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Abstract: Torque observation techniques have been widely employed to estimate the load torque
of flexible joints driven by a permanent magnet synchronous machine (PMSM). However, the
performance of the observer degrades significantly when the position and orientation of the robot
continuously changes, resulting in substantial irregular load variations. In this paper, an adaptive
torque observer based on fuzzy inference is proposed to overcome this issue. Instead of relying on
theoretical or numerical derivation, the relationship between the load inertia and the closed-loop
poles of the torque observer is expressed by fuzzy inference. This approach enables the flexible
configuration of the poles based on the load inertia, allowing for automatic tuning of the gain matrix.
Consequently, the observer can ensure robustness and maintain superior performance under varying
load conditions. The effectiveness of the proposed observer is validated through simulation and
experimental results. It shows that compared to the classical Luenberger observer, the proposed
adaptive torque observer can achieve more accurate observation results and exhibits a more dynamic
response in the presence of varying load inertia.

Keywords: adaptive torque observer; fuzzy inference; Luenberger observer; online inertia identification;
flexible joint

1. Introduction

Collaborative robots driven by a permanent magnet synchronous machine (PMSM) are
now widely used in various applications, particularly in industrial automation. To achieve
superior external force control and motion control performance while ensuring the safety
of human–robot collaboration, the utilization of joint torque feedback (JTF) technology is
crucial and has gained significant recognition in the robotics community [1–3]. Real-time
measurement or estimation of the joint load torque is necessary in order to achieve precise
JTF control performance.

Currently, torque sensors based on strain gauges [4], optical sensors [5], or encoders [6]
are commonly employed to measure joint torque. However, the use of torque sensors
unavoidably increases the size, weight, and cost of the joints, while also reducing their
reliability and maintainability. Furthermore, the inclusion of torque sensors introduces an
additional elastic chain that affects the accuracy of joint control.

To tackle this issue, the industry has shifted its research focus towards torque obser-
vation techniques, which have emerged as an important research direction due to their
efficiency, cost-effectiveness, and convenience in obtaining the joint load torque with mini-
mal mechanical modifications. Several torque observation techniques have been proposed
to estimate the load torque of flexible joints, such as a disturbance observer [7], sliding
mode observer [8], Kalman filter [9], and Luenberger observer [10].
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Due to its simplicity in parameter selection and flexibility in implementation, the
Luenberger observer is widely used in industrial applications. However, it lacks sufficient
robustness against measurement noise and parameter mismatch. Achieving proper perfor-
mance requires a suitable selection of the observer gain matrix, which becomes challenging
under various load conditions. Researchers have conducted exploratory research to address
these issues. In [11], the left-shifting pole-placement method, which is widely used, is
implemented. The observer gain matrix is considered as a general function to satisfy multi-
ple conditions. However, it lacks analysis and comparison of the observer performance
in the full-speed region. In [12], the gain matrix is derived at a specific rotational speed
and scaled linearly with the speed as it varies. But this approach may cause instability
due to the high imaginary part of observer poles. Thus, the root locus for the entire speed
range is used to optimize the pole assignment, considering the trade-off between response
time and robustness. In [13], an adaptive law is deduced based on adaptive control theory
by correcting the error between the adjustable model and the reference model. Conse-
quently, the gain matrix of the observer can be calculated accordingly. In [14], the observer
gain matrix is calculated through a series of numerical equations derived by adopting a
proportional and integral adaptive scheme. Additionally, some scholars have employed
optimization algorithms to design the Luenberger observer gain matrix, for instance, the
grey wolf optimizer algorithm [15], the numerically nonlinear least squares algorithm [16],
and the H∞ optimization algorithm [17].

The fuzzy system is recognized for its ability to express complex relationships that
are not easily captured by classical logic. It is particularly suitable for situations involving
significant uncertainties or unknown variations in plant parameters and structures [18–21].
In this paper, the relationship between the load and the closed-loop poles of the torque
observer is expressed by using fuzzy inference, rather than relying on theoretical or nu-
merical derivation. Thus, an adaptive load torque observer is proposed and implemented,
demonstrating its capability to ensure robustness and maintain superior performance
across various load conditions.

The paper is organized as follows. In Section 2, the dynamic model of the flexible
joint is presented. Then, in Section 3, the shortcoming of the classical Luenberger torque
observer under load variations are presented. In Section 4, to address the shortcoming, an
adaptive torque observer—which is based on the classical Luenberger observer structure,
combining the fuzzy inferencer and online inertia identification technique—is proposed and
theoretically explained. Finally, the proposed observer is validated through simulations and
experiments, consistently demonstrating superior performance under wide load variations,
as shown in Section 5.

2. System Modeling of Flexible Joint

Figure 1 exhibits a typical transmission model of the flexible joint driven by a PMSM
for the use of the cooperative robot, which is mainly composed of a servo motor, a controller,
a harmonic drive, a brake, and two encoders. In this model, the harmonic drive is equivalent
to the damper-spring system with the stiffness Ks, the damping Ds, the transmission ratio
N, and the backlash b. The electromagnetic torque TM and the shaft torque Ts act together
on the motor, whose moment of inertia is JM and friction torque coefficient is DM, to decide
the motor speed ωM. Meanwhile, the load torque TL and the shaft torque Ts act together on
the joint, whose moment of inertia is JL and friction torque coefficient is DL, to decide the
load speed ωL.
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Figure 1. The transmission model of the flexible joint driven by PMSM.

The system dynamic model of the flexible joint is depicted in Figure 2. Since the
collaborative robot joints utilize a harmonic drive with a relatively large transmission ratio
to maximize torque density, the transmission backlash can be neglected. As a result, the
mathematical model of the system can be derived as Equations (1)–(5):

JM
.

ωM = TM − DMωM −
1
N

TS (1)

JL
.

ωL = TS − DLωL − TL (2)

TS = KS(
θM
N
− θL) + DS(

.
θM
N
−

.
θL) (3)

ωM =
.
θM (4)

ωL =
.
θL (5)

Figure 2. The dynamic model of the flexible joint.

It is assumed that the load torque TL = 0 Nm, the transfer function between motor
speed ωM, and motor electromagnetic torque TM can be derived as Equation (6):

ωM
TM

=
N2(JLs2 + DLs + DSs + KS)

(JLs + DL)(KS + DSs) + (JMs + DM)((JLs + DL)s + DSs + KS)
(6)
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Assuming that the system damping DM, DS, and DL is neglected, the eigenvalues λp
that determine the behavior of the joint model shown in Equation (6) are provided by:

λp1,2 = 0 (7)

λp3,4 = ±j

√
(JM + 1

N2 JL)Ks

JM JL
(8)

3. Classical Luenberger Torque Observer
3.1. Observer Design

Based on the system dynamic model described in Equations (1)–(5), the state space
equations of the flexible joint can be written as:

.
x = Ax + Bu
y = Cx

(9)

where x is the state vector, A is the state matrix, B is the control matrix, C is the output
matrix, u is the input signal matrix, and y is the output signal matrix.

The full-order Luenberger observer for state variables x can be defined by the state
equations shown below:

.
x̂ = Ax̂ + Bu + L(y− ŷ)

= (A− LC)x̂ + Bu + Ly
(10)

where
.
x̂ = [

.
ω̂M

.
ω̂L

.
T̂ J

.
T̂L]

T
, u = TM, and y = ωM. The state matrix A, control matrix

B, output matrix C, and gain matrix L of the Luenberger observer are provided as follows:

A =


−DM

JM
0 − 1

NJM
0

0 −DL
JL

1
JL

− 1
JL

K
N −K 0 0
0 0 0 0

, B =


1

JM
0
0
0

, C = [1 0 0 0], L = [l1 l2 l3 l4]
T (11)

The symbol ˆ denotes the estimated value of the state variable, and L is the observer
gain matrix designed to achieve the required performance of the observer. Since both the
matrixes [B AB A2B A3B] and [C CA CA2 CA3] are full rank, the plant system is controllable
and observable.

The estimation error of state variables is e = x− x̂. To ensure that the observation error
of the state variables converges to zero, the observer gain matrix needs to be reasonably
designed. As we know, the pole placement method is a well-established method for gain
matrix design. According to this method, the closed-loop poles λP of the observer should
be configured in the negative half-axis region, that is Re[λ(A-LC)] < 0, to make the state
matrix (A-LC) of the observer asymptotic stable. Thus, the observer gain matrix L can
be solved according to Equation (12). To reduce matrix operation and improve the DSP
calculation efficiency of the servo driver, the poles of the observer are usually configured at
the same point on the negative half-axis. As a result, it can be obtained that:

f (s) = |sI − (A− LC)| = (s− λ)4 (12)

According to Equation (12), the gain matrix L can be computed as follows:

l1 = −4λ− DM
JM
− DL

JL
(13)

l2 = −
NJM(D3

L + 4λD2
L JL + 6λ2DL J2

L + 4λ3 J3
L − 2DL JLKS − 4λJ2

LKS)

J3
LKS

(14)
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l3 = −
N2D2

L JM + 4N2λDL JL JM + 6N2λ2 J2
L JM − J2

LKS − N2 JL JMKS

NJ2
L

(15)

l4 = −Nλ4 JM JL
KS

(16)

The aforementioned equations enable the closed-loop poles of the observer to be placed
in desired positions. However, it is important to consider the distance between the pole
configuration and the origin of the observer. If the distance is less than that of the plants, the
observer will be unable to accurately capture the real-time response of the system state. On
the other hand, if the observer pole configuration is too large, it will amplify measurement
noise, leading to erroneous observation results. Therefore, it is necessary to allocate
the observer poles to account for parameter variations while maintaining performances.
Furthermore, it is crucial to note that both measurement noise and parameter mismatches
significantly impact the stability and effectiveness of the pole configuration. In other words,
the key aspect of designing the torque observer for the flexible joint lies in the reasonable
allocation of closed-loop poles considering parameter variations.

3.2. Observer Performance Analysis

The torque observer utilized in the flexible joint demonstrates reasonable robustness,
as discussed in Section 3.1. However, parameter mismatches can lead to an unstable
dynamic response. The stiffness Ks of the harmonic drive, the moment of inertia JM,
and the friction torque coefficient DM can be accurately obtained from the manufacturer
datasheet. Nevertheless, in many applications, the load of the joint varies greatly, which
can significantly degrade the performance of the torque observer. If the gain matrix of the
observer remains fixed, the performance cannot be guaranteed when the load inertia of
the flexible joint is substantially higher than the original inertia. The following provides a
quantitative explanation, as derived from Equation (2):

TL = TS − DLωL − JL
.

ωL
= TS − (D̂L + ∆DL)ωL − ( ĴL + ∆JL)

.
ωL

(17)

where ∆JL = JL − ĴL is the difference between the nominal and actual load inertias, and
∆DL = DL − D̂L is the difference between the nominal and the actual load friction torque
coefficients. It is important to note that when there are differences between the nominal
and actual parameters, the estimated load torque will be contaminated by inaccurate
system parameters.

An offline parameter identification method is used to calibrate the load friction torque
coefficients. The result of the calibration test is provided in Figure 3. According to the
test result, the viscous friction torque coefficient of the joint is 5.5 × 10−4 Nm·s/rad
and the Coulomb torque friction coefficient is 0.0435 Nm. The speed and friction torque
correspondence table can be used to compensate for torque observation error caused by
the mismatch of friction coefficients.

It should be noted that during the operation of the cooperative robot, the position and
orientation of the robot arm continuously changes. Thus, the equivalent load inertia and
load torque of each joint also undergo constant variations. Therefore, the offline parameter
identification method is not suitable in this scenario.

Subsequently, simulation and experimental results are used to estimate the influence
of load inertia mismatch on observer performance. The specification of the flexible joint is
presented in Table 1. In the simulation, a constant load is applied to the flexible joint at time
t = 0 s, with the load torque TL = 43 Nm and the load inertia JL = 2 kg·m2. Band-limited
white noises are introduced to the measurement signal of motor speed ωM and motor
current IM, simulating the measurement noise from encoders and current sensors.
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Figure 3. The measurement of the friction torque of the flexible joint.

Table 1. Specification of the flexible joint.

Parameter Value Parameter Value

Rated speed nR 33 rpm Motor inertia JM 1.2 × 10−4 kg·m2

Rated current IR 6 A Motor torque constant kT 0.141 Nm/A
Rated torque TR 57 Nm Motor flux linkage ϕ 8.3 × 10−3 Wb

Rated power PR 200 W Motor viscous coefficient DM 1.8 × 10−5 Nm·s/rad
Motor resistance R 0.18 Ω Joint viscous coefficient DL 5.5 × 10−4 Nm·s/rad
Motor inductance L 0.3 mH Transmission ratio N 101
DC bus voltage VR 48 V Transmission stiffness KS 28,000 Nm/rad

When the closed-loop poles of the torque observer are configured at λP = −50, the
load torque can be accurately estimated within 0.4 s if there is no parameters mismatch of
load inertia JL, as depicted by the solid line in Figure 4a. The dotted line and dashed line in
Figure 4a represent the simulation results when the load inertia is changed to 0.2 times and
5 times, respectively. It can be seen that when there is a load inertia mismatch (Jset = 0.2 JL),
the observer torque exhibits a larger overshoot and takes longer to reach a steady state.
Conversely, if the load inertia of the torque observer is set to a value greater than the actual
inertia (Jset = 5 JL), the observer torque curve remains similar, although the estimated torque
error is larger.

Figure 4. Estimated torque comparisons of the classical Luenberger torque observer in the case of
Jset = 0.2 JL, Jset = JL, and Jset = 5 JL (simulation). (a) λP = −50. (b) λP = −200.
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While the poles of the observer are set at λP = −200, as illustrated in Figure 4b, the
load torque is accurately estimated within 0.1 s, which is significantly faster than the poles
are configured at λP = −50. This is because placing the poles farther results in a larger
gain matrix for the observer, leading to a faster response. However, it should be noted
that when the load inertia of the torque observer is set to a value greater than the actual
inertia (Jset = 5 JL), a considerably higher estimated torque error occurs, primarily due to
measurement noise.

To verify the simulation results in Figure 4, experimental results are presented under
the same load inertia variations in Figure 5. In the experiment, the sampling periods for
the position-loop and speed-loop are 200 µs, while the sampling period of the current-loop
is 100 µs. The joint is operated in position control mode to keep the load test tooling
in a horizontal position while a 7.5 kg mass disc is mounted on it, of which the load
torque TL = 43.6 Nm and the load inertia JL = 2.15 kg·m2. When the poles of the observer
are configured at λP = −50, it can be observed from Figure 5a that the estimated load
torque requires over 6 s oscillations to stabilize when Jset = 0.2 JL. This is due to the
relatively small observer gain in this pole configuration, resulting in a long stabilization
time. However, for Jset = JL and Jset = 5 JL, the observer gain is appropriate without
amplifying the measurement noise. On the other hand, when the observer poles are set at
λP =−200, as shown in Figure 5b, the estimated load torque stabilizes within approximately
0.1 s, which is much faster compared to the configuration with λP = −50 when Jset = 0.2 JL
and Jset = JL. However, when Jset = 5 JL, the large observer gain leads to an overshoot of
nearly 100% and significantly amplifies the measurement noise.

Figure 5. Estimated torque comparisons of the classical Luenberger torque observer in the case of
Jset = 0.2 JL, Jset = JL, and Jset = 5 JL (experiment). (a) λP = −50. (b) λP = −200.

The simulation and experimental results demonstrate that the classical Luenberger
torque observer, with a fixed gain matrix L, exhibits deteriorated performance when there
are significant variations in the load inertia. Consequently, to achieve more accurate
load torque observation results, it is necessary to identify the load inertia and employ an
adaptive pole placement strategy. By adopting the observer poles configuration based on
the varying load inertia, it becomes possible to enhance the performance and obtain more
precise estimations of the load torque.

4. Fuzzy Inference-Based Torque Observer

As discussed in Section 3.2, the pole placement method is utilized for designing the
gain matrix of the torque observer. Based on control theory, the poles of the observer
are typically selected to converge 10 times faster than those of the plant system, striking
a tradeoff between responsiveness and stability [22]. In this section, an adaptive load
torque observer is proposed, as shown in Figure 6. The main difference between the
proposed torque observer and the classical Luenberger torque observer is that the gain
matrix L can be autotuned online as the load varies. For the classical Luenberger torque
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observer, the gain matrix L is derived theoretically or numerically at rated condition. For
the proposed observer, the relationship between the load and the gain matrix L is expressed
by using the fuzzy inferencer with online inertia identification. This approach enables
the establishment of a practical performance relationship between the closed-loop poles
λP and the load inertia JL. By leveraging expert knowledge derived from simulation
and experimental results, the adaptive observer can ensure superior performance across
various load conditions. The fuzzy inference method is chosen for its effective handling of
nonlinear control tasks and suitability for modeling and controlling complex, ill-defined
dynamic processes [23,24].

Figure 6. Adaptive torque observer schematic diagram for the flexible joint.

4.1. Online Inertia Identification

To mitigate the impact of load inertia mismatch, an online parameter identification
method is necessary. In [25], an inertia identification method based on the speed response is
presented which employs sinusoidal rotational speed as excitation. In [26], the researchers
utilize a disturbance observer to estimate external disturbances and friction in the model,
subsequently obtaining an estimate of inertia. Comparatively, the sliding mode observer
offers advantages such as robustness against disturbances and low sensitivity to param-
eter variations throughout the system [27]. Additionally, the model reference adaptive
method [28] and recursive least squares method [29] are viable options for online inertia
identification in servo systems.

In this paper, the forgetting factor recursive least squares (FFRLS) method, which
is straightforward to implement and avoids data saturation in the recursion process, is
adopted to identify the load inertia. Given the sufficiently high sampling frequency of the
servo driver, the inertia identification expression for the flexible joint, based on FFRLS, can
be derived as follows:

ωM(n) = (1− Dts

J
)ωM(n− 1) +

ts

J
TM(n− 1)− ts

J
TL(n− 1) (18)

where ts is the sampling time. According to the FFRLS method design rules, Equations (19)–(23)
can be obtained:

θ(n) = θ(n− 1) + K(n) · [y(n)− ϕT(n) · θ(n− 1)] (19)

P(n) =
1
λ
[I − K(n) · ϕT(n)] · P(n− 1) (20)
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K(n) =
P(n− 1) · ϕ(n)

λ + ϕT(n) · P(n− 1) · ϕ(n) (21)

θ(n− 1) = [1− Dts

J
,

ts

J
,

ts

J
TL(n− 2)]

T
(22)

ϕ(n) = [ωM(n− 1), TM(n− 1),−1]T (23)

where θ(n) is the estimated value of the parameters at n time, y(n) is the measured motor
speed, ϕ(n) is the input matrix, P(n) is the covariance matrix, K(n) is the gain vector, and λ
is the forgetting factor.

The tracking ability and parameter fluctuation of FFRLS are greater with a smaller
forgetting factor λ, while they decrease with a larger forgetting factor λ. It should be noted
that the identified inertia, as stated in Equation (18), represents the total inertia of the
flexible joint with the load. Once the motor inertia JM is obtained from the manufacturer
datasheet, the load inertia JL can be calculated accordingly.

Jest =
ts

θ̂K(2)
= JM +

1
N2 JL (24)

4.2. Adaptive Gain Matrix Design with Fuzzy Inference

A fuzzy inferencer is designed to describe the autotuning function for the configured
poles. The fuzzy inferencer follows a Mamdani type, which has one input and one output.
With the online inertia identification technique, the load inertia JL is achieved and used as
the input of the fuzzy inferencer. The pole λP is utilized as the output of the fuzzy inferencer.

By conducting simulation and experimental tests, the appropriate groups of member-
ship functions and fuzzy rules are determined. Considering the load limit of the designed
flexible joint, the range of JL satisfies JL < 5 kg·m2, and the corresponding fuzzy sets are
denoted as S0, S1, S2, S3, S4, and S5. The fuzzy set of λP can be chosen as S0, S1, S2, S3, S4,
and S5, in which the range is −350 < λP < −100. The membership functions for the input
and output variables are represented by triangular membership functions. The locations of
the fuzzy membership functions for both input and output, which are evaluated by testing
and expert knowledge, are depicted in Figure 7.

Figure 7. Membership functions. (a) Membership function of load inertia JL. (b) Membership function
of pole λP.

The fuzzy inference rules are as follows. If JL is Si, then λP is Si (where i = 0, 1, 2, 3, 4, 5).
For each input value, the rule base assigns the corresponding state, and the precise output
value is calculated using the defuzzification process. The centroid method, a commonly
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used approach, is employed as the defuzzification strategy, ensuring both sensitivity and
simplicity. The output value λP is calculated as follows:

λP =

∑
i

µ(λP_i)λP_i

∑
i

µ(λP_i)
(25)

where µ(λP_i) is the membership value for the point λP_i in the universe of discourse.

5. Simulation and Experimental Results
5.1. Simulation Results

The specifications of the flexible joint are presented in Table 1. During the simulation,
the joint is operated under constant speed conditions (ωL = 9.9 rpm), and the load torque
is set as TL* = 43.6 × sin(πt/3) Nm at t = 0.5 s. The other simulation parameters remain
consistent with those described in Section 3.2. The simulation result of online identification
of load equivalent inertia based on FFRLS is depicted in Figure 8. It is shown that the
inertia identification method (dash line) achieves a satisfactory estimation effect. However,
it should be noted that a small forgetting factor λ leads to a rapid identification but
compromises the algorithm′s stability.

Figure 8. Online inertia identification results with different forgetting factors (simulation).

By employing the fuzzy inferencer designed in Section 4.2, an adaptive pole placement
configuration is implemented using online identification of load inertia as input. Initially,
the pole location of the observer is set to λP = −250, which yields good observer perfor-
mance when the load inertia is JL = 2 kg·m2. Subsequently, the load inertia changes to
JL = 0.05 kg·m2 while maintaining the same load torque, and the estimated torque com-
parison between the classical Luenberger torque observer and proposed torque observer
when load inertia varies are shown in Figure 9a. It can be found that with the fuzzy
inference-based adaptive law, the configured closed-loop poles of the proposed observer
λP change from −250 to −329, resulting in the autotuning of the gain matrix. As a result,
the proposed torque observer exhibits reduced overshoot and dynamic oscillation due to
the variations in load inertia.

Similarly, the results observed when the load inertia changes to JL = 5 kg·m2, in
addition to the estimated torque comparison, are presented in Figure 9b. The configured
closed-loop poles of the proposed observer λP change from −250 to −116, enabling the
autotuning of the gain matrix. The conclusion remains consistent, indicating that the
proposed torque observer achieves better performance with the adaptive law. Additionally,
it should be noted that the presence of measurement noise leads to a smaller estimated error.
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Figure 9. Estimated torque comparison between the classical Luenberger torque observer
and proposed torque observer when load inertia varies (simulation). (a) JL_acu = 0.05 kg·m2.
(b) JL_acu = 5 kg·m2.

5.2. Experimental Results

To further evaluate the performance of the proposed observer, a test is conducted using
the experimental platform depicted in Figure 10. The type of torque sensor is M2210C9.
The joint is controlled by a servo drive, in which the DSP STM32F407ZET6 is utilized for
implementation with a switching frequency of 10 kHz and a clock frequency of 168 MHz.
The sampling periods for the position loop and speed loop are 200 us, and the sampling
period of the current loop is 100 us. Two absolute encoders are employed to measure the
position of the motor and the joint, with the motor encoder having a resolution of 17 bits
and the joint encoder having a resolution of 18 bits. It should be noted that the torque
sensor is utilized to obtain the actual value of load torque, which is then compared to the
estimated torque.

Figure 10. Experimental platform setup of the flexible joint.

The joint specification remains the same as stated in Table 1, and other experimental
parameters for the test align with those mentioned in Section 3.2. In the test scenario, a load
mass disc is attached to the load test tooling through a bolted connection. The load test
tooling is constructed from aluminum alloy and has a weight of 1.2 kg, with the distance
from the barycenter to the flexible joint measuring 0.24 m. The combined weight of the bolt
and nut is 0.9 kg with a distance of 0.5 m from the barycenter to the flexible joint.

Figure 11 illustrates the experimental result of online inertia identification using
different forgetting factors when the actual inertia of the system is 2.15 kg·m2. It shows
that a small forgetting factor λ yields a real-time response. Although there exists a small
error between the identified inertia and the actual inertia, it has minimal impact on the
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performance of the torque observer. This is because the proposed adaptive observer is less
sensitive to variations in load inertia.

Figure 11. Online inertia identification results with different forgetting factors (experiment).

Adopting the same test method as described in Section 3.2, the joint is operated in
position control mode to maintain the horizontal position of the load test tooling with
various mass discs attached to it. The results of the estimated load torque are presented in
Table 2, while the actual load torque is directly measured by the torque sensor.

Table 2. Estimated results of proposed load torque observer under static load.

Load Mass Disc/kg Actual Load
Torque/Nm

Estimated Load
Torque/Nm Error

2.5 19.1 18.4 −3.6%
5 31.4 30.6 −2.6%
7 43.6 42 −3.7%

In the experimental conditions, the flexible joint operates in constant speed mode
(ωL = 9.9 rpm). At first, a 2.5 kg mass disc is attached, resulting in a load torque TL = 19.1 Nm.
With the online inertia identification algorithm, the actual inertia of the load is determined
to be JL = 0.9 kg·m2. The experimental performances comparison between a classical
Luenberger torque observer and the proposed torque observer when load inertia varies
are depicted in Figure 12a. The initial pole location of the classical Luenberger observer is
λP = −500, leading to significant measurement noise and estimated torque error. However,
with the application of the adaptive law based on fuzzy inference, the configured poles λP
are adjusted to −305 of the proposed observer. Consequently, the estimated load torque
TL_est = 18.5 Nm with an estimated error of 3.1%. The autotuning of the gain matrix prevents
the amplification of measurement noise in the observation results.

Similarly, a test is conducted with a load of 7.5 kg, where the load torque TL = 43.6 Nm
and the actual inertia JL = 2.15 kg·m2. The estimated torque comparison is shown in
Figure 12b. The initial closed-loop poles location of the classical Luenberger observer
is λP = −30, resulting in a significant time delay in the observed torque. However, by
employing an adaptive gain matrix L, the configured poles of the proposed observer λP are
adjusted to −235. As a result, the estimated load torque TL_est = 42.5 Nm with an estimated
error of 2.5%, showcasing a considerable enhancement in the observer performance.

According to the simulation and experimental results, it can be concluded that the
proposed adaptive torque observer for flexible joint exhibits superior dynamic performance
across various load conditions.
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Figure 12. Estimated torque comparison between the classical Luenberger torque observer
and proposed torque observer when load inertia varies (experiment). (a) JL_acu = 0.9 kg·m2.
(b) JL_acu = 2.15 kg·m2.

6. Conclusions

The classical Luenberger observer has been proven to yield inaccurate observation
results and poor dynamic response when confronted with variations in the load of flexible
joints driven by a PMSM. To address this issue, an adaptive torque observer based on
fuzzy inference is proposed and implemented in this paper. The approach leverages the
FFRLS method for online identification of the load inertia JL, within the framework of
the classical Luenberger observer. Subsequently, a fuzzy inference system is utilized to
describe the relationship between the load inertia JL and the closed-loop poles λP. This
enables the flexible configuration of the gain matrix L of the observer in accordance with
the load conditions. Consequently, the observer exhibits superior stability and dynamic
performance across a wide range of load variations. Both simulation and experimental
results confirm the robustness of the proposed torque observer in achieving more accurate
observations and more dynamic responses, particularly in scenarios where the load inertia
undergoes significant changes.
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