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Abstract: Recently, due to the price fluctuation and supply instability of rare earth mineral resources,
there has been a lot of development of electric motors using non-rare-earth permanent magnets. As a
result, motors using Dy-free permanent magnets and ferrite permanent magnets are being researched,
and, in particular, ferrite permanent magnets often utilize spoke-type structures, which are magnetic
flux concentrators, to compensate for their low coercivity and residual flux density. However, in
general, spoke-type PMSMs do not use much reluctance torque, so double-layer spoke-type PMSMs
have been studied for their more efficient design. Unlike general spoke-type PMSMs, double-layer
spoke-type PMSMs can utilize high reluctance torque by increasing the difference between d-axis and
q-axis reluctance. However, as the difference in magnetic resistance increases, vibration and noise are
generated, which adversely affects the mechanical part and shortens the life of the motor. Although
this problem seemed to be solved by applying core skew in the previous study, it was confirmed
that the axial force caused by the axial leakage flux occurred in the maximum torque per ampere
(MTPA) control section and the torque ripple was increased. Therefore, in this paper, a model that
can apply symmetrical core skew and reduce axial force is proposed. First, the causes of the axial
force generated in previous studies were analyzed. Based on the analysis of these causes, a new
symmetrical core skew structure was proposed, and its justification was verified through FEA.

Keywords: axial force; core skew; spoke-type PMSM; torque ripple

1. Introduction
1.1. Summary

Due to the unstable supply of rare earth minerals, the research and development
of spoke-type permanent magnet synchronous motors (PMSMs) using ferrite permanent
magnets has been actively pursued [1,2]. However, spoke-type motors suffer from the
disadvantage of not being able to use large amounts of reluctance torque. Double-layer
spoke-type PMSMs were designed to compensate for this.

This double-layer spoke-type PMSM can concentrate magnetic flux using a ferrite
permanent magnet instead of a rare-earth-type permanent magnet similar to a conventional
spoke-type motor. In addition, the conventional spoke-type permanent magnet motor does
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not utilize the reluctance torque properly because the d-axis and q-axis magnetoresistance
are not large, but the double-layer spoke-type PMSM divides each permanent magnet into
two. By inserting an iron core to reduce the q-axis magnetoresistance, the difference with
the d-axis magnetoresistance is increased, and a high reluctance torque can be used [3].

However, as the magnetoresistance difference between the d-axis and the q-axis
increases, factors such as cogging torque and torque ripple increase, which adversely
affects the operation of the motor [4–6]. This soon causes performance degradation, such
as vibration, noise, and poor position and speed control. In order to compensate for this,
in general, the method of applying a skew structure is most widely used [7,8], but it is
also difficult to manufacture and sometimes increases the torque ripple, so it is not a
good solution.

To solve this problem, a new concept of skew, core skew, was applied in [9]. In the case
of conventional skew, step skew is usually applied during the design and manufacturing
steps, but in this case, even when inserting permanent magnets in the axial direction, the
permanent magnets are divided by the number of steps, which is not good for manufac-
turability. The core skew proposed in [9] is shown in Figure 1. Core skew means that
permanent magnets are inserted as a single bar-type without dividing them, and only the
shape of the part adjacent to the air gap of the rotor core is changed to give the same effect
as if the air gap flux density was skewed. As a result of this effect, cogging torque, no-load
THD, and torque ripple in the high-speed operation area are significantly reduced, and
manufacturability is more favorable than with the existing skew method.
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Figure 1. Previously proposed Core Skew model.

However, it was confirmed that this core skew also increases the torque ripple in the
low-speed operation area. There are many factors that affect the torque ripple, but as shown
in Figure 2, it can be confirmed that the axial force has some effect on the torque ripple. In
addition, the axial force continuously transmits a mechanical load to the bearing connected
to the motor, causing vibration and noise and shortening the life of the motor [10]. Since
the target model of this paper uses sensorless control, the torque ripple that affects the back
electromotive force used for detection must be reduced.

In this paper, the cause of the increased torque ripple at the low-speed operation point
was analyzed as the axial force shown in Figure 2; to reduce it, a symmetrical core skew
shape was proposed, the optimal design was carried out in two dimensions using the finite
element analysis (FEA) program Maxwell, and then it was verified through 3D FEA.
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1.2. Conventional Model Specifications

Washing machine motors, the target model for this paper, are categorized into two types:
belt-type motors and direct-drive types. Direct-drive motors are typically mounted on
the back of drum-type washing machines and operate directly, while belt-type motors
operate by connecting a belt to the shaft of the motor. Belt-type motors are used in the most
common types of washing machines, and they are the ones that are the subject of this thesis.
Model specifications are shown in Figure 3 and Table 1.
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Table 1. Specifications of conventional model.

Parameter Value Unit

Stator Outer Diameter 134 mm
Rotor Outer Diameter 60 mm

Air Gap 0.75 mm
Stack Length 46 mm
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2. Equation and Analysis of Axial Force
2.1. Equation for Axial Force

The torque mechanism of the permanent magnet synchronous motor is generated by
Equation (1).

d
→
F =

→
J ×

→
B (1)

In the above equation, d
→
F is the force density,

→
J is the current density,

→
B is the the

magnetic flux density, and the force can be obtained by integrating d
→
F with the volume.

However, in general, since the permanent magnet synchronous motor has a cylindrical
shape, it is necessary to obtain the force of each direction component with respect to the
cylindrical coordinate system. In the electromagnetic field analysis based on finite element
analysis (FEA), the torque equation is calculated using the Maxwell stress tensor method
and is defined by Equations (2) and (3) [11].

→
F =

∫
V
∇·Tdv =

∮
S

T·→n ds (2)

Tij =
BiBj

µ0
− δij

→
B

2

2µ0
(3)

T expressed in the above equation is the Maxwell stress tensor; B is the magnetic flux
density; µ0 is the magnetic permeability of the vacuum; i and j are the components of the
coordinate system; and δij is Kronecker delta, which has a value of 1 when i and j are the
same and, if it is a different value, i and j become 0. Since this paper deals with spoke-type
PMSMs, they will be dealt with in a cylindrical coordinate system. The Maxwell stress
tensor matrix in a cylindrical coordinate system is shown in Equation (4).

T =
1

µ0

∣∣∣∣∣∣∣∣
B2

r −B2
θ−B2

z
2 BrBθ BrBz

Bθ Br
B2

θ−B2
r −B2

z
2 Bθ Bz

BzBr BzBθ
B2

z−B2
r −B2

θ
2

∣∣∣∣∣∣∣∣ (4)

Fr =
1

µ0

∫
S

BrBzds (5)

Fθ =
1

µ0

∫
S

Bθ Bzds (6)

Fz =
1

µ0

∫
S

B2
z − B2

r − B2
θ

2
ds (7)

Thus, Equations (5)–(7) express the force using a cylindrical coordinate system. In the
above formula, r, θ, and z are the direction components in the radial, tangential, and axial
directions, respectively. In general, the torque is calculated by Equation (6), which is the
force of the tangential component, and the axial force is calculated by Equation (7).

2.2. Analysis of the Cause of Core Skew

Figure 4 shows the conventional model without core skew and the model with core
skew, and Table 2 shows the comparison of torque ripple and axial force.

First, the axial force is generated by Lorentz’s law as the leakage magnetic flux in
the axial direction is linked to the end turn of the stator. At this time, since the core skew
model has an asymmetric shape, the leakage magnetic flux in the axial direction is also
asymmetrically linked to the end turn and axial force is generated as shown in Table 2.

Figure 5 shows the axial force waveforms of the conventional model and the core skew
model under a washing load (580 rpm). According to the research results of [12], in the
case of the conventional model, the axial force converges to 0 because it is canceled by the
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symmetry of the leakage flux in the axial direction. On the other hand, in the case of the
model to which the core skew is applied, the axial force is not offset by the asymmetry of
the leakage magnetic flux in the axial direction and is generated in one direction as shown
in Figure 6.
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Table 2. Comparison of torque ripple and axial force between conventional model and core skew
model (580 rpm).

Parameter Conventional
Model

Core Skew
2-Step Model

Core Skew
4-Step Model

Core Skew
6-Step Model Unit

torque ripple 4.29 9.04 8.94 8.81 %
axial force 0.2 −3.86 −3.81 −3.72 mN
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In [9], it can be seen that the torque ripple is reduced by applying core skew in the
high-speed region. This is because the axial leakage flux is also suppressed because the
weak flux control is applied in the high-speed region, so the axial force is not as high as in
the low-speed region.

In the case of a general model without skew, such an axial force does not occur, but if
the axial force is not offset and occurs in one direction, the torque ripple increases, which in
turn increases vibration and noise, and adversely affects mechanical parts such as bearings,
which can shorten the life of the motor.

Therefore, a symmetrical core skew model with the structure of Figure 7 as a reference
is proposed in order to reduce the axial force of the core skew model. The proposed model
should be divided into Stack No. 1 and Stack No. 2 by stacking two different models in the
axial direction. When manufacturing, the model can be produced by counter-punching the
same mold, and the existing production method and equipment can be maintained as is.
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3. Geometric Variables and Their Effects on 2D FEA

To select the optimal model of symmetrical core skew, an FEA (finite element analysis)
was performed by setting variables for tapering in the fixed part of the permanent magnet.

Tapering is an important design parameter because it is used to make the vacancy flux
density of the motor sinusoidal, which in turn is related to cogging torque, torque ripple,
THD, etc.

In order to analyze the axial force, 3D FEA should be performed, but because it takes a
long time to analyze, the optimal model for torque ripple, cogging torque, and no-load THD
is selected through two-dimensional DOE (Design of Experiments); then, three-dimensional
analysis was performed.

Figure 8 and Table 3 describe the setting of each variable. In Table 4, PO is the variable
for the position to modify the angle of tapering on the outside of the permanent magnet
fixing bar, and AO is the variable for the angle. Also, PI is a variable for the position to
modify the angle of tapering inside the permanent magnet fixing bar, and AI is a variable
for the angle.
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Table 3. Variable setting for tapering.

Parameter Range Step Unit

PO 0.1~0.7 0.1 mm
AO 10~70 10 deg
PI 0.1~0.3 0.1 mm
AI 10~60 10 deg

Table 4. Weight score calculation according to the importance of torque ripple, cogging torque, and
no-load THD.

Parameter X(c)
(Conventional Model)

Y(t)
(Analysis Model) Significance Factor Weight Score

torque ripple ratio XT(c) YT(t) ST
(XT(c) − YT(t))/

XT(c) × ST

cogging torque pk 2 pk XC(c) YC(t) SC
(XC(c) − YC(t))/

XC(c) × SC

no-load THD XH(c) YH(t) SH
(XH(c) − YH(t))/

XH(c) × SH

As shown in Figure 8a, the variables for tapering were applied to both the outside
and inside of the permanent magnet fixing part. In Figure 8b, 2D FEA was performed
on one variable for the outer side. The variables for the outer side shown in Figure 8a,b
have a common variable, and each variable is set to taper to the minimum that can fix the
permanent magnet. Also, recognizing that it is a three-step process, 2D FEA was performed
by applying 2/3 of the stacking length in Figure 8a and 1/3 of the stacking length in
Figure 8b, and the results were calculated by summing the results.

Figure 9 shows the results of 2D FEA for changes in the degree of tapering. For the
optimal model selection criteria, the highest total weight score was selected using the total
sum of the weight scores in Table 4 [13].

Machines 2024, 12, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 8. Variables for tapering. (a) Stack No. 1; (b) Stack No. 2. 

Table 3. Variable setting for tapering. 

Parameter Range Step Unit 
PO 0.1~0.7 0.1 mm 
AO 10~70 10 deg 
PI 0.1~0.3 0.1 mm 
AI 10~60 10 deg 

As shown in Figure 8a, the variables for tapering were applied to both the outside 
and inside of the permanent magnet fixing part. In Figure 8b, 2D FEA was performed on 
one variable for the outer side. The variables for the outer side shown in Figure 8a,b have 
a common variable, and each variable is set to taper to the minimum that can fix the per-
manent magnet. Also, recognizing that it is a three-step process, 2D FEA was performed 
by applying 2/3 of the stacking length in Figure 8a and 1/3 of the stacking length in Figure 
8b, and the results were calculated by summing the results. 

Figure 9 shows the results of 2D FEA for changes in the degree of tapering. For the 
optimal model selection criteria, the highest total weight score was selected using the total 
sum of the weight scores in Table 4 [13]. 

 
Figure 9. Results of the 2D FEA. (a) Torque ripple ratio and cogging torque according to each vari-
able; (b) Torque ripple ratio and No-load THD according to each variable. 
Figure 9. Results of the 2D FEA. (a) Torque ripple ratio and cogging torque according to each variable;
(b) Torque ripple ratio and No-load THD according to each variable.



Machines 2024, 12, 280 8 of 12

In Table 4, X(c) is the result of the conventional model, and Y(t) is the result of the
torque ripple ratio, cogging torque pk 2 pk and no-load THD according to the variables
set in Table 3. Each significant factor is the importance assigned to torque ripple, cogging
torque pk 2 pk, and no-load THD. Torque ripple, which is most important in real-world load
operation, receives the highest weight. Set S_T to 50 and S_C and S_H to 25 each, so that
the total sum is 100, which is the value finally calculated by the weighted score formula.

The model with the highest total weight score is shown in Figure 9 with PO = 0.3 mm,
AO = 70 deg, PI = 0.1 mm, and AI = 50 deg. Accordingly, the model with the highest weight
total score of 31.33 was selected.

Table 5 is the result of comparing the model selected through Figure 9 and Table 4, the
conventional model, and the core skew model, respectively.

Table 5. Results of the 2D FEA.

Parameter Conventional Model Core Skew Model Symmetrical
Core Skew Model Unit

torque 1.35 1.37 1.37 Nm
torque ripple 7.68 8.92 5.78 %

The torque ripple of the symmetrical core skew model was reduced compared to the
conventional model and the core skew model. This can be analyzed through the torque
spectrum and the torque phase spectrum provided in Figures 10 and 11. For the general
model without skew, the spectrum of torque phase is the same, but for the proposed model
with symmetrical core skew, as shown in Figure 11, it can be seen that the phase of the 6th
and 12th harmonics of Stack No. 1 and Stack No. 2 are opposite to each other and cancel
each other out, causing the torque ripple to decrease. This is because the waveform of the
torque is six cycles in one electrical angle, which is determined by the interaction of the
fundamental wave of the motor voltage with the fifth and seventh harmonics.
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4. Three-Dimensional FEA Based on Several Modeling Steps

The optimistic model selected through 2D FEA in the previous section was modeled
as shown in Figure 12 to proceed with 3D FEA according to each step. The modeling of
the symmetrical core skew was considered for models using the three-step to seven-step
methods and was organized in the order of Stack No. 1–Stack No. 2–Stack No. 1, with
Stack No. 1 geometry at the top and bottom. And Table 6 shows the results of 3D FEA.
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Table 6. Variable set.

Parameter
Symmetrical
Core Skew

3-Step Model

Symmetrical
Core Skew

5-Step Model

Symmetrical
Core Skew

7-Step Model
Unit

torque 1.34 1.34 1.34 Nm
torque ripple ratio 6.49 6.37 6.41 %

axial force −0.48 −0.23 −0.49 mN

It was confirmed that the axial force of the symmetrical core skew model was signif-
icantly reduced compared to the core skew model, and the torque ripple ratio was also
reduced by about 2%p.

Figures 13–15 are the results of comparing the waveform and spectra of torque and
axial force based on the comparison between the core skew four-step model selected in [9]
and the symmetrical core skew five-step model with the lowest axial force and lowest
torque ripple in this paper.
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As shown in Figure 14, the results are reduced compared to those with the core skew
four-step model. Therefore, the waveform of the torque is also reduced. Since it has a
symmetrical structure, the axial force is reduced, and the result can be seen in Figure 15.
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5. Conclusions

This paper aims to suppress the torque ripple caused by the axial force which is
not improved in the core skew structure. As mentioned in [9], in a double-layer spoke-
type PMSM, the general spoke-type PMSM has the advantage of being able to use more
reluctance torque, but the more reluctance torque is used, the more cogging torque, torque
ripple, THD, etc., which can cause vibration and noise, increase, and a structure called core
skew is proposed as a way to reduce it. However, at low speeds, torque ripple was found
to increase.

In this paper, we analyzed how, due to the axial asymmetry, the axial leakage magnetic
flux also became asymmetrical, and the axial Lorentzian force caused by the asymmetrical
leakage magnetic flux linkage at the end turns could not be offset. To solve these problems,
a symmetrical core skew model is proposed in this paper. The symmetrical core skew model
divides the rotor core into Stack No. 1 and Stack No. 2 to design the respective shapes,
just like the conventional core skew. However, in the case of the conventional core skew,
Stack No. 1 and Stack No. 2 are reversed in the core part that holds the permanent magnet,
and an even number of steps are applied. However, in the proposed symmetrical core skew,
symmetry is applied when looking at the rotor core from the air gap, an odd number of
steps are applied, and the axial Lorentz force can be reduced due to the symmetry of the
axial leakage flux. The torque ripple was reduced by reducing the axial Lorentz force, and
through further optimal design in 2D FEA, the torque ripple was minimized by combining
Stack No. 1 and Stack No. 2 so that the torque phase spectrum could be offset as much
as possible. In addition, the continuous load transmitted to the bearings connected to the
shaft of the motor can be reduced, which has the effect of extending the life of the motor.

This suggests a direction for further development of the magnetic flux concentration-
type motor structure, as research on non-rare-earth permanent magnet synchronous motors
has been actively conducted recently. In order to utilize the reluctance torque in the extant
magnetic flux concentration-type shape, a double-layer spoke-type shape was proposed,
and core skew was suggested as a way to reduce vibration, noise, and factors that may
adversely affect mechanical parts. The core skew structure has the potential to propose
various shapes and can be applied as a specialized form for each application. Therefore,
this design method is expected to have a good influence on the overall motor industry.
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