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Abstract: In this paper, a two-rotational degrees of freedom parallel mechanism with five kinematic
subchains (3UPS-UPU-S) (U, P, and S stand for universal joints, prismatic joints, and spherical
joints) for an aerospace product is introduced, and its kinematic and dynamic characteristics are
subsequently analyzed. The kinematic and dynamic analyses of this mechanism are carried out in
screw coordinates. Firstly, the inverse kinematics is performed through the kinematic equations
established by the velocity screws of each joint to obtain the position, posture, and velocity of each
joint within the mechanism. Then, a dynamic modeling method with screw theory for multi-body
systems is proposed. In this method, the momentum screws are established by the momentum and
moment of momentum according to the fundamentals of screws. By using the kinematic parameters of
joints, the dynamic analysis can be carried out through the dynamic equations formed by momentum
screws and force screws. This method unifies the kinematic and dynamic analyses by expressing
all parameters in screw form. The approach can be employed in the development of computational
dynamics because of its simplified and straightforward analysis procedure and its high adaptability
for different kinds of multi-body systems.

Keywords: parallel mechanisms; kinematic analysis; dynamic analysis; momentum screw

1. Introduction

Multi-body systems offer multiple advantages over single-body systems, including
improved load distribution, enhanced flexibility, and increased adaptability to diverse
operating conditions. These systems find extensive applications in various fields, such
as robotics, aerospace, automotive, and manufacturing industries. Among them, parallel
mechanisms have garnered significant attention due to their high rigidity, accuracy, and
ability to perform precise, complex motion tasks. Despite their inherent complexity and non-
linearity, redundantly actuated parallel mechanisms are extensively designed to overcome
singularity issues and enhance structural stiffness and load capacity.

Understanding the kinematics and dynamics of parallel platforms is crucial for their
practical implementation. Kinematic analysis reveals the motion characteristics of parallel
mechanisms by solving the kinematic parameters such as posture, position, and velocity of
individual joints within the system. By using conventional kinematic modeling approaches
to describe both rotational and translational motions, a suitable mathematical framework
in a relatively general way is required. Screw coordinates have been proposed as a valuable
tool to simplify the kinematic analysis of parallel mechanisms [1].

Dynamics analysis plays a significant role in achieving robot control, motion stability,
and structural optimization. However, redundantly actuated parallel mechanisms present
challenges in dynamic modeling due to their complexity and computational requirements.
Several methods have been proposed to analyze the dynamics of multi-rigid-body systems,
including Lagrange equations [2,3], Newton–Euler equations [4–6], virtual work princi-
ples [7–10], Kane equations [11,12], and Gibbs–Appell equations [13,14]. The analysis of
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multi-rigid-body systems often relies on mathematical methods from classical mechanics
and vector equations [7,15]. Additionally, the screw theory has been extensively used for
dynamic analysis, providing efficient modeling of mechanisms based on kinematic formu-
lations through screw theory [16–18]. As Pennock has discussed the geometric relationship
between velocity screws and momentum screws [19], researchers such as Gallardo [17,20]
have presented kinematic and dynamic models for parallel mechanisms utilizing screw
coordinates. Müller has pointed out that besides the contribution to the kinematic analysis
made by screw theory, screw theory and the Lie group can also be applied to the dynamic
analysis of multi-body systems with high efficiency [21,22]. Zhao [5] has investigated an
approach to dynamic analysis of multi-body systems by expressing acceleration in screw
form using screw and Lie products, but the dynamic equations are established using the
velocity expressed in screw coordinates as a global variable according to the Newton–Euler
method. Dynamic analysis is rarely carried out systematically by screw theory. There-
fore, this paper focuses on dynamic modeling by combining momentum screws and force
screws. And a novel procedure to obtain dynamic equations through differential equations
based on the theorem of the momentum screw is proposed and applied to the dynamics of
various mechanisms.

In this paper, we present the design of a parallel mechanism with five kinematic chains
to achieve two rotational degrees of freedom (DoFs) according to the task demands and
propose a novel dynamic modeling process by establishing the dynamic equations derived
from the theorem of momentum to simplify the dynamic analysis in a concise manner.

The main contributions of this paper are as follows:

(1) The dynamic equations of the differential momentum screw and force screw are
deduced in detail. There is no acceleration needed in dynamic modeling. It shows that
utilizing momentum and the moment of momentum screws offers a clearer physical
interpretation of the dynamics analysis and facilitates computation in programming.

(2) The forces and torques of each joint can be simultaneously solved in the absolute
coordinate system.

(3) The programming code of this algorithm is compact and easy to structure and debug.
This method can be applied not only to the analysis of parallel mechanisms but also
to planar and spatial mechanisms.

2. Geometry Design of the Parallel Mechanism

A parallel mechanism incorporating five kinematic subchains has been designed to
fill a task demand with two rotational DoFs, and the overall size, occupation of the parts
within the mechanism, some designated structure, and other factors have been considered.
Five kinematic subchains are assembled and connect the base and the moving platform
to achieve continuous swiveling on two axes, and the DoFs are computed and verified in
Section 3.2. As illustrated in Figure 1, this parallel platform consists of a base and a mobile
platform, which is formed with a spherical joint to obtain a kinematic chain denoted as
{S}. Additionally, the mechanism consists of three kinematic chains denoted as {UPS} and
one kinematic chain denoted as {UPU}, where the letters U, P, and S signify universal joint,
prismatic pair, and spherical joint, respectively. The primary U joints of four side kinematic
chains are distributed and assembled uniformly along the edge of the base at points A1,
A2, A3, and A4, while four last joints including one U joint and three S joints are assembled
on the edge of moving platform at points C1, C2, C3, and C4. The radii of circumcircle of
A1 A2 A3 A4 and C1C2C3C4 are R and r, respectively. The fifth kinematic chain {S} has only
one spherical joint, its revolute center is coincided with the geometrical center of the base,
and here is the origin of the coordinate system: O. The first rotary aches of the primary U
joints in chains {UPU} and {UPS} fixed on the base are coplanar and intersect at the origin
O. On the initial assembly configuration, the universal joint planes of all universal joints
and the moving platform plane are parallel to the base plane.
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Figure 1. Geometry of the 3UPS−UPU− S parallel mechanism: (a) structure in front view; (b) struc-
ture in top view.

As the origin O is chosen at the geometrical center of the base, and the z-axis is
perpendicular to the base and points to the moving platform, the x-axis points to A3, then,
the y-axis can be settled through right-hand rule.

3. Kinematics Analysis
3.1. Fundamentals of Screw Theory

To describe the rotational motion of a free rigid body in the reference coordinate frame,
the angular velocity ω can be expressed through:

ω = ω1e1 + ω2e2 + ω3e3 (1)

where e1, e2, e3 are unit direction vectors and ω1, ω2, ω3 are the amplitude of the compo-
nents of ω in e1, e2, e3. Therefore, the expression of angular velocity of the free rigid body
can be simplified as

ω =
[
ω1 ω2 ω3

]T (2)

Then, with r = xe1 + ye2 + ze3 presenting the position vector of the point attached on
this rigid body, the linear velocity of this point passing through the origin is

v =
dr
dt

= ω× r (3)

The kinematics of a joint in a serial kinematic chain are relative to the kinematics of
the fore joints. Based on the addition theorem for angular velocities, the angular velocity
and the linear velocity of joint Jm in a serial kinematic chain with respect to the absolute
coordinate frame O can be obtained as follows:{

m
Oω = 1

Oω + 2
1ω + 3

2ω + · · ·+ m−1
m−2ω + m

m−1ω
m
Ov =

dm
Or
dt = m

Oω × r
(4)

According to the screw theory, the velocity of joint Jm can be specified by dual 3-
dimensional vectors m

Oω and m
Ov. Therefore, in the following, the relative velocity screw

m
m−1SV of joint Jm in screw coordinate is defined as:

m
m−1SV =

[ m
m−1ω

m
0 r × m

m−1ω

]
= m

m−1ω

[ m
m−1e

m
0 r × m

m−1e

]
= m

m−1ωm
m−1Su (5)

where m
m−1ω is the magnitude of the relative angular velocity of joint Jm with respect to

joint Jm−1 and the unit vector along the rotary axis is em, which norm is ||em||= 1, m
m−1Su

represents the unit relative velocity screw of joint Jm.
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From Equations (4) and (5), the forward kinematics of the kinematic chain having n
joints in serial can be derived through:

n
0 $V =

n

∑
i=1

i
i−1$V = SVωV (6)

where SV =
[1

0$u
2
1$u · · · n

n−1$u
]

6×n represents the unit velocity screw matrix of a serial

chain with n joints and ωV =
[1

0ω 2
1ω · · · n

n−1ω
]T

n×1 expressing the angular velocity
vector containing all relative angular velocities of every joint in this chain relative to its fore
joint, with 0 referring to the origin of the coordinate frame.

On the other hand, when the kinematics of the end effector in the absolute coordinate
frame are known, the angular velocity vector can be solved by

ωV =
[
ST

VSV

]−1
ST

V(
n
0 $V) (7)

If the mechanism is neither redundantly actuated nor in a singularity configuration,

it meets
∣∣∣ST

VSV

∣∣∣ 6= 0.
[
ST

VSV

]−1
ST

V is called the pseudo-inverse of the unit velocity screw
matrix SV . Through the velocity parameters from Equation (7), the displacement and
acceleration can be gained by first-order numerical integration and first-order numerical
differential interpolation, respectively.

During verse kinematics analysis process, at t = 0, the initial conditions of the angular
displacement vector θ(0) is given in form:

θ(0) =
[

1
0θ(0) 2

1θ(0) · · · n−1
n−2θ(0) n

n−1θ(0)
]T

n×1
(8)

Equation (8) is then substituted into unit screw matrix SV in Equation (5) to calculate
the solution of ωV(1) for the first-time segment. Afterwards, the successive parameters of
SV(k) at t = k∆t can be updated by:

θ(k + 1) = θ(k) + ∆tωV(k) (9)

with k = 1, 2, · · · presenting the steps of iteration.
Within the SV(k), the position vector m

0 r and posture m
m−1e of m-th joints with m =

1, 2, · · · , n can be obtained.

3.2. Workspace and Mobility Analysis of the 3UPS−UPU − S Parallel Mechanism

This parallel mechanism is designed based on a specified application. It is required
to have two rotational degrees of freedom around the x- and y-axis as shown in Figure 1.
The demanded swing angles of the moving platform, as illustrated in Figure 2 are 10◦.
As universal joints and spherical joints in kinematic chains have only a little effect on the
workspace regarding the designated swing angles, the workspace is limited mainly by the
effective length of subchains with the prismatic joints. The design of the chain length and
the selection of prismatic joints are determined by the required swing angles.

Figure 3 depicts the unit vector of all kinematic joints in each chain. As the velocities,
positions, and postures of each joint are expressed in screw coordinates, the reciprocal
screw theory is employed here to compute the mobility of this parallel mechanism. In
accordance with the reciprocal screw theory, there is:

ST
Vℵ$r = 0 (10)

where ℵ =

[
0 I3×3

I3×3 0

]
and the 3rd-order identity matrix I3×3 =

1 0 0
0 1 0
0 0 1

.
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The kinematic screws of the 1st subchain {UPU} can be expressed by five joints as:

S1
UPU =

[
1 0 0 0 0 0

]T
S2

UPU =
[

0 1 0 0 0 −R
]T

S3
UPU =

[
0 0 0 sin θ 0 cos θ

]T
S4

UPU =
[

cos θ 0 − sin θ 0 R sin θ − L 0
]T

S5
UPU =

[
0 1 0 L cos θ 0 R− L sin θ

]T
(11)

where LUPU is the total length of the {UPU} chain and θ represents the angle between {UPU}
chain and z-axis.

From Equation (11), the screw matrix of {UPU} chain can be obtained:

S1 =
[
$1

UPU $2
UPU $3

UPU $4
UPU $5

UPU

]
(12)

Therefore, the inverse screw of {UPU} chain can be derived based on Equation (12):

$r
UPU =

[
0 1 0 0 0 −R + L

sin θ

]T (13)

Through the definition of a screw, Equation (13) denotes a force parallel to y-axis and
passing through point

(
−R + L

sin θ y 0
)
, where y can be any significant real number.
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Similarly, the inverse screws of three {UPS} chains and {S} chain can be obtained as:

$r
UPS =

[
0 0 0 0 0 0

]T (14)

and

$r
S =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

T

(15)

From Equations (13)–(15), the terminal constraints of the moving platform can be
obtained as

SC
P =



0 1 0 0
1 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

−R + L
sin θ 0 0 0

 (16)

The free velocity screws of the moving platform can also be computed from the
reciprocal screw method, which is: (

SC
P

)T
ℵ$P = 0 (17)

Therefore, the mobility of this parallel mechanism can be derived as

$P =

[
1 0 0 0 0 0
0 1 0 0 0 0

]T

(18)

Equation (19) indicates that the mechanism has two rotational degrees of freedom
around x- and y-axis of the coordinate frame illustrated in Figure 2. From the calculation
above, it can be seen that with one {UPU} chain, one {UPS} chain, and one {S} can also
satisfy the mobility requirements. The two additional {UPS} subchains are designed to
achieve better load distribution and stability.

3.3. Kinematic Modeling of the 3UPS−UPU − S Parallel Mechanism

Through the fundamentals of screws, the velocity screw matrix of each serial kinematic
subchain could be obtained through Equations (5) and (6).

As shown in Figure 2, the velocity screw matrix of the 1st {UPU} chain can be expressed as:

S1
V =

[
1e1

rA1 ×1 e1

1e2
rA1 ×1 e2

0
1e3

1e4
rC1 ×1 e4

1e5
rC1 ×1 e5

]
6×5

(19)

where 1S1 =

[
1e1

1rU1 ×1 e1

]
is the unit velocity screw of a revolute joint and 1S3 =

[
0

1e3

]
denotes the unit velocity screw of a prismatic pair, and the subscript 6× 5 of the matrix
represents the dimensions of the matrix.

Through the same procedure, the velocity screw matrix of 2nd to 4th {UPS} chains and
5th {S} chain can be gained as

Si
V =

[
ie1

rAi ×i e1

ie2
rAi ×i e2

0
ie3

ie4
rCi ×1 e4

ie5
rCi ×1 e5

ie6
rCi ×1 e5

]
6×6

, i = 2, 3, 4

S5
V =

[
5e1

rA5 ×5 e1

5e2
rA5 ×5 e2

5e3
rA5 ×5 e3

]
6×3

(20)

The kinematic screw equation of parallel mechanisms with multi kinematic chains can
be written as:

Sω = $V (21)



Machines 2023, 11, 840 7 of 17

where

S = diag
[[

S1
V

]
6×5

[
S2

V

]
6×6

[
S3

V

]
6×6

[
S4

V

]
6×6

[
S5

V

]
6×3

]
30×26

(22)

is composed of the velocity screw matrix of each kinematic chain and diag[] is the diagonal
matrix of Si

V (i = 1, 2, · · · , 5), and

ω =
[[

ω1]T
5×1

[
ω2]T

6×1 · · ·
[
ω5]T

3×1

]T

26×1
(23)

is the velocity vector and contains all the relative angular velocities of each kinematic joint.
The velocity screw $V can be expressed through

$V =

[[
C1
O $1

V

]T

6×1

[
C2
O $2

V

]T

6×1

[
C3
O $3

V

]T

6×1

[
C4
O $4

V

]T

6×1

[
C5
O $5

V

]T

6×1

]T

30×1
(24)

with Ci
O $i

V(i = 1, 2, · · · , 5) representing the absolute velocity screws of the end effectors of
i-th kinematic chain.

As the topological diagram illustrated in Figure 4, according to the given motion of
the geometric center E on the outer ring of the moving platform E

O$V , the velocity screws of
the end effectors of each kinematic chain Ci

O $i
V(i = 1, 2, · · · , 5) can be calculated by:

Ci
O $i

V =E
O $V −E

Ci
$i

V(i = 1, 2, · · · , 5) (25)

where E
Ci

$i
V(i = 1, 2, · · · , 5) denotes the relative velocity screw of point E with respect to

Ci (i = 1, 2, · · · , 5), which is

E
Ci

$i
V =

[
0

Ci
O ωi × rE

]
6×1

(i = 1, 2, · · · , 5) (26)

with Ci
O ωi presenting the absolute angular velocity of the last kinematic joint of the kinematic

chain and rE being the absolute position vector of the geometric center E in the coordinate
frame O.
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Through inverse kinematics Equation (7), the relative angular velocities of each joint
in kinematic chains can be derived from the given kinematics of E as

ω = [STS]
−1

ST$V (27)

Substituting Equations (19) and (20), and Equations (22)–(24) into Equation (25), the
inverse velocity of the mechanism can be solved.

4. Dynamic Modeling
4.1. Fundamentals of Momentum Screw in Dynamic Analysis

As illustrated in Figure 5, the mass center C is chosen as the reference point of the
rigid body Ω, the velocity of point C can be obtained through OvC = drC

dt , and the velocity
of body-fixed mass segment dm at point A can be calculated by vA = OvC + ω× rCA.
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Considering the fundamental definition of momentum, the momentum of the mass
dm can be expressed as

dp = vdm (28)

Consequently, upon integrating the Equation (28) across the entirety of the rigid body,
the resulting expression is obtained:

p =
∫
Ω

dp =
∫
Ω

vdm

=
∫
Ω
(OvC + ω× rCA)dm

=
∫
Ω

OvCρdV +
∫
Ω
(ω× rCA)ρdV

=
∫
Ω

OvCρdV

= mOvC

(29)

Equation (29) is simplified based on the definition of mass center with
∫
Ω

rCAρdV = 0.

Similarly, the moment of momentum for the whole rigid body can be derived as:

oL =
∫
Ω

d(oL) =
∫
Ω

(rC + rCA)× (vC + ω× rCA)dm

= rC ×mvC + ω


∫
Ω

[(
rT

CArCA

)
I −

(
rCArT

CA

)]
ρdV


= rC ×mvC + JCω

(30)

where JC =
∫
Ω

[(
rT

CArCA
)
I−

(
rCArT

CA
)]

ρdV.
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Then the momentum screw $M can be established by dual 3-dimensional vector p and
oL as

SM = [prC× p + JC] = [pOL]6× 1 (31)

Based on the parallel theorem of forces, the action of a force FA, which acts on the
rigid body at point A observed in the absolute coordinate frame O, can be equivalently
balanced through the resultant action of a force system FA and rA × FA. The force screw
O$F on the rigid body can be obtained:

O$A
F =

[
FA

rA × FA

]
=

[
FA
TA

]
6×1

(32)

According to Newton’s second law,

dp
dt

= F (33)

and
d(JCω)

dt
= rCA × F (34)

Substituting Equations (33) and (34) into Equation (31), it can be drawn that

d$M
dt

= $F (35)

Therefore, Equation (33) can be rewritten by integrating both sides of the equation as

$M(t2)− $M(t1) =
∫ t2

t1

$Fdt (36)

Considering the equivalent condition of a rigid body, the resultant forces screw must
be zero, that is $F = 0. Then,

$M(t2)− $M(t1) = 0 (37)

For a multi-rigid-body system, the momentum screw can be expresses as:

n

∑
i=1

[
$i

M(t2)− $i
M(t1)

]
=

K

∑
K=1

∫ t2

t1

$K
F dt (38)

where n is the number of the rigid bodies in the system and K is number of the external
loads.

When
K
∑

K=1

∫ t2
t1

$K
F dt = 0, the system is in a state of equilibrium, otherwise, there is

d
dt

[
n

∑
i=1

o$i
M(t)

]
=

K

∑
j=1

o$K
F (39)

From Equation (39), it is clear that the acceleration information of each joint is not
required in establishing dynamic equations. The computation and programming are simpli-
fied, and the computational efficiency is significantly enhanced compared to conventional
dynamic modeling based on Newton–Euler equations, especially the dynamic analysis
algorithm using displacement as a global variable, because the whole procedure to compute
acceleration through second-order differential can be avoided.

4.2. Dynamic Modeling of the 3UPS-UPU-S Parallel Mechanism

To enhance the load capacity and optimize the load distribution, the four kinematic
subchains with prismatic pairs are active driven limbs, and the actuators are assembled in
prismatic pairs.
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As shown in Figure 6a, the lower limbs of four subchains contain one universal joint
and one prismatic joint, the momentum screw of the lower limbs can be derived as:

$L
M =

[
p

rC × p + JCω

]
=

[
mL
(
ωi × rL

i
)

OJL
i ωi

]
(i = 1, 2, 3, 4) (40)

where OJL = ROJLRT
O + mL

[(
rT

LrL
)
I−

(
rLrT

L
)]

is the inertia matrix of lower limbs in the
absolute coordinate system with the transformation matrix from the local coordinate frame
to the absolute coordinate frame RO and the inertia matrix of lower limbs JL in their
respective local coordinate frame. r presents the position vector of the mass center of each
limb in the absolute coordinate frame.
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The force screw of the lower limbs in general form can be written based on Equation (30)
as

O$L
F =

[
FAi + FBi + mLg

rAi × FAi + TAi + rBi × FBi + TBi + rLi ×mLg

]
(i = 1, 2, 3, 4) (41)

Then, according to Equation (37) the momentum screw equation of four lower limbs
can be obtained

d
dt

[
mL
(
ωi × rL

i
)

OJL
i ωi

]
=

[
FAi + FBi + mLg

rAi × FAi + TAi + rBi × FBi + TBi + rLi ×mLg

]
(i = 1, 2, 3, 4) (42)

Similarly, the upper limbs of four subchains contains prismatic joint and universal
joint or spherical joints, which is shown in Figure 6c, the momentum screw can be written
as

$EU
M =

[
p

rC × p + JCω

]
=

[
mEUvEU + mEU

(
ωEU

1 × rEU
1
)

OJEU
1 ωEU

1

]
$ES

M =

[
p

rC × p + JCω

]
=

[
mESvES + mES

(
ωES

i × rES
i
)

OJES
i ωES

i

]
(i = 2, 3, 4)

(43)

The force screw of the upper limbs of four subchains are

O$EU
F =

[
FB1 + FC1 + mEUg

rB1 × FB1 + TB1 + rC1 × FC1 + TC1 + rEU
1 ×mEUg

]
O$ES

F =

[
FBi + FCi + mESg

rBi × FBi + TBi + rCi × FCi + rES
i ×mESg

]
(i = 2, 3, 4)

(44)
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The momentum screw of the moving platform can be deduced as:

$G
M =

[
p

rC × p + JCω

]
=

[
mGvG

rG × (mGvG) +O JGωG

]
(45)

where rG is the position vector of mass center G of the moving platform in the absolute
coordinate frame.

The moving platform consists of one universal pair and four spherical pairs, which
are shown in Figure 6d. The force screw of the moving platform is

$G
F =


4
∑

i=1
FCi + FA5 + mGg + FE

4
∑

i=1
(rCi × FCi) + TC1 + rG ×mGg + ME

 (46)

Therefore, the momentum screw equation of the moving platform can be written as

d
dt

[
mGvG

rG × (mGvG) +O JGωG

]
=


4
∑

i=1
FCi + FA5 + mGg + FE

4
∑

i=1
(rCi × FCi) + TC1 + rG ×mGg + ME

 (47)

By associating the momentum screw equations, the dynamic equation of 3UPS−UPU− S
parallel mechanism can be deduced based on Equation (47)

4
∑

i=1
FCi + FA5

4
∑

i=1
(rCi × FCi) + TC1

 =
d
dt

[
mGvG

rG × (mGvG) +O JGωG

]
−
[

mGg + FE
rG ×mGg + ME

]
(48)

Afterwards, the driven forces at prismatic joints at points Bi (i = 1, 2, 3, 4) can be
obtained through Equations (43) and (44):

FB1 = d
dt
[
mUvU + mU

(
ωU

1 × rEU
1
)]
− FC1 −mUg

FBi =
d
dt
[
mEvE + mE

(
ωS

i × rES
i
)]
− FCi + mEg (i = 2, 3, 4)

(49)

5. Numerical Simulation and Results Analysis
5.1. The Inverse Kinematics of the 3UPS-UPU-S Parallel Mechanism

To validate the efficiency of the kinematic and dynamic analysis methods proposed in
this paper, a spatial trajectory is given for the moving platform. The function of trajectory
over time is defined as 

x(t) = 0.1 cos(t) + 0.2, (m)

y(t) = 0.1 sin(t), (m)

z(t) = H, (m)

(50)

Through the trajectory, the displacement vector DE, velocity screw $E, and acceleration
vector AE of the moving platform are that:

DE =
[

0.1 cos(t) + 0.2 0.1 sin(t) 0 0 0 H
]T
(m)

VE =
[
−0.1 sin(t) 0.1 cos(t) 0 0 0 0

]T
(m/s)

AE =
[

0.1 cos(t) 0.1 sin(t) 0 0 0 0
]T(m/s2

) (51)

t in Equations (50) and (51) is the time of the trajectory, the simulation step length is
∆t = 0.001 and the total number of iterations is n = 10000. As depicted in Figure 1, H is
the initial height between the geometric center O on the base platform and the geometric
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center E of the outer ring of the moving platform, L is the initial length between joint A
and joint C. R and r are the constant radii of circle A1 A2 A3 A4 and C1C2C3C4 formed by the
primary universal joints and end universal/spherical joints of four kinematic subchains.
θ and p give the initial assembly configurations of each kinematic joint in four kinematic
chains. The configuration parameters and the initial assembly configuration parameters of
the 3UPS−UPU− S parallel mechanism for kinematics analysis are given in Tables 1 and 2,
respectively.

Table 1. Configuration parameters of the 3UPS−UPU− S.

H(0) (m) R (m) r (m) L(0) (m)

3
√

3
10

0.8 0.5 0.6

Table 2. Initial conditions of the 3UPS−UPU− S.

θi
1(0) (rad) θi

2(0) (rad) pi
3(0) (m) θi

4(0) (rad) θi
5(0) (rad) θi

6(0) (rad){
θ1

1
}
= {0}

{
θ1

2
}
=
{
−π

6
} {

p1
3
}
= {0.3}

{
θ1

4
}
= {0}

{
θ1

5
}
=
{
−π

3
} {

θ1
6
}
= {0}

The inverse kinematics of the 3UPS−UPU− S parallel mechanism are programmed
and carried out based on the given trajectory, and the curves of the kinematics are plotted
and shown in Figures 7 and 8.
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Figure 7a plots the relative angular displacements θ of each revolute joint in five
kinematic subchains. Figure 7b shows the relative linear displacements d of all prismatic
pairs of four subchains surrounding the moving platform.

Figure 8a depicts the relative angular velocity ω of each revolute joint in 3UPS−
UPU− S parallel mechanism. Figure 8b shows the relative linear velocity v3 of four active
prismatic pairs in four {UPU} and {UPS} subchains. According to the simulation results,
there are no unexpected sudden changes in velocities, and the motion of each joint shows a
harmonious operation of the mechanism.
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5.2. The Inverse Dynamics of the 3UPS−UPU − S Parallel Mechanism

Suppose that the resultant action of the external mechanical loadings is acting on the
geometric center of the outer ring of the moving platform at point E. The given resultant
force is FE =

[
0 0 1

]
(kN) and the resultant moment is TE =

[
1 0 0

]
(kN ·m). By

utilizing the kinematic parameters of each joint obtained in Section 5.1, the inverse dynamic
analysis of the 3UPS−UPU− S parallel mechanism could be carried out, and the driving
forces, which should be provided by four prismatic joints, could be gained through the
approach introduced in Section 4. The needed structure parameters are illustrated in Table 3.

Table 3. The structure parameters at the mass center of each limb and moving platform.

Mass (kg)

Lower limb mL Upper limb mEU , mES Moving platform mG

1.42 1.42 2.87

Moment of inertia matrix
(
kg ·m2)

Lower limb JL Upper limb JEU , JES Lower limb JG
diag

(
0.0556 1.14 1.16

)
diag

(
0.0556 1.14 1.16

)
diag

(
68.7 68.7 92.1

)
The whole kinematic and dynamic calculation process can be programmed. The

driving forces exerted by the four prismatic joints are depicted in Figure 9, providing
valuable insights into the dynamics of the system. Throughout the entire motion cycle, the
resultant driving forces exhibit variations, and the forces generated by the four actuators are
comparable in magnitude. This observation signifies that the actuators in the four prismatic
joints are involved in achieving the determined motion through the whole motion cycle.
Moreover, the forces required to keep balance from the external loads by the four actuators
exhibit uniformity in terms of magnitude. This uniformity in force generation among the
actuators reflects effective coordination, ensuring synchronized operation. Consequently,
this effective coordination among the actuators contributes to an optimized distribution of
external loads. The system’s ability to achieve a balanced load distribution is of paramount
importance, as it guarantees the equitable sharing of external forces and facilitates the
smooth functioning of the mechanism. The results indicate the effectiveness of the two
additional {UPS} subchains. The simulation results of displacements and the forces of
actuators during the given motion cycle can provide initial guidance for the selection and
configuration of actuators.
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Figure 9. The required driving forces of the prismatic joints in four kinematic subchains in the
3UPS−UPU− S parallel mechanism.

To validate the correctness of the modeling method proposed here, dynamic analysis
modeling based on Newton–Euler equations is also established [5]. Method A represents
the method using momentum screws and force screws proposed in this paper, and Method
B is the method based on Newton–Euler equations. From Figure 9, the results of both
methods are consistent, which indicates the correctness of both methods. Furthermore, a
dynamic analysis is performed by commercial software, Adams. The kinematic parameters
of the specified motion are defined in Adams simulation model, and the driving forces of
four actuators in prismatic joints are analyzed. The results of numerical analysis through
MATLAB shown in Figure 10a and the results of simulation through Adams shown in
Figure 10b are comparable and have good consistency. The simulation model used in
Adams is simplified, and the influence of step length on simulation results has different
weights in MATLAB and Adams, which can result in differences between the results.
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Figure 10. The driving forces of the prismatic joints computed by Adams. (a) Driving forces of the
prismatic joints computed by MATLAB; (b) driving forces of the prismatic joints simulated by Adams.

Besides all the driving forces, the support forces on each passive joint can be computed
simultaneously. The forces exerted on universal joints assembled on the base at position
A1, A2, A3, A4 and the spherical joint at position A5 of the 5th kinematic chain are
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illustrated in Figure 11a. It shows that the four surrounding subchains withstand more
forces than the chain {S}, which facilitates rotation of the spherical joint of chain {S} and
allows for more stable motion overall. Figure 11b demonstrates the forces acting on
universal joints at position C1 and spherical joints C2, C3, C4. In the whole motion period,
forces vary according to the motion, and there are no sudden changes in forces, which
expresses a stable and robust support.

Machines 2023, 11, x FOR PEER REVIEW 15 of 17 
 

 

parameters of the specified motion are defined in Adams simulation model, and the driv-
ing forces of four actuators in prismatic joints are analyzed. The results of numerical anal-
ysis through MATLAB shown in Figure 10a and the results of simulation through Adams 
shown in Figure 10b are comparable and have good consistency. The simulation model 
used in Adams is simplified, and the influence of step length on simulation results has 
different weights in MATLAB and Adams, which can result in differences between the 
results. 

 
Figure 10. The driving forces of the prismatic joints computed by Adams. (a) Driving forces of the 
prismatic joints computed by MATLAB; (b) driving forces of the prismatic joints simulated by Ad-
ams. 

Besides all the driving forces, the support forces on each passive joint can be com-
puted simultaneously. The forces exerted on universal joints assembled on the base at 
position 1 2 3 4,  ,  ,  A A A A  and the spherical joint at position 5A  of the 5th kinematic chain 
are illustrated in Figure 11a. It shows that the four surrounding subchains withstand more 
forces than the chain {S}, which facilitates rotation of the spherical joint of chain {S} and 
allows for more stable motion overall. Figure 11b demonstrates the forces acting on uni-
versal joints at position 1C  and spherical joints 2 3 4,  ,  C C C . In the whole motion period, 
forces vary according to the motion, and there are no sudden changes in forces, which 
expresses a stable and robust support. 

 
Figure 11. Supporting forces on each joint. (a) Forces on universal joints at position 1 2 3 4,  ,  ,  A A A A  
and spherical joint at position 5A ; (b) forces on universal joint at position 1C  and spherical joints 

2 3 4,  ,  C C C . 

Figure 11. Supporting forces on each joint. (a) Forces on universal joints at position A1, A2, A3, A4

and spher-ical joint at position A5; (b) forces on universal joint at position C1 and spherical joints C2,
C3, C4.

The supporting forces on each joint can be measured by force sensors and employed
in controlling the mechanism. The sensors should be arranged according to the working
situation and other limitations, such as temperature and space limitations. By solving all
the forces and torques of each joint, it provides the possibilities for designing various sensor
arrangement schemes.

6. Conclusions

In this paper, a redundant actuated parallel mechanism with five kinematic subchains
is introduced. The kinematics and dynamics of this mechanism are investigated in screw
coordinates using the principle of screw theory. Firstly, the kinematic parameters of each
kinematic joint within the mechanism, crucial for dynamic analysis, can be directly derived
through velocity screws. Then, a dynamic modeling approach using momentum screws is
proposed. Compared with conventional analysis methods like establishing Newton-Euler
equations, employing momentum in screw form offers significantly improved computa-
tional efficiency and provides a clearer physical explanation of the equilibrium and control
of multi-body systems. By utilizing screw coordinates, the coordination of kinematics and
dynamics is achieved on a unified platform. Leveraging the kinematic information, the
dynamic analysis can be carried out through the differential equations from the momentum
screws and force screws, enabling simultaneous determination of the relevant forces and
torques. Simulation results depict that the kinematics of each joint within this parallel
mechanism can be initially solved based on the given motion of the manipulator. Addition-
ally, the moving distance and required driving forces of each prismatic joint throughout
the motion cycle can also be derived, offering essential information for actuator selection
and configuration. Furthermore, the simulation results facilitate further optimization of
the mechanism, such as controlling driving forces and torques within acceptable ranges.
This method provides possibilities for the development of computational algorithms for
dynamic analysis applicable to different types of mechanisms, including planar and spatial,
as well as serial and parallel mechanisms.
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