morea is

Citation: Chimona, C.; Papadopoulou, S.; Kolyva, F.; Mina, M.; Rhizopoulou, S. From Biodiversity to Musketry: Detection of Plant Diversity in Pre-Industrial Peloponnese during the *Flora Graeca* Expedition. *Life* **2022**, *12*, 1957. https://doi.org/10.3390/ life12121957

Academic Editors: Wajid Zaman and Hakim Manghwar

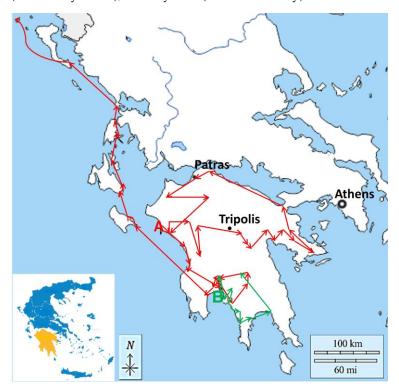
Received: 31 October 2022 Accepted: 19 November 2022 Published: 23 November 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). the name used in their diaries and letters) on 26 February 1795 and visited numerous localities botanizing in a more or less largely unknown area, frequently hearing the firing of guns [6,15,21,22]. Those days, major parts of Peloponnese, electively ruled by semi-autonomous agas (persons of high rank or social position during the era of the Ottoman Empire [23]), were only nominally part of the Ottoman Empire [24,25].

Although substantial, revived research has been carried out on the content of FGS [7,8,20,26–30], the Peloponnese tour and the collected botanical specimens by Sibthorp in 1795 have received little attention [6] (pp. 164–169) [7] (pp. 144–146). The importance of studying local floras, historical and environmental conditions, distribution records, and species lists has been repeatedly stressed in the literature and awareness of this subject has recently been rising.

Plants collected during a pre-rebellion period (i.e., before the Greek Revolution of 1821) in Peloponnese correspond to "visual evidence" from a particular time (spring 1795), revealing regional plant species pool of this particular area, as well as physical, cultural, and aesthetic values of the natural environment. The main goal of this study was to study plants that have been recorded in Peloponnese in pre-industrial time, as functional components of a biodiversity, which, to the best of our knowledge, has not hitherto been published. A secondary goal of this study was to confirm the above-mentioned plant diversity in Peloponnese during the 21st century.


2. Materials and Methods

This research is based on our survey of written sources, i.e., books, travel reports, letters, diaries, plant catalogues, online published, and printed archives mainly linked to the "Flora Graeca" expedition in Peloponnese (Greece) in 1795 [6,7]. Two copies of FGS, i.e., a copy adorned the National Library of Greece since 1916 and another copy acquired by the Gennadius Library of Athens in 1967 were surveyed. Moreover, we studied the digitized published hand-coloured engravings and the original watercolours, together with the Mediterranean scenes that are freely available and accessible online via Digital Bodleian (https://digital.bodleian.ox.ac.uk/collections/flora-and-fauna-graeca/, accessed on 9 October 2022). In addition, rigorous research of the Florae Graecae Prodromus [30] (hereafter *Prodromus*) housed in the Department of Botany at National and Kapodistrian University of Athens in Greece was carried out; it has to be noted that the *Prodromus* contains indexes of modern Greek vernacular names of plants (Index Nominum Graecorum, pp. 383–391), ancient Greek names of plants quoted in Dioscorides' codex (Index Dioscoridem, pp. 392-404), and scientific names of plants (Index Generum et Synonymorum, pp. 405-422), as well as plant locality data [31]. Furthermore, two books were taken in consideration; the first by Robert Walpole (1781–1856, an English classical scholar with degrees from Trinity College at Cambridge in UK and Merton College at Oxford in UK, who travelled to Greece; his Memoirs including notes of various travelers' diaries, among them Sibthorp's and his companion [32] were first published in 1817) and the second by John Bacon Sawrey Morritt (1772–1843, who immediately after his BA degree from St. John's College at Cambridge in UK, started on the travels described in his book that was first published in 1914; Morritt travelled over a considerable part of Peloponnese in 1795 [33]). A plant taxon was included in the results if there was a record in *Prodromus* stating locality data from Peloponnese. Information linked to the currently accepted plant nomenclature and distribution was derived from the Flora of Greece web (https://portal.cybertaxonomy.org/flora-greece/, accessed on 21 October 2022).

3. Results

3.1. Peloponnese Tour

In Figure 1, the Peloponnese tours followed by Sibthorp and Morritt in 1795 are depicted in red and green lines, respectively. Sibthorp and his colleagues travelled from the island of Zakynthos to the port of Skaffidia (Ileia County); their route included Pyrgos, Lalla, and Tripolis, passing through several villages. The tour continued to Palaiepiscopi, ancient Tegea, and Arcadia. Next, they travelled to Argos and visited ancient Mycenae as well as Napoli di Roamin (Nafplion) in Argolida County. Then, they travelled to Korinthos and Patras, continued in Achaia County through villages, and proceeded to Ileia County again; from there, they followed different directions until they arrived in Kalamata (Messinia County). After Kalamata, they proceeded to Kutchuk Maina, Kardamili, Sparta (Laconia County), and Mystras; from there, they continued to Messini and Petallida and on 25 April 1795 they arrived at Zakynthos and, by ship, returned to England. Morritt's journey started from Kalamata; he visited Kutchukmaina, Palaeocastro and ancient Thuria (Messinia County), Corone, Abia, and Kitreés and, through various villages, went to Kardamili/Cardamyla; he arrived by boat at Platsa and then continued to Oetylos, Marathonisi (ancient Gythium), and Mystras (Laconia County).

Figure 1. Map of Peloponnese (obtained by https://d-maps.com/ accessed on 10 October 2021 and modified accordingly), showing two tours, i.e., by Sibthorp (red line) and Morritt (green line) in 1795. The red symbol A indicates the start of Sibthorp's journey; red lines and arrows indicate locations and directions, respectively. In the insert, the map of Greece (blue) is presented and, in yellow, the Peloponnese peninsula is indicated. The green lines and arrows indicate locations and directions of Morritt's journey. The black-white dot indicates the capital of Greece, Athens (37.9838° N, 23.7275° E); the small black dots indicate the locations of cities: Patras (38.2466° N, 21.7346° E) and Tripolis (37.5101° N, 22.3726° E).

3.2. Plant Diversity in Pre-Industrial Peloponnese

Our study provides evidence for 183 plant taxa grown in pre-industrial Peloponnese, which had been collected during Sibthorp's expedition, drawn and cited in *FGS* (Table 1). Moreover, 21 plants quoted in *Prodromus* and linked to localities of Peloponnese, but neither drawn nor cited in *FGS*, were found (Table 2). Although citations for *prickly pear* [*Opuntia ficus-indica* (L.) Mill.], walnut (*Juglans regia* L.), and mulberries (*Morus nigra* L.) were found in the considered archival research concerning Peloponnese, these plants were neither drawn nor cited in both *FGS* and *Prodromus*. It should be mentioned that the botanist Sir James Edward Smith (1759–1828)—founder and first president of the Linnean Society of London—wrote the texts for the plants attested in *FGS* and *Prodromus* and excluded all species he regarded as not being part of the natural flora.

Table 1. List of plants found in Peloponnese and cited in *Flora Graeca Sibthorpiana* (*FGS*). First column: plant names quoted in the first edition of *FGS* (1806–1840). Second column: numerical register of hand-coloured engravings (plates) of plants cited in the first published edition of *FGS*. Third column: numerical register of the original watercolours by Ferdinand Bauer preserved at Oxford (MS. Sherard 241–245), digitized and electronically accessed via Digital Bodleian; whenever the picture of the original drawing was not digitally available, the digital hand-coloured engraving from the first printed edition is mentioned (Sherard 761 and 764). Fourth column: current scientific name.

Plant Name Cited in FGS	Engraving	Watercoulor	Scientific Name
Phillyrea latifolia	2	761: pl.2	Phillyrea latifolia L.
Olea europaea	3	761: pl.3	Olea europaea L.
Veronica glauca	7	244: f.66	Veronica glauca Sm.
Veronica triphyllos	10	244: f.69	Veronica triphyllos L.
Salvia triloba	17	244: f.158	Salvia fruticosa Mill.
Salvia ringens	18	244: f.159	Salvia ringens Sm.
Salvia sibthorpii	22	244: f.163	Salvia virgata Jacq.
Morina persica	28	761: pl.28	Morina persica L.
Crocus aureus	35	245: f.65	Crocus flavus Weston subsp. flavus
Iris florentina	39	245: f.69	Iris albicans Lange
Iris sisyrinchium	42	245: f.72	Moraea sisyrinchium (L.) Ker-Gawl.
Schoenus mucronatus	43	245: f.112	Cyperus capitatus Vand.
Saccharum ravennae	52	245: f.120	Tripidium ravennae (L.) H. Scholz
Panicum repens	61	245: f.130	Panicum repens L.
Briza minor	74	245: f.142	Briza minor L.
Festuga littoralis	80	245: f.148	Aeluropus littoralis (Gouan) Parl.
Bromus tectorum	82	245: f.150	Bromus tectorum L.
Bromus rubens	83	245: f.151	Bromus rubens L.
Stipa paleacea	86	245: f.154	Stipa capensis Thunb.
Triticum junceum	99	245: f.166	Elytrigia juncea (L.) Nevski
Valantia muralis	137	242: f.202	Valantia muralis L.
Crucianella latifolia	139	242: f.204	Crucianella latifolia L.
Plantago lagopus	144	244: f.182	Plantago lagopus L.
Hypecoum imberbe	156	241: f.30	Hypecoum imberbe Sm.
Anchusa tinctoria	166	244: f.33	Anchusa tinctoria L.
Cerinthe aspera	170	244: f.37	Cerinthe major L.
Cerinthe retorta	171	244: f.38	<i>Cerinthe retorta</i> Sm.
Asperugo procumbens	177	244: f.44	Asperugo procumbens L.
Lycopsis variegata	178	244: f.36	Anchusella variegata (L.) Bigazzi & al.
Primula vulgaris	184	244: f.175	Primula vulgaris Huds.
Lysimachia linum-stellatum	189	244: f.181	Asterolinon linum-stellatum (L.) Duby
Plumbago europaea	191	244: f.196	Plumbago europaea L.
Convolvulus siculus	196	244: f.15	Convolvulus siculus L.
Campanula rupestris	213	243: f.178	<i>Campanula rupestris</i> Sm.
Campanula drabifolia	215	243: f.180	<i>Campanula drabifolia</i> Sm.
Viola gracilis	222	241: f.85	Viola gracilis Sm.
Chironia maritima	237	244: f.9	<i>Centaurium maritimum</i> (L.) Fritsch
Chironia spicata	238	244: f.10	Schenkia spicata (L.) G. Mans.
Vitis vinifera	242	241: f.178	Vitis vinifera L.
Herniaria macrocarpa	252	241: 1.176 242: f.125	Herniaria incana Lam.
Eryngium multifidum	259	242: f.148	Eryngium amethystinum L.
			Bupleurum falcatum subsp. cernuum (Ten
Bupleurum sibthorpianum	264	242: f.153	Arcang.
Echinophora spinosa	265	242: f.154	Echinophora spinosa L.
Echinophora tenuifolia	266	242: f.155	Echinophora tenuifolia L.
Artedia squamata	268	242: f.157	Artedia squamata L.
Peucedanum obtusifolium	277	242: f.175	Selinum silaifolium (Jacq.) Beck
Coriandrum sativum	283	242: f.170	Coriandrum sativum L.
Pastinaca opopanax	288	242: f.176	Opopanax hispidus (Friv.) Griseb.
Linum gallicum	303	241: f.160	Linum trigynum L.

Table 1. Cont.

Plant Name Cited in FGS	Engraving	Watercoulor	Scientific Name
Narcissus tazetta	308	245: f.73	Narcissus tazetta L.
Amaryllis lutea	310	245: f.75	Sternbergia lutea (L.) Spreng. subsp. lutea
Tulipa sibthorpiana	330	245: f.79	Fritillaria sibthorpiana (Sm.) Baker
Ornithogalum arvense	332	245: f.97	Gagea villosa (M. Bieb.) Sweet
Ornithogalum nanum	333	245: f.98	Ornithogalum sibthorpii Greuter
Asphodelus ramosus	334	245: f.99	Asphodelus ramosus L.
	336	245: f.101	
Anthericum graecum	337		Gagea graeca (L.) Irmisch
Asparagus acutifolius		245: f.102	Asparagus acutifolius L.
Hyacinthus romanus	340	245: f.105	Bellevalia romana (L.) Sweet
Frankenia hirsuta	343	241: f.88	Frankenia hirsuta L.
Erica arborea	351	243: f.190	Erica arborea L.
Arbutus unedo	373	243: f.191	Arbutus unedo L.
Arbutus andrachne	374	243: f.192	Arbutus andrachne L.
Saxifraga media	376	242: f.142	Saxifraga sempervivum K. Koch
Saxifraga rotundifolia	377	242: f.143	Saxifraga rotundifolia L.
Saxifraga cymbalaria	378	242: f.144	Saxifraga sibthorpii Boiss.
Dianthus cinnamomeus	400	241: f.110	Dianthus cinnamomeus Sm.
Silene nocturna	408	241: f.118	Silene nocturna L.
Silene behen	416	241: f.126	Silene behen L.
Silene italica	429	241: f.138	Silene italica (L.) Pers.
			Silene bupleuroides subsp. staticifolia (Sm.
Silene staticifolia	434	241: f.144	Chowdhuri
Coderna totuccolarillaria	448	242: f.135	
Sedum tetraphyllum			Sedum cepaea L.
Oxalis corniculata	451	241: f.190	Oxalis corniculata L.
Cerastium pilosum	454	241: f.149	Cerastium illyricum Ard.
Cerastium tomentosum	455	241: f.150	Cerastium candidissimum Correns
Reseda alba	459	245: f.49	Reseda alba L.
Euphorbia spinosa	463	245: f.39	Euphorbia acanthothamnos Boiss.
Euphorbia leiosperma	465	245: f.41	Euphorbia terracina L.
Myrtus communis	475	242: f.120	Myrtus communis L.
Prunus prostrata	478	242: f. 109	Prunus prostrata Labill.
Pyrus aria	479	242: f.118	Sorbus umbellata (Desf.) Fritsch
Papaver somniferum	491	241: f.24	Papaver somniferum L.
Cistus monspeliensis	493	241: f.75	Cistus monspeliensis L.
·			<i>Cistus creticus</i> subsp. <i>eriocephalus</i> (Viv.)
Cistus incanus	494	241: f.74	Greuter & Burdet
Cistus salviifolius	497	241: f.78	Cistus salviifolius L.
Cistus suttatus	498	241: f.79	<i>Tuberaria guttata</i> (L.) Fourr.
Cistus salicifolius	499	241: f.80	Helianthemum salicifolium (L.) Mill.
5			
Delphinium consolida	504	241: f.7	Consolida phrygia (Boiss.) Soó
Anemone coronaria	514	241: f.17	Anemone coronaria L.
Ranunculus millefoliatus	521	241: f.4	Ranunculus millefoliatus Vahl
Satureja juliana	540	244: f.117	Micromeria juliana (L.) Rchb.
Satureja graeca	542	244: f.118	Micromeria graeca (L.) Rchb.
Satureja capitata	544	244: f.115	Thymbra capitata (L.) Cav.
Nepeta nuda	547	244: f.120	Nepeta nuda L.
Lamium maculatum	556	244: f.127	Lamium maculatum L.
Stachys orientalis	560	244: f.146	Stachys obliqua Waldst. & Kit.
Marrubium pseudodictamnus	562	244: f.147	Ballota pseudodictamnus (L.) Benth.
Prasium majus	584	244: f.155	Prasium majus L.
Bartsia latifolia	586	244: f.71	Bellardia latifolia (L.) Cuatrec.
Antirrhinum pelisserianum	591	244: f.76	Linaria pelisseriana (L.) Mill.
Antirrhinum chalepense	592	244: f.77	Linaria chalepensis (L.) Mill.
	592 593	244: 1.77 244: f.78	
Antirrhinum reflexum	373	244.1.70	<i>Linaria triphylla</i> (L.) Mill. <i>Scrophularia canina</i> subsp. <i>bicolor</i> (Sm.)
	598	244: f.83	SCIODINALATIA CALINA SUDSD. DICOLOT (SM.)

Plant Name Cited in FGS	Engraving	Watercoulor	Scientific Name
Scrophularia caesia	604	244: f.89	Scrophularia heterophylla Willd.
Orobanche ramosa	608	244: f.93	Phelipanche mutelii (F.W. Schultz) Pomel
Acanthus spinosus	611	244: f.95	Acanthus spinosus L.
Bunias raphanifolia	612	241: f.33	Rapistrum rugosum (L.) All.
Aubrieta deltoidea	628	241: f.49	Aubrieta deltoidea (L.) DC.
Biscutella columnae	629	241: f.50	Biscutella didyma subsp. apula Nyman
Arabis verna	641	241: f.62	Arabis verna (L.) R. Br.
Erodium romanum	654	241: f.182	Erodium acaule (L.) Bech. & Thell.
Erodium gruinum	656	241: f.184	Erodium gruinum (L.) L'Hér.
Erodium malacoides	658	241: f.186	Erodium malacoides (L.) L'Hér.
Geranium tuberosum	659		Geranium tuberosum L.
		241: f.187	
Alcea ficifolia	663	241: f.166	Alcea biennis Winterl
Hibiscus trionum	666	241: f.169	Hibiscus trionum L.
Polygala venulosa	669	241: f.86	Polygala venulosa Sm.
Ononis antiquorum	675	242: f.11	<i>Ononis spinosa</i> subsp. <i>diacantha</i> (Rchb.) Greuter
Anthyllis tetraphylla	681	242: f.17	<i>Tripodion tetraphyllum</i> (L.) Fourr.
Orobus sessilifolius	692	242: f.27	Lathyrus digitatus (M. Bieb.) Fiori
Lathyrus sativus	695	242: f.31	Lathyrus sativus L.
Lathyrus grandiflorus	698	242: f.34	Lathyrus grandiflorus Sm.
Vicia polyphylla	699	242: f.35	Vicia villosa subsp. varia (Host) Corb.
Vicia melanops	701	242: f.37	Vicia melanops Sm.
Cytisus sessilifolius	705	242: f.41	Podocytisus caramanicus Boiss. & Heldr.
Coronilla emerus	710	242: f.46	Hippocrepis emerus (L.) Lassen
Coronilla securidaca	710	242: f.48	Securigera securidaca (L.) Degen & Dörfl
Ornithopus compressus	714	242: f.50	Ornithopus compressus L.
Ornithopus scorpioides	715	242: f.51	Coronilla scorpioides (L.) W.D.J. Koch
Hippocrepis unisiliquosa	716	242: f.52	Hippocrepis unisiliquosa L.
Hedysarum caput-galli	723	242: f.59	Onobrychis caput-galli (L.) Lam.
Phaca baetica	727	242: f.63	Erophaca baetica (L.) Boiss.
Astragalus incanus	732	242: f.68	Astragalus spruneri Boiss.
Astragalus aristatus	735	242: f.71	<i>Astragalus thracicus</i> subsp. <i>parnassi</i> (Bois: Strid
Biserrula pelecinus	737	242: f.73	Astragalus pelecinus (L.) Barneby
Trifolium cherleri	745	242: f.81	Trifolium cherleri L.
Trifolium rotundifolium	747	764: pl.747	Trigonella rotundifolia (Sm.) Strid
Trifolium stellatum	750	242: f.86	Trifolium stellatum L.
Trifolium clypeatum	751	242: f.87	Trifolium scimitum L.
	752		
Trifolium uniflorum		242: f.88	Trifolium uniflorum L. Tetraconsciences Massach
Lotus tetragonolobus	755	242: f.91	Tetragonolobus purpureus Moench
Lotus edulis	756	242: f.92	Lotus edulis L.
Lotus creticus	758	242: f.94	Lotus creticus L.
Lotus hirsutus	759	242: f.95	Dorycnium hirsutum (L.) Ser.
Trigonella corniculata	761	242: f.97	<i>Trigonella corniculata</i> (L.) L.
Trigonella monspeliaca	765	242: f.101	Medicago monspeliaca (L.) Trautv.
Medicago marina	770	242: f.106	Medicago marina L.
Hypericum olympicum	772	241: f.171	Hypericum olympicum L.
Hypericum hircinum	773	241: f.172	Hypericum hircinum L.
Hypericum crispum	776	241: f.175	Hypericum triquetrifolium Turra
Scorzonera laciniata	788	243: f.144	Podospermum laciniatum (L.) DC.
Sonchus picroides	793	243: f.166	<i>Reichardia picroides</i> (L.) Roth
Crepis rubra	801	243: f.157	Crepis rubra L.
Hedypnois cretica	813	243: f.132	Hedypnois rhagadioloides (L.) F.W. Schmic
Hypochoeris minima	816	243: f.123	<i>Hypochaeris arachnoides</i> Poir.
Lapsana stellata	817	243: f.126	Rhagadiolus stellatus (L.) Gaertn.
Catananche lutea	821	243: f.129	Catananche lutea L.
Carduus glycacanthus			
Carduna almaganthing	826	243: f.96	Jurinea glycacantha DC.

Plant Name Cited in FGS	Engraving	Watercoulor	Scientific Name
Cnicus acarna	827	243: f.94	Picnomon acarna (L.) Cass.
Onopordum elatum	833	243: f.87	Onopordum tauricum Willd.
Cynara humilis	835	243: f.89	Ċynara cardunculus L.
Čarlina lanata	836	243: f.82	Carlina lanata L.
Carlina corymbosa	837	243: f.83	<i>Carlina corymbosa</i> subsp. <i>graeca</i> (Heldr. & Sartori) Nyman
Acarna cancellata	839	243: f.85	Atractylis cancellata L.
Carthamus lanatus	841	243: f.118	Carthamus lanatus L.
<i>Carthamus caeruleus</i>	843	243: f.120	Carthamus caeruleus L.
Staehelina chamaepeuce	847	243: f.90	Ptilostemon chamaepeuce (L.) Less.
Senecio trilobus	869	243: f.65	Senecio trilobus L.
Bellis annua	876	243: f.22	Bellis annua L.
Chrysanthemum coronarium	877	243: f.58	Glebionis coronaria (L.) Spach
Anthemis cota	880	243: f.35	Anthemis altissima L.
Anthemis altissima	881	243: f.36	Anthemis altissima L.
Achillea aegyptiaca	892	243: f.51	Achillea taygetea Boiss. & Heldr.
Centaurea benedicta	906	243: f.114	Centaurea benedicta (L.) L.
Centaurea aegyptiaca	907	243: f.102	Centaurea aegyptiaca Sm.
Centaurea melitensis	909	243: f.104	Centaurea melitensis L.
Centaurea collina	914	243: f.109	Centaurea salonitana Vis.
Centaurea galactites	919	243: f.115	Galactites tomentosus Moench
Filago pygmaea	921	243: f.28	Filago pygmaea L.
Orchis undulatifolia	927	245: f.58	Orchis italica Poir.
Orchis papilionacea	928	245: f.59	Anacamptis papilionacea subsp. aegaea (P. Delforge) L. Lewis & Kreutz
Ophrys fusca	930	245: f.61	<i>Ophrys fusca</i> Link
Pistacia terebinthus	956	242: f.4	Pistacia terebinthus L.
Atriplex halimus	962	245: f.8	Atriplex halimus L.

Table 1. Cont.

In 1795, in western Peloponnese, Salicornia fruticosa L. was observed growing near lake banks, Asphodelus ramosus L. near rivers, and Bromus rubens L. in between cultivated fields. Stands of Phillyrea latifolia L., Erica arborea L., Arbutus unedo L., Pistacia lentiscus L., vernal (spring) Crocus flavus Weston, and primroses (Primula vulgaris Huds.) in bloom—observed in early March 1795—were encountered. In the southern Peloponnese (county of Messinia), black mulberry trees (Morus nigra L.) and prickly pear surrounded many villages. Moreover, they depicted fig trees (Ficus carica L.), grapevines, cotton, grains, corn, olive trees, Euphorbia exigua L., Euphorbia spinosa L., Lolium perenne L., and Orobanche ramosa L. Some regions produced flax and tobacco. In the eastern Peloponnese, Quercus species, as well as corn, grains, grapevines, olive trees, fig trees, mulberry trees, and chestnut trees, had been detected. In the central Peloponnese (county of Arcadia), they visited oaks' forest; moreover, they observed a huge walnut tree (Juglans regia L.), Hyacinthus romanus L., and Hyacinthus spicatus Sm. in bloom. In addition, the presence of floating crystal-wort (Riccia fluitans L.) and Boletus (a genus of mushroom-producing fungi that comprises over 100 species) and the use of truffle were mentioned. Cultivation of pear trees with open blossoms (10 March 1795) and corns grown among the remains of cities and temples of the ancient Greek territories were detected.

John Sibthorp arrived in Peloponnese bearing a mode of seeing, endowing the professorship of "Agriculture and Rural Economy" in the University of Oxford, thus the state of the agriculture in Peloponnese attracted his attention in 1795; the cultivation of corn (*Zea mays* L.), cotton (*Gossypium hirsutum* L.), millet (*Panicum repens* L.), tobacco (*Nicotiana tabacum* L.), and wheat (*Triticum junceum* L. and *Aegilops comosa* Sm.) was detected. **Table 2.** List of plants found in Peloponnese and cited in *Prodromus*. First column: plant names alphabetically presented according to the name given in archives, which are quoted in *Prodromus*, but not referred in *FGS*. Second column: numerical register of volume and page, respectively, in *Prodromus*. Third column: current scientific name.

Plant Name Cited in Prodromus	Volume, Page	Scientific Name
Castanea sativa	2, 242	Castanea sativa Mill.
Corylus spp. (hazel)	2,244	Corylus avellana L., C. colurna L.
Euphorbia apios	1, 326	<i>Euphorbia apios</i> L.
Ficus carica	2,268	Ficus carica L.
Fraxinella	1, 271	Dictamnus albus L.
Globularia alypum	1,78	Globularia alypum L.
Leontice altaica	1,234	Gymnospermium peloponnesiacum (Phitos) Strid
Leontice chrysogonum	1,234	Bongardia chrysogonum (L.) Spach
Leontice leontopetalum	1,234	Leontice leontopetalum L.
Lolium	1,70	Lolium perenne L., L. subulatum Vis., L. temulentum L.
Imperatoria	1, 199	Imperatoria ostruthium L.
Loranthus	1, 242	Loranthus europaeus Jacq.
Urtica	2,233	Urtica dioica L., U. pilulifera L., Ū. urens L.
<i>Quercus</i> spp.	2, 239	Quercus aegilops L., Q. coccifera L., Q. ilex L., Q. pubescens Willd.
Pinus	2,242	Pinus pinea L.
<i>Rubus</i> spp.	1, 349	Rubus sanctus Schreb., R. canescens DC.
Salicornia	1, 1	Salicornia fruticosa L., S. perennans Willd.
Satyrium	2,215	Satyrium L., Orchis sp.
Scilla	1, 237	Scilla nivalis Boiss., S. messeniaca Boiss., S. pneumonanthe Speta
Viola	1, 145	Viola scorpiuroides Coss., Viola graeca (W. Becker) Halácsy
Nymphaea	1,360–361	Nymphaea alba L.

4. Discussion

Professor John Sibthorp and his colleagues visited Greek territories twice in preindustrial time, i.e., 1786–1787 and 1794–1795, and collected wild plants grown under natural conditions [7,16,34]. It was an outstanding achievement, considering the duration, the collections of specimens of plants from which "a legacy of 2462 pressed specimens are still preserved in the Sibthorpian Herbarium" [35] (Figure 2), and the geographical coverage, during the above-mentioned botanical expeditions. Moreover, a number of specimens found in Kew are of considerable importance as supplementing Sibthorp's collection at Oxford [36]; these specimens have been published [36] according to the sequence of plants cited in *Prodromus* [30].

Figure 2. Dried specimens of plants in the Sibthorpian herbarium at the University of Oxford, associated with the Flora Graeca expeditions and collected from the eastern Mediterranean in the 18th century. Courtesy of Stephen Harris, modified by Sophia Rhizopoulou.

The revived interest in *FGS* is partially due to recent publications [22,28,37–39], but mainly to biodiversity issues raised under the threat of climate change, which gives another dimension to the whole achievement. Moreover, exhibitions dedicated to the concept and the content of *Flora Graeca Sibthorpiana* contributed to public awareness, e.g., in Oxford entitled "Painting by numbers" (Bodleian Library, 29 – 9 July 2017, https://treasures.bodleian.ox.ac.uk/treasures/flora-graeca/ accessed on 9 May 2017) and Athens entitled "Flora Graeca" (Gennadius Library, 8 March–4 July 2016, https://www.ascsa.edu.gr/ events/details/flora-graeca-exhibition, accessed on 8 March 2016).

In Table 1, we compiled a list of 183 wild plants cited in FGS and located in Peloponnese, which is indicative of the biodiversity, environmental physiology, phenology, and short flowering season in response to drought conditions, i.e., during the period of spring rainfall and the concomitantly active pollinators [40,41]. The later generations of plant biologists studied plant species grown in geographic locations visited by Sibthorp and his companion in Peloponnese, increasing the overall knowledge about distribution, ecophysiology, and taxonomy of plants quoted in FGS and Prodromus [42–49]. The mediterranean-type climate is characterized by a marked seasonality, typified by the alternation of a hot and dry period with a cold and wet period. For example, Sibthorp observed open flowers of Anemone coronaria L., Oxalis corniculata L., and Asphodelus ramosus L. on 27 February 1795, as well as of Crocus flavus Weston in early spring (cited as Crocus aureus in FGS and Crocus vernus latifolius aureus in Prodromus, vol. I, pp. 24–25); such observations are supported by recent publications [5,50,51]. Moreover, in the 21st century, it is known that seasonal blossom is related to adaptive floral traits; for example, the study of petals revealed a surface nano-sculpture that declines water droplet adhesion and enhances the water repellence of these fragile floral tissues, which are exposed to the rainy conditions of the early spring flowering season [52–54]. In *Anemone coronaria* L., the temperature plays a critical role in the onset of dormancy [55]. Other species possess deeply rooted systems that enhance drought resistance (e.g., Myrtus communis L., Pistacia lentiscus L., and Quercus species). In addition, recent research revealed leaf functional traits linked to hydrophobicity and water status, highlighting species' responses to drought conditions [56–58]; this may be critical for resilience in the face of increasing drought stress.

Moreover, Sibthorp noticed that oaks in Peloponnese were frequently infested with the mistletoe *Loranthus europaeus* Jacq. [59–61]; it is worth mentioning that he regarded the deciduous, yellow *Loranthus europaeus* Jacq. as the "true mistletoe of the ancients" [6] (p. 165).

Sibthorp and his companion visited a mountainy area, barren and stony beyond conception; it was hard work botanizing under harsh field conditions. The earth, washed by the rains and torrents from the higher parts, was supported on a plethora of terraces cultivated with wheat, cotton, maize, and millet, while olives and mulberry trees seemed to grow out of the rocky substrate itself. However, carpets of geophytes and numerous annual plants produced a spring flowering distinctive to the human eye. The results from this tour in the late 1790s, in pre-industrial landscapes, barely resembled the area we see today in Peloponnese, and brought information about numerous unknown to science (those days) wild plants, oak woodlands, pine forests, crops, cultivated areas, and arable lands of the monasteries [62]. Nowadays, several places of Peloponnese that Sibthorp visited in 1795 are included in the European network Natura 2000—i.e., the cornerstone of European Union nature conservation policy—of designated sites (https://eunis.eea.europa.eu/sites, accessed on 18 October 2022) relevant for flora and habitat protection [63–65], e.g., mountainy landscapes such as Parnonas: GR2520006, Mainalo (Arcadia): GR2520001, and Taygetos: GR2550006, as well as Folois plateau: GR2330002 and Olympia: GR2330004. Other progression was also recorded; that is, information linked to the current distribution of the considered plants, confirmed via the Flora of Greece web, contributed to our knowledge about natural stands of wild plants.

According to our study, on one hand, among the plants found in Peloponnese in 1795 and cited in *FGS* and *Prodromus*, there are species either widely distributed or grown in restricted areas, e.g., *Achillea taygetea* Boiss. & Heldr., *Erophaca baetica* Boiss., *Saxifraga sibthorpii* Boiss., and *Scilla messeniaca* Boiss. On the other hand, *Zea mays* L., originated from

the Americas and found among the few cultivated species in isolated valleys in Peloponnese in pre-industrial time, might be attributed to the Venetian occupation of Peloponnese (1688–1715); during that period, when the area was dependent on the European market, plants might have been a product of cross-cultural communication between the conquerors and conquered [66–70].

Sibthorp's expedition in Peloponnese contributed to our understanding of botany in the field and revealed the diversity of plants grown in their habitats, in pre-industrial time. Historical time was linked to a gradually known plant diversity, as locations were explored and knowledge about the natural fertility of the land increased. However, anthropogenic pressure maintained by human activities, grazing, and fires in Peloponnese added to environmental stresses and caused profound transformation in the natural landscape, reducing the distribution of indigenous plants and enhancing a widespread concern about the extent of habitat and species loss [71–76]. This means that whatever effort can be made to study, maintain, and protect the diversity of ecosystems in this region is closely connected to a sustainable future, via the preservation of numerous plant taxa cited in the monumental FGS and Prodromus. Nowadays, Oxford Botanic Garden in UK (where visitors can enjoy the full sensory experience of walking through an aromatic Mediterranean landscape while learning about the work of Sibthorp and Bauer and its important botanical and horticultural legacy [35]) and Diomedes' Botanic Garden in Greece (due to the fact that administration of Diomedes' Botanic Garden is directly linked to the staff of the National and Kapodistrian University of Athens in Greece, this Garden has also been used for relevant, educational programs [37]) contain living collections of Mediterranean plants cited in FGS, which may be perceived as celebrations for Flora Graeca expeditions and FGS [35,37]. However, a larger number of plants quoted in FGS and Prodromus may be introduced and cultivated in the above-mentioned botanic gardens and/or the network of botanic gardens in Greece, in order to detect the diversity and the life-cycle of wild plants within the context of the seasons, floral colours in Mediterranean ecosystems, and collection and deposition of seeds in seed-banks. As such, botanic gardens can be used as common gardens, where researchers can conduct unmatched comparative research studies of plant ecophysiology, morphology, anatomy, and responses to climate change [77,78]. It is worth mentioning that Sibthorp introduced new species into English horticulture; moreover, he returned to Oxford from his eastern Mediterranean explorations with seeds, bulbs, and corms for the Botanic Garden, but few details of these collections have survived, and the plants and any knowledge about their propagation have been lost through many routes [7] (p. 180) and neglected [79] (p. 102).

This work provides a novel and valuable insight into the development of early plant environmental biology and is an important element of timelessness aspects of botany [80,81]. The study of plant diversity in Peloponnese peninsula, during the pre-rebellion period in Greece, tracing long-term changes in the region, is also a reminder that nature is often a repository at which nations look when crafting their identity.

5. Conclusions

The interest in archival material has been revived on account of research for a biodiversity threatened by climatic change. In this context, our research gives prominence to approximately 200 wild plant taxa found in Peloponnese (Greece)—most of them quoted in the magnificent edition *Flora Graeca Sibthorpiana* of the 19th century—and few cultivated introduced plants, all grown under ambient conditions and exposed to environmental stresses of the eastern Mediterranean during the pre-rebellion period, representing plant environmental issues in pre-industrial time, which have not hitherto been published.

Author Contributions: Conceptualization, S.R.; methodology, C.C., S.P., F.K., M.M. and S.R.; validation, C.C., S.P., F.K., M.M. and S.R.; investigation, C.C., S.P., F.K. and M.M.; resources, S.R.; data curation, C.C., S.P., F.K., M.M. and S.R.; writing—original draft preparation, C.C., S.P., F.K. and S.R.; writing—review and editing, C.C. and S.R.; supervision, S.R.; project administration, S.R.; funding acquisition, C.C., S.P. and F.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was implemented in the framework of the project entitled "Contribution of the National and Kapodistrian University of Athens to the research for the study of the history and memory of the Revolution of 1821", and funded by the National and Kapodistrian University of Athens, grant number 16614.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available from the authors upon request.

Acknowledgments: We would like to thank Stephen Harris (Department of Biology, University of Oxford, UK) for early discussions on the subject.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Raven, J.E. Plants and Plant Lore in Ancient Greece; Leopard's Head: Oxford, UK, 2000.
- 2. Rhizopoulou, S. Symbolic plant (s) of the Olympic Games. J. Exp. Bot. 2004, 55, 1601–1606. [CrossRef]
- 3. Rhizopoulou, S.; Marmarinos, M. Plants as an element of cultural heritage: What Oedipus does not see when he arrives at Colonus. *BIO* **2004**, *11*, 48–50.
- 4. Day, J. Botany meets archaeology: People and plants in the past. J. Exp. Bot. 2013, 64, 5805–5816. [CrossRef]
- D'Agata, C.; Rhizopoulou, S. Cretan and Greek plants in Italian Renaissance gardens cited in archives. *Plant Biosyst.* 2022, 156, 598–605. [CrossRef]
- 6. Lack, H.W.; Mabberley, D.J. *The Flora Graeca Story, Sibthorp, Bauer and Hawkins in the Levant*; Oxford University Press: Oxford, UK, 1999.
- 7. Harris, S. The magnificent Flora Graeca; Bodleian Library: Oxford, UK, 2007.
- 8. Asdrachas, S. Primitive Revolution, Amatoloi and Klephts (18–19th c.); Hellenic Open University: Athens, Greece, 2019.
- 9. Stearn, W.T. From Theophrastus and Dioscorides to Sibthorp and Smith: The background and origin of the Flora Graeca. *Biol. J. Linn. Soc.* **1976**, *8*, 285–298. [CrossRef]
- 10. Negbi, M. Theophrastus on geophytes. Bot. J. Linn. Soc. 1989, 100, 15–43. [CrossRef]
- 11. Scarborough, J. Theophrastus on herbals and herbal remedies. *J. His. Biol.* **1978**, *11*, 353–385. Available online: https://www.jstor. org/stable/4330714 (accessed on 7 September 2022). [CrossRef]
- 12. Weiher, E.; Van Der Werf, A.; Thompson, K.; Roderick, M.; Garnier, E.; Eriksson, O. Challenging Theophrastus: A common core list of plant traits for functional ecology. *J. Veg. Sci.* **1999**, *10*, 609–620. [CrossRef]
- O'Neill, Y.V.; Infusino, M.; Medicina Antiqua. Codex Vindobonensis 93. Vienna, Österreichische National-bibliothek. Bull. Hist. Med. 2001, 75, 558–560. [CrossRef]
- 14. Irwin, M.E. Flower power in Medicine and Magic: Theophrastus' response to the rootcutters. *Mouseion* **2006**, *6*, 425–437. [CrossRef]
- 15. Greuter, W. The early botanical exploration of Greece. In *Progress in Botanical Research*; Tsekos, I., Moustakas, M., Eds.; Springer: Dordrecht, The Netherlands, 1998; pp. 9–20.
- 16. Krimbas, C.B. HW Lack with DJ Mabberley, The Flora Graeca Story—Sibthorp, Bauer and Hawkins in the Levant. *Hist. Rev.* 2004, *1*, 275–285.
- 17. Nickelsen, K. Draughtsmen, botanists and nature: Constructing eighteenth-century botanical illustrations. *Stud. Hist. Philos. Biol. Biomed. Sci.* 2006, *37*, 1–25. [CrossRef]
- 18. Riedl-Dorn, C.; Riedl, M. Ferdinand Bauer or Johann and Joseph Knapp? A rectification. Gard. Bull. 2019, 71, 123–142. [CrossRef]
- 19. Lack, H.W. The Sibthorpian herbarium at Oxford—guidelines for its use. Taxon 1997, 46, 253–263. [CrossRef]
- 20. Harris, S.A. Sibthorp, Bauer and the Flora Graeca. OPS 2008, 15, 7.
- 21. Harlan, D. Travel, Pictures, and a Victorian Gentleman in Greece. *Hesperia* 2009, 78, 421–453. Available online: https://www.jstor. org/stable/25622703 (accessed on 15 September 2022). [CrossRef]
- 22. Strid, A. The botanical exploration of Greece. *Plant Syst. Evol.* **2020**, 306, 1–23. [CrossRef]
- 23. Kostantaras, D.J. Christian elites of the Peloponnese and the Ottoman state 1715–1821. Eur. Hist. Q. 2013, 43, 628–656. [CrossRef]
- 24. Andrews, K. Castles of the Morea; American School of Classical Studies at Athens: Princeton, NJ, USA, 2006.
- 25. Gündoğdu, B. Ottoman Constructions of Morea Rebellion, 1770s: A Comprehensive Study for Attitudes to the Greek Uprising. Unpublished. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2012.
- 26. Wise, R. A naturalist's paradise. *New Sci.* **1989**, 123, 68. [CrossRef]
- 27. Mills, R. Flora Graeca online. *OPS* **2008**, *15*, 8.
- 28. Lack, H.W. Flora Graeca on the European continent. *Gard. Bull.* 2019, 71, 109–122. [CrossRef]
- 29. Sibthorp, J.; Smith, J.E. *Flora Graeca: Sive Plantarum Rariorum Historia, Quas in Provinciis Aut Insulis Graeciae*; Richard Taylor: London, UK, 1806–1840; ten volumes.
- 30. Sibthorp, J.; Smith, J.E. Flora Graeca Prodromus; Richard Taylor: London, UK, 1806, 1813; Volume 2.

- 31. Stearn, W.T. Sibthorp, Smith, the Flora Graeca and the Florae Graecae Prodromus. Taxon 1967, 16, 168–178. [CrossRef]
- 32. Walpole, R. Memoirs Relating to European and Asiatic Turkey: And Other Countries of the East; Cambridge University Press: Cambridge, UK, 2012.
- 33. Morritt, J.B. The Letters of John BS Morritt of Rokeby: Descriptive of Journeys in Europe and Asia Minor in the Years 1794–1796; Cambridge University Press: Cambridge, UK, 2011.
- 34. Lack, H.W. Lilac and horse-chestnut: Discovery and rediscovery. *Curtis's Bot. Mag.* 2000, 17, 109–141. Available online: https://www.jstor.org/stable/45065430 (accessed on 10 October 2022). [CrossRef]
- 35. Thorogood, C.J. The University of Oxford Botanic Garden: Sharing the scientific wonder and importance of plants with the world. *Curtis's Bot. Mag.* **2021**, *38*, 438–450. [CrossRef]
- 36. Turrill, W.B. Revision of Sibthorp's plants at Kew. Bull. Misc. Inform. (R. Bot. Gard. Kew) 1926, 3, 120–128. [CrossRef]
- 37. Rhizopoulou, S.; Lykos, A.; Delipetrou, P.; Vallianatou, I. Living Collection of Flora Graeca Sibthorpiana. *Sibbaldia* 2012, 10, 171–196. [CrossRef]
- Mulholland, R. Ferdinand Bauer's Flora Graeca colour code. In Technology and Practice: Studying Eighteenth Century Paintings and Works of Art oOn Paper; Evens, H., Muir, K., Eds.; Archetype: London, UK, 2015; pp. 153–163.
- Zografidis, A. Resurrection and typification of *Verbascum auriculatum* (Scrophulariaceae), a long-disused name in Flora Graeca Sibthorpiana. *Phytotaxa* 2018, 361, 233–243. [CrossRef]
- 40. Petanidou, T.; Lamborn, E. A land for flowers and bees: Studying pollination ecology in Mediterranean communities. *Plant Biosyst.* **2005**, *139*, 279–294. [CrossRef]
- 41. Rhizopoulou, S.; Pantazi, H. Constraints on floral water status of successively blossoming Mediterranean plants under natural conditions. *Acta Bot. Gallica* **2015**, *162*, 97–102. [CrossRef]
- 42. Giannopoulos, K.; Tan, K.; Vold, G. Contributions to the bulb flora of Ilias (NW Peloponnese, Greece): Amaryllidaceae, Araceae and Aristolochiaceae. *Phytol. Balcan.* **2021**, *27*, 97–106.
- Atherden, M.; Hall, J.; Wright, J.C. A pollen diagram from the northeast Peloponnese, Greece: Implications for vegetation history and archaeology. *Holocene* 1993, 3, 351–356. [CrossRef]
- Strid, A. Lost and found in the Greek flora. In Proceedings of the 3rd Global Botanic Gardens Congress, Wuhan, China, 16–20 April 2007; pp. 1–5.
- 45. Trigas, P.; Tsiftsis, S.; Tsiripidis, I.; Iatrou, G. Distribution patterns and conservation perspectives of the endemic flora of Peloponnese (Greece). *Folia Geobot.* **2012**, *47*, 421–439. [CrossRef]
- 46. Allen, H. Mediterranean Ecogeography; Routledge: London, UK, 2014.
- 47. Meletiou-Christou, M.S.; Rhizopoulou, S. Leaf functional traits of four evergreen species growing in Mediterranean environmental conditions. *Acta Physiol. Plant.* 2017, *39*, 1–13. [CrossRef]
- 48. Chimona, C.; Rhizopoulou, S. Water economy through matching plant root elongation to Mediterranean landscapes. *World J. Res. Rev.* **2017**, *5*, 22–24. [CrossRef]
- Cheminal, A.; Kokkoris, I.P.; Zotos, A.; Strid, A.; Dimopoulos, P. Assessing the Ecosystem Services Potential of Endemic Floras: A Systematic Review on the Greek Endemics of Peloponnese. *Sustainability* 2022, 14, 5926. [CrossRef]
- Pastor-Férriz, T.; De-los-Mozos-Pascual, M.; Renau-Morata, B.; Nebauer, S.G.; Sanchis, E.; Busconi, M.; Fernádez, J.-A.; Kamenetsky, R.; Molina, R.V. Ongoing evolution in the genus *Crocus*: Diversity of flowering strategies on the way to hysteranthy. *Plants* 2021, 10, 477. [CrossRef]
- 51. Tan, K.; Giannopoulos, K. Contributions to the bulb flora of Ilias (NW Peloponnese, Greece): Iridaceae. *Phytol. Balcan.* 2022, 28, 85–101. [CrossRef]
- 52. Argiropoulos, A.; Rhizopoulou, S. Micromorphology of the petals of the invasive weed *Oxalis pes-caprae*. *Weed Biol. Manag.* **2012**, 12, 47–52. [CrossRef]
- 53. Gkikas, D.; Argiropoulos, A.; Rhizopoulou, S. Epidermal focusing of light and modelling of reflectance in floral-petals with conically shaped epidermal cells. *Flora* **2015**, *212*, 38–45. [CrossRef]
- 54. Chimona, C.; Koukos, D.; Meletiou-Christou, M.S.; Spanakis, E.; Argiropoulos, A.; Rhizopoulou, S. Functional traits of floral and leaf surfaces of the early spring flowering *Asphodelus ramosus* in the Mediterranean region. *Flora* **2018**, *248*, 10–21. [CrossRef]
- 55. Ben-Hod, G.; Kigel, J.; Steinitz, B. Dormancy and flowering in *Anemone coronaria* L. as affected by photoperiod and temperature. *Ann. Bot.* **1988**, *61*, 623–633. [CrossRef]
- 56. Koukos, D.; Meletiou-Christou, M.S.; Rhizopoulou, S. Leaf surface wettability and fatty acid composition of *Arbutus unedo* and *Arbutus andrachne* grown under ambient conditions in a natural macchia. *Acta Bot. Gallica* **2015**, *162*, 225–232. [CrossRef]
- 57. Bertsouklis, K.F.; Papafotiou, M. Morphometric and molecular analysis of the three *Arbutus* species of Greece. *Not. Bot. Horti Agrobot.* **2016**, *44*, 423–430. [CrossRef]
- 58. Karatassiou, M.; Karaiskou, P.; Verykouki, E.; Rhizopoulou, S. Hydraulic Response of Deciduous and Evergreen Broadleaved Shrubs, Grown on Olympus Mountain in Greece, to Vapour Pressure Deficit. *Plants* **2022**, *11*, 1013. [CrossRef]
- 59. Glatzel, G. Mineral nutrition and water relations of hemiparasitic mistletoes: A question of partitioning. Experiments with *Loranthus europaeus* on *Quercus petraea* and *Quercus robur*. *Oecologia* **1983**, *53*, 193–201. [CrossRef]
- Dimopoulos, P.; Bergmeier, E. Wood pasture in an ancient submediterranean oak forest (Peloponnese, Greece). *Ecol. Mediterr.* 2004, 30, 137–146. [CrossRef]

- 61. Katsarou, A.; Rhizopoulou, S.; Kefalas, P. Antioxidant potential of the aerial tissues of the mistletoe *Loranthus europaeus* Jacq. *Rec. Nat. Prod.* **2012**, *6*, 394–397.
- 62. Parveva, S. Agrarian land and harvest in South-West Peloponnese in the Early 18th Century. *Étud. Balk.* 2003, 1, 83–123.
- 63. Natura 2000. Available online: https://natura2000.eea.europa.eu/ (accessed on 24 October 2022).
- 64. Evans, D. Building the European union's Natura 2000 network. Nat. Conserv. 2012, 1, 11–26. [CrossRef]
- 65. Spiliopoulou, K.; Dimitrakopoulos, P.G.; Brooks, T.M.; Kelaidi, G.; Paragamian, K.; Kati, V.; Oikonomou, A.; Vavylis, D.; Trigas, P.; Lymberakis, P.; et al. The Natura 2000 network and the ranges of threatened species in Greece. *Biodivers. Conserv.* 2021, 30, 945–961. [CrossRef]
- 66. Harris, S. What Have Plants ever Done for Us? Bodleian Library, University of Oxford: Oxford, UK, 2015; pp. 155–159.
- 67. Stouraiti, A. Colonial encounters, local knowledge and the making of the cartographic archive in the Venetian Peloponnese. *Eur. Rev. Hist./Rev.* **2012**, *19*, 491–514. [CrossRef]
- 68. Goodman, M.M.; Galinat, W.C. The history and evolution of maize. Crit. Rev. Plant Sci. 1988, 7, 197–220. [CrossRef]
- 69. Janick, J.; Caneva, G. The first images of maize in Europe. *Maydica* **2005**, *50*, 71–80.
- Ongaro, G. Maize diffusion in the Republic of Venice: The case of the Province of Vicenza (sixteenth-eighteenth century). In *Maize to the People! Cultivation, Consumption and Trade in the North-Eastern Mediterranean (Sixteenth-Nineteenth Century)*; Mocarelli, L., Panjek, A., Eds.; University of Primorska Press: Koper, Slovenia, 2020; pp. 25–46.
- 71. Jones-Walters, L.; Čivić, K.K. Wilderness and biodiversity. J. Nat. Conserv. 2010, 18, 338–339. [CrossRef]
- 72. Magurran, A.E.; Dornelas, M. Biological diversity in a changing world. Philos. Trans. R. Soc. B 2010, 365, 3593–3597. [CrossRef]
- 73. Paich, S.D. Where olive, lemon and laurel trees grow: A diachronic examination of cultural similarities under different names in greater Mediterranean history. *J. Intercult. Stud.* **2010**, *31*, 313–328. [CrossRef]
- 74. Rhizopoulou, S. Changing Mediterranean environment: Irrefutable evidence from pre-industrial, unpublished scenes contemporary with a mission (1786–1787) in the Levant. *Global Nest J.* **2012**, *14*, 516–524.
- Paraskevopoulou, A.T.; Nektarios, P.A.; Kotsiris, G. Post-fire attitudes and perceptions of people towards the landscape character and development in the rural Peloponnese, a case study of the traditional village of Leontari, Arcadia, Greece. J. Environ. Manag. 2019, 241, 567–574. [CrossRef]
- 76. Gemitzi, A.; Koutsias, N. Assessment of properties of vegetation phenology in fire-affected areas from 2000 to 2015 in the Peloponnese, Greece. *RSASE* 2021, 23, 100535. [CrossRef]
- 77. Krishnan, S.; Novy, A. The role of botanic gardens in the twenty-first century. CABI Rev. 2016, 11, 1–10. [CrossRef]
- Primack, R.B.; Ellwood, E.R.; Gallinat, A.S.; Miller-Rushing, A.J. The growing and vital role of botanical gardens in climate change research. *New Phytol.* 2021, 231, 917–932. [CrossRef]
- 79. Harris, S.A. Oxford Botanic Garden & Arboretum. A Brief History; Bodleian Library: Oxford, UK, 2017.
- Harris, S.A. Sibthorp's Flora Graeca expedition and teaching Linnaean botany in Oxford physic garden. *Curtis's Bot. Mag.* 2021, 38, 451–471. [CrossRef]
- Rhizopoulou, S.; Koukos, D.; Rhizopoulou, A.E. The botanical content of *Hypnerotomachia Poliphili* revisited. *Bot. Lett.* 2022, 1–6. [CrossRef]