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Abstract: We review the emergence of hypergeometric structures (of F4 Appell functions) from the
conformal Ward identities (CWIs) in conformal field theories (CFTs) in dimensions d > 2. We illustrate
the case of scalar 3- and 4-point functions. 3-point functions are associated to hypergeometric systems
with four independent solutions. For symmetric correlators, they can be expressed in terms of a
single 3K integral—functions of quadratic ratios of momenta—which is a parametric integral of three
modified Bessel K functions. In the case of scalar 4-point functions, by requiring the correlator to
be conformal invariant in coordinate space as well as in some dual variables (i.e., dual conformal
invariant), its explicit expression is also given by a 3K integral, or as a linear combination of Appell
functions which are now quartic ratios of momenta. Similar expressions have been obtained in the
past in the computation of an infinite class of planar ladder (Feynman) diagrams in perturbation
theory, which, however, do not share the same (dual conformal/conformal) symmetry of our solutions.
We then discuss some hypergeometric functions of 3 variables, which define 8 particular solutions of
the CWIs and correspond to Lauricella functions. They can also be combined in terms of 4K integral
and appear in an asymptotic description of the scalar 4-point function, in special kinematical limits.

Keywords: conformal field theory; quantum symmetries; generalized hypergeometric equations

1. Introduction

Conformal symmetry has been important in the study of critical phenomena as well as in
string theory, over about fifty years [1,2]. In ordinary string theory it has played a key role in its
two-dimensional version (d = 2), with the identification of an infinite-dimensional Virasoro algebra
which has been crucial for the characterization of the dynamics of the theory [3].

The interest in conformal field theories (CFTs), however, has developed in parallel but also
independently of string theory, and in d = 2 the presence of such enhanced symmetry has allowed, on
the other hand, to come up with important predictions about the behavior of several statistical models
at their critical points, accounting for many of their universality properties. This, in general, allows the
computations of their critical exponents and the characterization of their correlation functions [4,5].

CFT descriptions, as just mentioned, describe systems which develop, at a critical point,
long-range quantum correlations with power-like decay laws as functions of their separation
(coordinate) points. The absence of any dimensionful parameter in the theory only allows correlators
characterized by an algebraic—rather than exponential—decay as a function of distance. These are
controlled by some exponents related to the scaling dimensions of the field operators appearing in the
quantum average. A set of primary fields—together with their descendents—and their correlation
functions, provide information about the quantum fluctuations of the theory. The products of two
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primary operators describing such fluctuations obey some operatorial relations defined by an operator
product expansion (OPE) which is entirely dependent on the parameter of a specific CFT (couplings,
scaling dimensions), also called “the conformal data” [6].

The OPE is at the basis of the so-called “conformal bootstrap” program [6–10], whose goal is to
generate correlators of higher point starting from the lower point ones (2 and 3-point functions). 2- and
3- point functions are essentially fixed by the symmetry, which acts on their explicit expressions via a
set of Conformal Ward identities (CWIs) [11,12]. These can be generalized to n-point functions [13].
In coordinate space—we assume them to be defined in Rd—such equations are of first-order and
become of second-order in momentum space.

The goal of this review is to describe the CWIs of three-point functions in momentum space,
illustrating the hypergeometric character of such equations, which could be of interest from the
mathematical side.

Traditionally, the critical behavior of a certain theory has been investigated using the
renormalization group approach [14,15]. In this approach, starting from a certain Hamiltonian of a
given system, one builds a sequence of Hamiltonians, each defined at a certain distance scale (λn),
Hn ≡ Hλn , through the process of rescaling and decimation of its degrees of freedom, in order to
describe the flow of the theory as we vary the fundamental scale. One looks for the fixed points of the
sequence Hn̄+1 = Hn̄ (for all n > n̄), with Hn̄ the fixed-point Hamiltonian. The scaling dimensions of
the theory are identified by an analysis of its quantum fluctuations using the fixed-point Hamiltonian
of the model.

Conformal symmetry defines an independent path compared to the previous one. Exploiting the
fact that at certain critical point a given system is characterized by a dynamics which is controlled by
such symmetry, one is able to describe the behavior of its correlation functions without any additional
input. By the use of the OPE in a CFT and its constraints in various channels—there are three channels
for a four-point function, for instance—it is possible to derive—independently of any renormalization
group analysis—the critical exponents of the theory. This approach requires full knowledge of the
conformal blocks (or conformal partial waves) of a certain theory, which is a topic of central relevance
in the study of any CFT [8].

The Momentum Space Analysis

Most of this analysis, so far, has been developed in coordinate space.
One may wonder why one should bother to reformulate such CFTs in momentum space or in

other spaces, such as Mellin space [16–18]. These new approaches are currently under investigation
from many different sides [19–27], including their direct links to cosmology [28–32].

The reason is twofold. First, CFT correlator in momentum space offers a description of a
correlation function which is quite close to that provided by ordinary quantum field theories, in terms
of scattering amplitudes and of S-matrix elements, in which conformal symmetry plays a significant
guiding role [33–35]. The second is related to issues concerning the UV behavior of such theories,
described when all the points of a given correlator coalesce. This induces a breaking of the classical
conformal symmetry at the quantum level, with the appearance of a conformal anomaly [36–38].

The interest in CFT in higher dimensions has grown significantly after the formulation of the
Anti-De Sitter (AdS) CFT duality [23,39,40]. For d > 2, conformal symmetry is finite-dimensional, and
the dynamics of such CFTs are far less constrained. Nevertheless, the correlation functions of CFTs
are constrained by a finite set of conformal Ward identities (CWIs) that we are going to discuss in the
next sections.

In the case of tensor correlators, additional symmetries induce additional WI’s, the canonical WIs,
due to Noether symmetries which must also be respected. They are related to the Poincaré symmetry.

These are hierarchical, and connect n-point functions to n− 1-point functions, and so on. In this
brief review, we are going to illustrate the key steps that take to the identification of a generalized
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hypergeometric structure that emerges from the equations associated with such CWIs once we turn to
momentum space.

We will be focusing our attention and summarize the content of some original work on the subject
for scalar [41] and tensor 3-point functions in d = 4 [42–44], which is relevant for the analysis of the
implications of conformal symmetry in several field theory contexts. Details and derivations can be
found in those works. Our goal will simply be to outline some of the main results of these analyses
which may raise the interest of mathematicians.

Discussions of hypergeometric systems of two variables can be found, for instance, in [45]. A more
extensive review of these developments, with a detailed description of the results that we are going to
summarize here, will be presented by us elsewhere.

2. Conformal Ward Identities (CWIs)

For a discussion of the general features of CFTs in d ≥ 2, we refer to the several reviews which
have been published in the last few years [10,46,47]. Most of them deal with the analysis of such
theories in coordinate space. The momentum space approach to CFT is a more recent area of research.
In d = 4 it has been investigated in [41,42] and [43,44,48,49] and in more recent work in [50,51]. The
hypergeometric structure of the CWIs has been identified independently in [41] and [42], as already
mentioned, in the case of 3-point functions. The identification of generalized hypergeometric solutions
of the CWIs for 4-point functions, which share a structure typical of 3-point functions, and of the
homogenous solutions of Lauricella type, have been discussed in [51].

The CWIs are composed of special conformal and dilatation WIs, beside the ordinary (canonical)
WI’s corresponding to Lorentz and translational symmetries, that we are going to specify below. We
recall, for instance, that in d = 4 conformal symmetry is realized by the action of 15 generators, 10 of
them corresponding to the Poincaré subgroup, 4 to the special conformal transformations and 1 to the
dilatation operator. In the infinitesimal form, they are given by

x′µ(x) = xµ + aµ + ωµνxν + σxµ + bµx2 − 2b · x xµ, (1)

and they can be expressed as a local rotation

∂x′µ

∂xν
= Ω(x)Rµ

ν (x), (2)

where µ = 1, 2, . . . , d, and Ω(x) and Rµ
ν (x) are, respectively, finite position-dependent rescalings and

rotations with
Ω(x) = 1− λ(x), λ(x) = σ− 2b · x, (3)

and bµ is a constant d-vector. The transformation in (1) is composed of the parameters aµ for the
translations, ωµν = −ωνµ for boosts and rotations, σ for the dilatations and bµ for the special conformal
transformations. The first three terms in (1) define the Poincaré subgroup, obtained for Ω(x) = 1,
which leaves invariant the infinitesimal length. For a general d, the counting of the parameters of
the transformation is straightforward. We have d(d− 1)/2 ordinary rotations associated to a SO(d)
symmetry in Rd—with parameters ωµν—d translations (Pµ) with parameters aµ, d special conformal
transformations Kµ (with parameters bµ), and one dilatation D whose corresponding parameter is
σ, for a total of (d + 1)(d + 2)/2 parameters. This is exactly the number of parameters appearing in
general of SO(2, d) transformation. Indeed one can embed the actions of the conformal group of d
dimensions into a larger Rd+2 space, where the action of the generators is linear on the coordinates
xM (M = 1, 2, . . . , d + 2) of such space, using a projective representation. This is at the basis of the
so-called embedding formalism. We refer to [10] for more details. By including the inversion (I)

xµ → x′µ =
xµ

x2 , Ω(x) = x2, (4)
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we can enlarge the conformal group to O(2, d). Special conformal transformations can be realized by
considering a translation preceded and followed by an inversion.

We will focus our discussion mostly on scalar primary operators of a quantum CFT, acting on an
certain Hilbert space, which, under a conformal transformation will transform as

Oi(x)→ O′(x′) = λ−∆iO(x) (5)

with specific scaling dimensions ∆i. We start this excursus on the implication of such symmetry on the
quantum correlation functions of a CFT, by considering the simple case of a correlator of n primary
scalar fields Oi(xi), each of scaling dimension ∆i

Φ(x1, x2, . . . , xn) = 〈O1(x1)O2(x2) . . . On(xn)〉 . (6)

In all the equations, covariant variables will be shown in boldface.
3- and 4-point functions (beside 2-point functions) in any CFT are significantly constrained in

their general structures due to such CWI’s. For scalar correlators, the special CWI’s are given by first
order differential equations

Kκ(xi)Φ(x1, x2, . . . , xn) = 0 (7)

with

Kκ(xi) ≡
n

∑
j=1

(
2∆jxκ

j − x2
j

∂

∂xκ
j
+ 2xκ

j xα
j

∂

∂xα
j

)
(8)

being the expression of the special conformal generator in coordinate space.
The corresponding dilatation WI on the same n-point function Φ is given by

D(xi)Φ(x1, . . . , xn) = 0 (9)

with

D(xi) ≡
n

∑
i=1

(
xα

i
∂

∂xα
i
+ ∆i

)
(10)

for scale covariant correlators. In the case of scale invariance the dilatation WI takes the form

D0(xi)Φ(x1, . . . , xn) = 0 (11)

with D0(xi) given by

D0(xi) ≡
n

∑
i=1

(
xα

i
∂

∂xα
i

)
. (12)

Such CWIs are sufficient to completely determine the expression of a scalar three-point function
of primary operators Oi of scaling dimensions ∆i (i = 1, 2, 3) in the form

〈O1(x1)O2(x2)O3(x3)〉 =
C123

x∆t−2∆3
12 x∆t−2∆1

23 x∆t−2∆2
13

, ∆t ≡
3

∑
i=1

∆i, (13)

where xij = |xi − xj| and C123 is a constant which specifies the CFT. For 4-point functions the same
constraints are weaker, and the structure of a scalar correlator is identified modulo an arbitrary function
of the two cross ratios

u(xi) =
x2

12x2
34

x2
13x2

24
v(xi) =

x2
23x2

41
x2

13x2
24

. (14)
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The general solution, allowed by the symmetry, can be written in the form

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 = h(u(xi), v(xi))
1(

x2
12
) ∆1+∆2

2
(
x2

34
) ∆3+∆4

2

. (15)

where h(u(xi), v(xi)) remains unspecified.
For the analysis of n-point function it is sometimes convenient to introduce more general notations.

For instance, one may define

Φ(x) ≡ 〈O1(x1)O2(x2) . . .On(xn)〉, eipx ≡ ei(p1x1+p2x2+...pnxn),

dp ≡ dp1dp2 . . . dpn, Φ(p) ≡ 〈O1(p1)O2(p2) . . . On(pn)〉,
(16)

where each of the integrations dpi ≡ dd pi are performed on the d-dimensional components of the
momenta pi = (p1

i , p2
i . . . pd

i ). It will also be useful to introduce the total momentum P = ∑n
j=1 pj

characterising a given correlator, which vanishes because of the translational symmetry of the correlator
in Rd.

The momentum constraint in momentum space is enforced via a delta function δ(P) in the
integrand. For instance, translational invariance of Φ(x) gives

Φ(x) =
∫

dp δ(P) eipx Φ(p). (17)

In general, we recall that for an n-point function Φ(x), the condition of translational invariance

〈O1(x1)O2(x2), . . . ,On(xn)〉 = 〈O1(x1 + a)O2(x2 + a) . . .On(xn + a)〉 (18)

generates an expression of the same correlator in momentum space which of the form (17). We can
remove one of the momenta, and conventionally we do it by selecting the last one, pn, which is replaced
by its “on shell” version p̄n = −(p1 + p2 + . . . + pn−1)

Φ(x) =
∫

dp1dp2...dpn−1ei(p1x1+p2x2+...pn−1xn−1+p̄nxn)Φ(p1, . . . pn−1, p̄n), (19)

denoting with
Φ(p1, . . . pn−1, p̄n) = 〈O1(p1) . . . On(p̄n)〉, (20)

the Fourier transform of the original correlator (6). A discussion of the derivations of the expressions
in momentum space of the dilatation and special conformal transformations can be found in [44].

The special conformal generator in momentum space takes the form

Kκ(pi) ≡
n−1

∑
j=1

(
2(∆j − d)

∂

∂pκ
j
+ pκ

j
∂2

∂pα
j ∂pα

j
− 2pα

j
∂2

∂pκ
j ∂pα

j

)
. (21)

The latter corresponds to (8), and then the special CWIs are given by the equation

Kκ(pi)Φ(p1, . . . , pn−1, p̄n) = 0. (22)

If the primary operator Oi transforms under a scaling in the form

Oi(λ xi) = λ−∆iOi(xi), (23)

in momentum space the same scaling takes the form

Φ(λ p1, . . . , λ p̄n) = λ−∆′Φ(p1, . . . , p̄n), (24)
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with

∆′ ≡
(
−

n

∑
i=1

∆i + (n− 1)d

)
= −∆t + (n− 1)d. (25)

In momentum space, the condition of scale covariance and invariance are respectively given by

D(pi)Φ(p1, . . . , p̄n) = 0 (26)

with

D(pi) ≡
n−1

∑
i=1

pα
i

∂

∂pα
i
+ ∆′ (27)

and
D0(pi)Φ(p1, . . . , p̄n) = 0 (28)

with

D0(pi) ≡
n−1

∑
i=1

pα
i

∂

∂pα
i

. (29)

In the case of tensor correlators the structure of the special CWI’s involve also the Lorentz
generators Σµν and take the form

n−1

∑
r=1

(
pr µ

∂2

∂pν
r ∂pr ν

− 2 pr ν
∂2

∂pµ
r ∂pr ν

+ 2(∆r − d)
∂

∂pµ
r
+ 2(Σ(r)

µν )
ir
jr

∂

∂pr ν

)
× 〈Oi1

1 (p1) . . .O jr
r (pr) . . .Oin

n (pn)〉 = 0 ,

(30)

where the indices i1, . . . , in and j1, . . . , jn run on the representation of the Lorentz group to which the
operators belong. Notice that the sum over the index r selects in each term a specific momentum
pr, but the last momentum pn is not included, since the summation runs from 1 to n− 1. Therefore
the differentiation respect to the last momentum pn, which has been chosen as the dependent one, is
performed implicitly. At the same time, the action of the rotation (Lorentz) generators Σ(r)

µν of SO(d) is
performed on each of the primary operators O1, O2, . . ., except the last one, On, which is treated like a
singlet under such rotational symmetry [44].

2.1. 2-Point Functions

The simplest application of such equations are for two-point functions [41] Gij(p) ≡
〈Oi

1(p)O
j
2(−p)〉 of two primary fields, each of spin-1, here defined as i and j. In this case, if we

consider the correlator of two primary fields each of spin-1, the equations take the form(
−pµ

∂

∂pµ
+ ∆1 + ∆2 − d

)
Gij(p) = 0 ,(

pµ
∂2

∂pν∂pν
− 2 pν

∂2

∂pµ∂pν
+ 2(∆1 − d)

∂

∂pµ

)
Gij(p) + 2(Σµν)

i
k

∂

∂pν
Gkj(p) = 0 ,

(31)

For the 2-point function GS(p) of two scalar quasi primary fields, the invariance under the
Poincaré group implies that the function GS depends on the scalar invariant p2 and then GS(p) =

GS(p2). Furthermore, the invariance under scale transformations implies that GS(p2) is a homogeneous
function of degree α = 1

2 (∆1 + ∆2 − d). It is easy to show that one of the two equations in (31) can be
satisfied only if ∆1 = ∆2. Therefore conformal symmetry fixes the structure of the scalar two-point
function up to an arbitrary overall constant C as

GS(p2) = 〈O1(p)O2(−p)〉 = δ∆1∆2 C (p2)∆1−d/2 . (32)
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If we redefine

C = cS12
πd/2

4∆1−d/2
Γ(d/2− ∆1)

Γ(∆1)
(33)

in terms of the new integration constant cS12, the two-point function reads as

GS(p2) = δ∆1∆2 cS12
πd/2

4∆1−d/2
Γ(d/2− ∆1)

Γ(∆1)
(p2)∆1−d/2 , (34)

and after a Fourier transform in coordinate space takes the familiar form

〈O1(x1)O2(x2)〉 ≡ F .T .
[

GS(p2)
]
= δ∆1∆2 cS12

1

x2∆1
12

, (35)

where x12 = |x1 − x2|.

3. The Hypergeometric Structure from 3-Point Functions F4

In the case of a scalar correlator of three-point functions, all the conformal WI’s can be re-expressed

in scalar form by taking as independent momenta the magnitude pi = |pi| =
√

p2
i as the three

independent variables. In fact, Lorentz invariance on the correlation function implies that

Φ(p1, p2, p̄3) = Φ(p1, p2, p3),

i.e., it is a function which depends on the magnitude of the momenta pi, i = 1, 2, 3. In this case,
p3 is taken as the dependent momentum (p̄3 = −p1 − p2) by momentum conservation and defining
p3 = |p1 + p2|. The original equations, in the covariant version, take the form

Kκ(pi)Φ(p1, p2, p̄3) ≡
2

∑
j=1

(
2(∆j − d)

∂

∂pκ
j
+ pκ

j
∂2

∂pα
j ∂pα

j
− 2pα

j
∂2

∂pκ
j ∂pα

j

)
Φ(p1, p2, p̄3) = 0, (36)

for the special conformal and

D(pi)Φ(p1, p2, p̄3) ≡
(

2

∑
i=1

pα
i

∂

∂pα
i
+ ∆′

)
Φ(p1, p2, p̄3) (37)

dilatation WIs. In this case, Kκ(pi) doesn’t involve the spin part Σ, as illustrated in the general case
in Equation (30), because of the scalar nature of this particular correlation function. For this reason,
the action of Kκ is purely scalar Kκ(pi) ≡ Kκ

scalar(pi). Using the chain rule

∂Φ
∂pµ

i
=

pµ
i

pi

∂Φ
∂pi
−

p̄µ
3

p3

∂Φ
∂p3

i = 1, 2, (38)

and the properties of the scalar products

p1 · p2 =
1
2

[
p2

3 − p2
1 − p2

2

]
pi · p3 =

1
2

[
p2

j − p2
3 − p2

i

]
, i 6= j, i, j = 1, 2 ,

one can re-express the differential operator for the dilatation WI as

pα
1

∂Φ
p1

α
+ pα

2
∂Φ
p2α

= p1
∂Φ
∂p1

+ p2
∂Φ
∂p2

+ p3
∂Φ
∂p3

, (39)
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giving the equation (
3

∑
i=1

∆i − 2d−
3

∑
i=1

pi
∂

∂pi

)
Φ(p1, p2, p3) = 0. (40)

One can show that the special conformal transformations, summarized in (36) take the form

3

∑
i=1

pκ
i (Ki Φ(p1, p2, p3)) = 0, (41)

having introduced the operators

Ki ≡
∂2

∂pi∂pi
+

d + 1− 2∆i
pi

∂

∂pi
. (42)

It is easy to show that Equation (41) can be split into the two independent equations

∂2Φ
∂pi∂pi

+
1
pi

∂Φ
∂pi

(d + 1− 2∆1)−
∂2Φ

∂p3∂p3
− 1

p3

∂Φ
∂p3

(d + 1− 2∆3) = 0 i = 1, 2, (43)

having used the momentum conservation equation pκ
3 = −pκ

1 − pκ
2. Defining

Kij ≡ Ki − Kj, (44)

Equation (43) takes the form

K13 Φ(p1, p2, p3) = 0 and K23 Φ(p1, p2, p3) = 0, (45)

which are equivalent to a hypergeometric system of equations, with solutions given by linear
combinations of Appell’s functions F4.

4. Hypergeometric Systems

Appell’s hypergeometric functions F1(x, y), F2(x, y), F3(x, y), F4(x, y) are defined by the
hypergeometric series:

F1

(
a; b1, b2

c

∣∣∣∣ x, y
)

=
∞

∑
n=0

∞

∑
m=0

(a)n+m (b1)n (b2)m

(c)n+m n! m!
xn ym, (46)

F2

(
a; b1, b2

c1, c2

∣∣∣∣ x, y
)

=
∞

∑
n=0

∞

∑
m=0

(a)n+m (b1)n (b2)m

(c1)n (c2)m n! m!
xn ym, (47)

F3

(
a1, a2; b1, b2

c

∣∣∣∣ x, y
)

=
∞

∑
n=0

∞

∑
m=0

(a1)n(a2)m(b1)n(b2)m

(c)n+m n! m!
xn ym, (48)

F4(a, b, c1, c2; x, y) ≡ F4

(
a; b

c1, c2

∣∣∣∣ x, y
)

=
∞

∑
n=0

∞

∑
m=0

(a)n+m (b)n+m

(c1)n (c2)m n! m!
xn ym (49)

and are bivariate generalizations of the Gauss hypergeometric series

2F1

(
A, B

C

∣∣∣∣ z
)
=

∞

∑
n=0

(A)n (B)n

(C)n n!
zn. (50)

with the (Pochhammer) symbol (α)k given by

(α)k ≡ (α, k) ≡ Γ(α + k)
Γ(α)

= α(α + 1) . . . (α + k− 1). (51)
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An account of many of the properties of such functions and a discussion of the univariate cases, when
the two variables coalesce, can be found in [45] and related works. They are solutions of equations
generalizing Euler’s hypergeometric equation

z(1− z)
d2y(z)

dz2 +
(
C− (A + B + 1)z

)dy(z)
dz
− A B y(z) = 0, (52)

whose soultion is denoted as 2F1 written in (50). This is classified as a Fuchsian equation with
singularities at z = 0, z = 1 and z = ∞. When the two arguments x, y of Appell’s functions are
algebraically related, the univariate specializations satisfy Fuchsian ordinary differential equations.

The proof that the CWIs of the three-point functions are hypergeometric systems of equations
has been shown independently in [41] and [42]. We recall that, in the case of Appell functions of type
F4 given in (49), which are the relevant ones in all our discussion, such functions are solutions of the
system of differential equations

[
x(1− x) ∂2

∂x2 − y2 ∂2

∂y2 − 2 x y ∂2

∂x∂y + [γ− (α + β + 1)x] ∂
∂x

−(α + β + 1)y ∂
∂y − α β

]
F(x, y) = 0 ,

[
y(1− y) ∂2

∂y2 − x2 ∂2

∂x2 − 2 x y ∂2

∂x∂y + [γ′ − (α + β + 1)y] ∂
∂y

−(α + β + 1)x ∂
∂x − α β

]
F(x, y) = 0 ,

as illustrated in [52], where F(x, y) can be in the most general case a linear combinations of
four independent functions F4, hypergeometric of two variables x and y. The univariate limits
of the solutions are important, from the physical point of view, for the study of the behaviour of the
corresponding correlation functions in special kinematics. An example has been discussed in [53] in
the case of 4-point functions.

4.1. Scalar 3-Point Functions

To show the emergence of such a system of equations, let us focus on a 3-point function of three
primary scalar fields of a generic CFT

〈O1(p1)O2(p2)O3(p̄3)〉 = Φ(p1, p2, p3) (53)

defined by the two homogeneous conformal equations

K31Φ = 0 K21Φ = 0 (54)

combined with the scaling equation

3

∑
i=1

pi
∂

∂pi
Φ = (∆− 2d)Φ, (55)

where ∆ = ∆1 + ∆2 + ∆3. We follow the analysis of in [41], and introduce the anspoin

Φ(p1, p2, p3) = p∆−2d
1 xaybF(x, y) (56)
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with x =
p2

2
p2

1
and y =

p2
3

p2
1
. One of the three momenta is treated asymmetrically and takes the role of ”the

pivot” in the representation of the function as a series. In this case we have chosen p1 as a pivot, but
we could have equivalently chosen any of the 3 momenta. Φ is required to be homogenous of degree
∆− 2d under a scale transformation, according to (55), and in (56) this is taken into account by the
factor p∆−2d

1 . The use of the scale invariant variables x and y takes to the hypergeometric form of the
solution. One obtains by an implicit differentiation

K21φ = 4p∆−2d−2
1 xayb

(
x(1− x)

∂

∂x∂x
+ (Ax + γ)

∂

∂x
− 2xy

∂2

∂x∂y
− y2 ∂2

∂y∂y
+ Dy

∂

∂y
+

(
E +

G
x

))
× F(x, y) = 0 (57)

with

A = D = ∆2 + ∆3 − 1− 2a− 2b− 3d
2

γ(a) = 2a +
d
2
− ∆2 + 1

G =
a
2
(d + 2a− 2∆2)

E = −1
4
(2a + 2b + 2d− ∆1 − ∆2 − ∆3)(2a + 2b + d− ∆3 − ∆2 + ∆1). (58)

The treatment of equation K31Φ = 0 proceeds in a similar way, with the obvious exchanges
(a, b, x, y)→ (b, a, y, x)

K31φ = 4p∆−2d−2
1 xayb

(
y(1− y)

∂

∂y∂y
+ (A′y + γ′)

∂

∂y
− 2xy

∂2

∂x∂y
− x2 ∂2

∂x∂x
+ D′x

∂

∂x
+

(
E′ +

G′

y

))
× F(x, y) = 0 (59)

with

A′ = D′ = A γ′(b) = 2b +
d
2
− ∆3 + 1

G′ =
b
2
(d + 2b− 2∆3)

E′ = E. (60)

Equation (57) acquires a hypergeometric form if we set G/x = 0, which implies that

a = 0 ≡ a0 or a = ∆2 −
d
2
≡ a1. (61)

The equation K31Φ = 0 generates a similar condition for b by setting G′/y = 0, fixing the two
remaining indices

b = 0 ≡ b0 or b = ∆3 −
d
2
≡ b1. (62)

Notice that the elimination of such a singularity in the equations guarantees, from the physical
perspective, the analyticity of the solutions and the absence of unphysical thresholds which are not
expected in a massless theory. The four independent solutions of the CWI’s will all be characterized by
the same 4 pairs of indices (ai, bj) (i, j = 1, 2). It is convenient to define the two functions

α(a, b) = a + b +
d
2
− 1

2
(∆2 + ∆3 − ∆1) β(a, b) = a + b + d− 1

2
(∆1 + ∆2 + ∆3) (63)

then
E = E′ = −α(a, b)β(a, b) A = D = A′ = D′ = − (α(a, b) + β(a, b) + 1) . (64)
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The solutions takes therefore the hypergeometric form in which the functions above take the role
of parameters

F4(α(a, b), β(a, b); γ(a), γ′(b); x, y) =
∞

∑
i=0

∞

∑
j=0

(α(a, b), i + j) (β(a, b), i + j)
(γ(a), i) (γ′(b), j)

xi

i!
yj

j!
. (65)

We will refer to α, . . . , γ′ as to the first, . . ., fourth parameters of F4.
Notice that the system is of order 4, since it allows 4 independent solutions which are then all of

the form xaybF4, where the hypergeometric functions will take some specific values for its parameters,
with a and b fixed by (61) and (62)

Φ(p1, p2, p3) = p∆−2d
1 ∑

a,b
c(a, b,~∆) xayb F4(α(a, b), β(a, b); γ(a), γ′(b); x, y) (66)

where the sum runs over the four values ai, bi i = 0, 1 with arbitrary constants c(a, b,~∆), with ~∆ =

(∆1, ∆2, ∆3). The sum over a and b needs to be made explicit and, at the same time, one has to combine
the 4 independent solutions in such a way that the symmetry respect to the three external momenta is
restored. For this reason if we define

α0 ≡ α(a0, b0) =
d
2
− ∆2 + ∆3 − ∆1

2
, β0 ≡ β(b0) = d− ∆1 + ∆2 + ∆3

2
,

γ0 ≡ γ(a0) =
d
2
+ 1− ∆2, γ′0 ≡ γ(b0) =

d
2
+ 1− ∆3, (67)

to be the four basic hypergeometric parameters, with the remaining ones determined by shifts respect
to these values, the four fundamental solutions can be expressed in the form

S1(α0, β0; γ0, γ′0; x, y) ≡ F4(α0, β0; γ0, γ′0; x, y) =
∞

∑
i=0

∞

∑
j=0

(α0, i + j) (β0, i + j)
(γ0, i) (γ′0, j)

xi

i!
yj

j!
(68)

valid for
√

x +
√

y < 1 together with

S2(α0, β0; γ0, γ′0; x, y) = x1−γ0 F4(α0 − γ0 + 1, β0 − γ0 + 1; 2− γ0, γ′0; x, y) , (69)

S3(α0, β0; γ0, γ′0; x, y) = y1−γ′0 F4(α0 − γ′0 + 1, β0 − γ′0 + 1; γ0, 2− γ′0; x, y) , (70)

S4(α0, β0; γ0, γ′0; x, y) = x1−γ0 y1−γ′0 F4(α0 − γ0 − γ′0 + 2, β0 − γ0 − γ′0 + 2; 2− γ0, 2− γ′0; x, y) . (71)

The symmetrization with respect to the external momenta [41], by using the formula

F4(α, β; γ, γ′; x, y) =
Γ(γ′)Γ(β− α)

Γ(γ′ − α)Γ(β)
(−y)−α F4

(
α, α− γ′ + 1; γ, α− β + 1;

x
y

,
1
y

)
+

Γ(γ′)Γ(α− β)

Γ(γ′ − β)Γ(α)
(−y)−β F4

(
β− γ′ + 1, β; γ, β− α + 1;

x
y

,
1
y

)
(72)

allows to reverse the ratios of the momenta in the expansion, and reduces the four constants to just
one. The solution can then be written in the final form

Φ(p1, p2, p3) = p∆−2d
3

4

∑
i=1

ci(∆1, ∆2, ∆3) Si(α, β; γ, γ′; x, y), (73)

where ci are arbitrary coefficients which may depend on the scale dimensions ∆i and on the spacetime
dimension d.
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By using (72), the general symmetric solution can be expressed in the form [41]

〈O(p1)O(p2)O(p3)〉 =
(

p2
3
)−d+ ∆t

2 C(∆1, ∆2, ∆3, d){
Γ
(

∆1 −
d
2

)
Γ
(

∆2 −
d
2

)
Γ
(

d− ∆1 + ∆2 + ∆3

2

)
Γ
(

d− ∆1 + ∆2 − ∆3

2

)
× F4

(
d
2
− ∆1 + ∆2 − ∆3

2
, d− ∆t

2
,

d
2
− ∆1 + 1,

d
2
− ∆2 + 1; x, y

)

+ Γ
(

d
2
− ∆1

)
Γ
(

∆2 −
d
2

)
Γ
(

∆1 − ∆2 + ∆3
2

)
Γ
(

d
2
+

∆1 − ∆2 − ∆3
2

)
× x∆1− d

2 F4

(
∆1 − ∆2 + ∆3

2
,

d
2
− ∆2 + ∆3 − ∆1

2
, ∆1 −

d
2
+ 1,

d
2
− ∆2 + 1; x, y

)

+ Γ
(

∆1 −
d
2

)
Γ
(

d
2
− ∆2

)
Γ
(
−∆1 + ∆2 + ∆3

2

)
Γ
(

d
2
+
−∆1 + ∆2 − ∆3

2

)
× y∆2− d

2 F4

(
∆2 − ∆1 + ∆3

2
,

d
2
− ∆1 − ∆2 + ∆3

2
,

d
2
− ∆1 + 1, ∆2 −

d
2
+ 1; x, y

)

+ Γ
(

d
2
− ∆1

)
Γ
(

d
2
− ∆2

)
Γ
(

∆1 + ∆2 − ∆3
2

)
Γ
(
− d

2
+

∆1 + ∆2 + ∆3
2

)
× x∆1− d

2 y∆2− d
2 F4

(
− d

2
+

∆t
2

,
∆1 + ∆2 − ∆3

2
, ∆1 −

d
2
+ 1, ∆2 −

d
2
+ 1; x, y

)}
. (74)

It is important to verify that the symmetric solution above does not have any unphysical
singularity in the physical region, reproducing the expected behaviour in the large momentum limit
p3 � p1 [54]. Indeed, the previous expression, in the limit p3 � p1 (expressible also as p2

3, p2
2 → ∞

with p2
2/p2

3 → 1 fixed), behaves as

〈O(p1)O(p2)O(p3)〉 ∝ f (d, ∆i) p∆1+∆2+∆3−2d
3 (1 + O (p1/p3)) if ∆1 >

d
2

(75)

and

〈O(p1)O(p2)O(p3)〉 ∝ g(d, ∆i) p∆2+∆3−∆1−d
3 p2∆1−d

1 (1 + O (p1/p3)) if ∆1 <
d
2

, (76)

with f (d, ∆i) and g(d, ∆i) depending only on the scaling and spacetime dimensions. In the case of a
scalar three-point function, the CFT correlator is equivalent to a Feynman master integral, as one can
immediately realize. The result above in (74) is in complete agreement with the direct computation
performed by Davydychev [55] of such integrals, obtained by a Fourier transform of (13) and the use
of the Mellin–Barnes method.
An equivalent version of the solution found above can be derived as in [42], where it is written in
terms of K Bessel functions as

Φ(p1, p2, p3) = C123 p∆1− d
2

1 p∆2− d
2

2 p∆3− d
2

3

∫ ∞

0
dx x

d
2−1 K∆1− d

2
(p1 x)K∆2− d

2
(p2 x)K∆3− d

2
(p3 x), (77)

where C123 is an undetermined constant. More details are given in Appendix A. The 3K integral

∫ ∞

0
ds sα−1Kλ(p1s)Kµ(p2s)Kν(p3s) =

2α−4

cα
[B(λ, µ) + B(λ,−µ) + B(−λ, µ) + B(−λ,−µ)] , (78)
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is related to the hypergeometric functions

B(λ, µ) =
( a

c

)λ
(

b
c

)µ

Γ
(

α + λ + µ− ν

2

)
Γ
(

α + λ + µ + ν

2

)
Γ(−λ)Γ(−µ)×

× F4

(
α + λ + µ− ν

2
,

α + λ + µ + ν

2
; λ + 1, µ + 1;

a2

c2 ,
b2

c2

)
, (79)

valid for
Re α > |Re λ|+ |Re µ|+ |Re ν|, Re (a + b + c) > 0.

The Bessel functions Kν satisfy the equations

∂

∂p
[
pβ Kβ(p x)

]
= −x pβ Kβ−1(px)

Kβ+1(x) = Kβ−1(x) +
2β

x
Kβ(x), (80)

which are important in order to verify that (77) satisfies the CWI’s. It will be convenient to adopt the
notation introduced in [42] and define the general expression

Iα{β1,β2,β3}(p1; p2 p3) =
∫ ∞

0
dx xα (p1)

β1 (p2)
β2 (p3)

β3 Kβ1(p1 x)Kβ2(p2 x)Kβ3(p3 x), (81)

which will turn useful in the analysis of scalar 4-point functions.
As we are going to see, a similar expression of the solution is obtained for dual-conformal/

conformal solutions, where the conformal symmetry in coordinate (or, equivalently, momentum) space,
is accompanied by an additional symmetry in a space of dual variables. In perturbative quantum field
theory, this symmetry goes under the name of dual conformal. If we impose on a 4-point function both
symmetries, then the CWIs alone are sufficient to fix the solution of the conformal constraints modulo a
single overall constant, with no need of introducing any extra formalism, such as the operator product
expansion, which is necessary in order to determine the structure of 4-point functions in a CFT. The
method to extract such dual conformal/conformal solutions is quite technically involved and has been
developed by us in [51].

Before coming to a discussion of this point, we illustrate the generalization of such systems of
equations obtained in the scalar case, to tensor correlators, bringing as a nontrivial example the TJJ
tensor correlator, and showing how the inhomogeneous systems of equations generated by the CWI’s
can be solved.

We will follow the approach formulated in [44], which exploits the properties of the single function
F4 in order to solve the corresponding systems of equations. The original approach for the solution of
these systems of equations, entirely based on the 3K integrals of Equation (81) has been developed
in [42]. The two approaches can be mapped one to the other.

4.2. Tensor Correlators: The TJJ

The TJJ is a tensor correlator involving one stress–energy tensor T and two vector currents J.
The interest in this correlator is manifold since it describes the leading contribution to the coupling

to gravity of an ordinary gauge theory, such as quantum electrodynamics (QED) and, in the nonabelian
case, quantum chromodynamics (QCD).

Perturbative studies of this correlator have been necessary in order to uncover the manifestation
of the conformal (Weyl) anomaly in conformal field theory [56], which induces the breaking of a
classical symmetry at the classical level. The conformal anomaly is associated with a specific functional
which involves both a gravitational part and a gauge part. More details about this topic can be found
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in a sequel of analysis [41,57,58], and in the review [59]. The TJJ is sensitive to the gauge part of
the anomaly

〈Tµ
µ 〉A,g = β(α)FαβFαβ, (82)

where β(α) is the β function of the theory which describes the running of the gauge coupling α under
a change of the renormalization scale. In (82) we have performed a quantum average (〈 〉) in the
background of two classical fields, the metric gµν and the gauge field Aµ, as defined in terms of a
functional integral (see [43]).

Fαβ = ∂α Aβ − ∂β Aα is the field strength of the abelian gauge field Aµ. Therefore, the classical
result of a vanishing trace of T (Tµ

µ = 0), which is expected due to conformal symmetry, is modified as
in (82). More details on this point can be found in [41,44,58,60].

The TJJ correlator is defined by the expression

Γµ,ναβ = 〈Tµν(x1)Jα(x2)Jβ(x3)〉 (83)

and, as we have mentioned, is affected by an anomaly. This is generated when all the points xi of the
correlator coalesce, and it is for this reason that the analysis of these types of correlators requires a
regularization procedure.

Their analysis can be drastically simplified if, for a given CFT characterized by specific conformal
data, we can find a realization of the same correlator in terms of a specific free field theory. There is
one simple strategy in order to perform such mapping.

1. We need to solve all the CWIs consistently, identifying all the independent constants that
appear in the solution. For instance, in the case of the TJJ, there will be three undetermined constants.
The solution obtained is expressed in terms of linear combinations of functions F4 or of 3K integrals.

2. We considerthree independent conformal free field theories, defined by ordinary Lagrangians,
with an arbitrary particle content, and compute the Feynman contributions corresponding to the TJJ
vertex. These amount to one-loop diagrams and define the perturbative solution. Such a solution will
be characterized by three independent constants, which can be chosen to be the number of scalars ns,
fermions nF and spin-1 (gauge) fields nV , all running in the loops.

3. The match between the two results can be explicitly checked by going to special spacetime
dimensions where the general hypergeometric solutions simplify. This occurs in d = 3 and d = 5,
which are sufficient to establish a direct match between the three constants of the CWI’ and the free
field theory realization (nS, nV , nF) bi-univocally.

As a result of the match, the hypergeometric solutions can be re-expressed in terms of simple
scalar massless Feynman integrals, corresponding to the 2- and 3-point functions. Feynman amplitudes
corresponding to three-point functions are indeed described by generalized hypergeometric functions,
and this is at the root of the success of the correspondence between the two approaches.

The formulation of the general method which takes to the solution of the CWI’s can be found
in [42]. It is based on the decomposition of a tensor correlator in terms of its transverse traceless
and longitudinal sectors. A similar decomposition is performed on the CWI’s. In particular, the
hypergeometric structure of the equations emerges from the transverse traceless sector, in a way that is
quite close, though more involved, respect to the scalar case discussed above.
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The entire solution is parameterized by a certain number of form factors Ai which are functions
of the momentum variables p2

i , appearing in the parameterization of the transverse traceless sector of
the correlator. In the case of the TJJ the equations take the form

K13 A1 = 0

K13 A2 + 2A1 = 0

K13 A3 − 4A1 = 0

K13 A3(p2 ↔ p3) = 0

K13 A4 − 2A3(p2 ↔ p3) = 0

K12 A1 = 0

K12 A2 + 2A1 = 0

K12 A3 = 0

K12 A3(p2 ↔ p3)− 4A1 = 0

K12 A4 − 2A3 = 0

(84)

and represent a hypergeometric system of equations which generalizes the simpler result presented in
the scalar case.

4.3. Solving Inhomogeneous Systems in the TJJ Case

We illustrate our method of solving the system of equations above, based on the shifts of the
parameters of each function F4. Notice that in this case, the correlator is symmetric respect to the
exchange of the two J operators.

As in the case discussed above, we take as a pivot p2
1, and assume the symmetry under the (P23)

exchange of (p2, ∆2) with (p3, ∆3) in the correlator. In the case of two photons ∆2 = ∆3 = d− 1.
We start from A1 by solving the two equations from (84)

K21 A1 = 0 K31 A1 = 0. (85)

In this case we introduce the ansatz

A1 = p∆−2d−4
1 xaybF(x, y), (86)

where ∆ = ∆1 + ∆2 + ∆3 and derive two hypergeometric equations, which are characterized by the
same indices (ai, bj) as before in (61) and (62), but new values of the 4 defining parameters. We obtain

A1(p1, p2, p3) = p∆−2d−4
1 ∑

a,b
c(1)(a, b,~∆) xayb F4(α(a, b) + 2, β(a, b) + 2; γ(a), γ′(b); x, y) (87)

(~∆ ≡ (∆1, ∆2, ∆3)), with the expression of α(a, b), β(a, b), γ(a), γ′(b) as given before, with the obvious
switching of the ∆i in order to comply with the new choice of the pivot (p2

1)

α(a, b) = a + b +
d
2
− 1

2
(∆2 + ∆3 − ∆1)

β(a, b) = a + b + d− 1
2
(∆1 + ∆2 + ∆3) (88)

which are P23 symmetric and

γ(a) = 2a +
d
2
− ∆2 + 1

γ′(b) = 2b +
d
2
− ∆3 + 1 (89)

with P23γ(a) = γ′(b). If we require that ∆2 = ∆3, as in the TJJ case, the symmetry constraints are
easily implemented. The 4 indices, if we choose p1 as a pivot, are given by

a0 = 0, b0 = 0, a1 = ∆2 −
d
2

, b1 = ∆3 −
d
2

(90)
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and in this case a = b and γ(a) = γ(b). We recall that F4 has the symmetry

F4(α, β; γ, γ′; x, y) = F4(α, β; γ′, γ; y, x), (91)

and this reflects in the Bose symmetry of A1 if we impose the constraint

c(1)(a1, b0,~∆) = c(1)(a0, b1,~∆). (92)

Now let’s turn to the solution for A2.
The equations for A2 are inhomogeneous

K21 A2 = 2A1 (93)

K31 A2 = 2A1. (94)

We consider an ansatz of the form

A2(p1, p2, p3) = p∆−2d−2
1 F(x, y), (95)

which provides the correct scaling dimensions for A2. At this point, the action of K21 and K31 on A2

can be rearranged as follows

K21 A2 = 4xayb p∆−2d−4
1

(
K̄21F(x, y) +

∂

∂x
F(x, y)

)
(96)

K31 A2 = 4xayb p∆−2d−4
1

(
K̄31F(x, y) +

∂

∂y
F(x, y)

)
(97)

where

K̄21F(x, y) =
{

x(1− x)
∂2

∂x2 − y2 ∂2

∂y2 − 2 x y
∂2

∂x∂y
+
[
(γ(a)− 1)− (α(a, b) + β(a, b) + 3)x

] ∂

∂x

+
a(a− a1)

x
− (α(a, b) + β(a, b) + 3)y

∂

∂y
− (α + 1)(β + 1)

}
F(x, y), (98)

and

K̄31 A2 =

{
y(1− y)

∂2

∂y2 − x2 ∂2

∂x2 − 2 x y
∂2

∂x∂y
+
[
(γ′(b)− 1)− (α(a, b) + β(a, b) + 3)y

] ∂

∂y

+
b(b− b1)

y
− (α(a, b) + β(a, b) + 3)x

∂

∂x
− (α(a, b) + 1)(β(a, b) + 1)

}
F(x, y), (99)

and we notice that the hypergeometric function which solves the equation

K̄21F(x, y) = 0 (100)

can be taken of the form

Φ(2)
1 (x, y) = p∆−2d−2

1 ∑
a,b

c(2)1 (a, b,~∆) xayb F4(α(a, b) + 1, β(a, b) + 1; γ(a)− 1, γ′(b); x, y) (101)

with c(2)1 a constant and the parameters a, b fixed at the ordinary values (ai, bj) as in the previous
cases (61) and (62). This allow to remove the 1/x and 1/y poles in the coefficients of the differential
operators. The sequence of parameters in (101) will obviously solve the related equation

K31Φ(2)
1 (x, y) = 0. (102)
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Equation (100) can be verified by observing that the sequence of parameters (α(a, b) + 1, β(a, b) +
1γ(a)− 1) allows to define a solution of (99) set to zero, for an arbitrary γ′(b), since this parameter
does not play any role in the solution of the corresponding equation. It is also clear that the sequence
(α(a, b) + 1, β(a, b) + 1, γ′(b)), on the other hand, solves the homogeneous equations associated to
K31 (i.e., Equation (102)) for any value of the third parameter of F4, which in this case takes the value
γ(a)− 1. We can follow the same approach for the mirror solution

Φ(2)
2 (x, y) = p∆−2d−2

1 ∑
a,b

c(2)2 (a, b,~∆) xayb F4(α(a, b) + 1, β(a, b) + 1; γ(a), γ′(b)− 1; x, y) (103)

which satisfies
K̄31Φ(2)

2 (x, y) = 0 K21Φ(2)
2 (x, y) = 0. (104)

As previously remarked, the values of the exponents a and b remain the same for any equation
involving either a Ki,j or a K̄ij, as can be explicitly verified. This clearly shows that the fundamental
solutions of the conformal equations are essentially given by the four functions of the type S1, . . . , S4,
for appropriate values of their parameters.

At this point we use the property

∂p+qF4(α, β; γ1, γ2; x, y)
∂xp∂yq =

(α, p + q)(β, p + q)
(γ1, p)(γ2, q)

F4(α + p + q, β + p + q; γ1 + p; γ2 + q; x, y) (105)

which gives (for generic parameters α, β, γ1, γ2)

∂F4(α, β; γ1, γ2; x, y)
∂x

=
αβ

γ1
F4(α + 1, β + 1, γ1 + 1, γ2, x, y)

∂F4(α, β; γ1, γ2; x, y)
∂y

=
αβ

γ2
F4(α + 1, β + 1, γ1, γ2 + 1, x, y). (106)

Obviously, such relations are valid independently of the four parameters α, β, γ1, γ2 may have on
the Fuchsian exponents (ai, bj). The actions of K21 and K31 on the the Φ(i)

2 ’s (i = 1, 2) in (103) are then
given by

K21Φ(2)
1 (x, y) = 4p∆−2d−4

1 ∑
a,b

c(2)1 (a, b,~∆) xayb ∂

∂x
F4(α(a.b) + 1, β(a, b) + 1; γ(a)− 1, γ′(b); x, y)

= 4p∆−2d−4
1 ∑

a,b
c(2)1 (a, b,~∆) xayb (α(a, b) + 1)(β(a, b) + 1)

(γ(a)− 1)
F4(α(a, b) + 2, β(a, b) + 2; γ(a), γ′(b); x, y)

K31Φ(2)
1 (x, y) = 0 (107)

K31Φ(2)
2 (x, y) = 4p∆−2d−4

1 ∑
a,b

c(2)2 (a, b,~∆) xayb ∂

∂y
F4(α(a, b) + 1, β(a, b) + 1; γ(a), γ′(b)− 1; x, y)

= 4p∆−2d−4
1 ∑

a,b
c(2)2 (a, b,~∆) xayb (α(a, b) + 1)(β(a, b) + 1)

(γ′(b)− 1)
F4(α(a, b) + 2, β(a, b) + 2; γ(a), γ′(b); x, y)

K21Φ(2)
2 (x, y) = 0, (108)



Axioms 2020, 9, 54 18 of 33

where it is clear that the non-zero right-hand-side of both equations are proportional to the form factor
A1 given in (87). Once this particular solution is determined, Equation (87), by comparison, gives the
conditions on c(2)1 and c(2)1 as

c(2)1 (a, b,~∆) =
γ(a)− 1

2(α(a, b) + 1)(β(a, b) + 1)
c(1)(a, b,~∆) , (109)

c(2)2 (a, b,~∆) =
γ′(b)− 1

2(α(a, b) + 1)(β(a, b) + 1)
c(1)(a, b,~∆) . (110)

We conclude that the general solution for A2 in the TJJ case (in which γ(a) = γ′(b) ) is given
by combining the solution of the homogeneous form of (87) and the particular one given by (101)
and (103), by choosing the constants appropriately using (110). It is explicitly given by

A2 = p∆−2d−2
1 ∑

ab
xayb

[
c(2)(a, b,~∆) F4(α(a, b) + 1, β(a, b) + 1; γ(a), γ′(b); x, y)

+
(γ(a)− 1) c(1)(a, b,~∆)

2(α(a, b) + 1)(β(a, b) + 1)

(
F4(α(a, b) + 1, β(a, b) + 1; γ(a)− 1, γ′(b); x, y)

+ F4(α(a, b) + 1, β(a, b) + 1; γ(a), γ′(b)− 1; x, y)
)]

, (111)

since γ(a) = γ′(b). The approach allows us to solve for all the form factors Ai if used sequentially.
The derivation of the solution is discussed in [44]. A similar analysis allows us to solve for other
correlators, such as the TTT [43]. Notice that a reduction of the number of constants generated
from (84) is obtained by imposing some additional WIs which link special CWIs and canonical WI’s.
They have been called secondary WIs in [42]. The solution of these equations, which connect 3- to
2-point functions can be solved by performing some specific limits on the momentum variables.

5. Dual Conformal/Conformal Symmetry

Dual conformal symmetry has been originally identified in the context of perturbative quantum
field theory and holds for a special class of Feynman diagrams [61]. We recall that a dual conformal
integral is a Feynman integral which, once rewritten in terms of some dual coordinates, under the
action of Kκ is modified by factors which depend only on the coordinates of the external points. The
reformulation of the ordinary momentum integral in terms of such dual coordinates can be immediately
worked out by drawing the associated dual diagram.

We illustrate this point in the case of the ordinary Feynman (box) diagram shown in Figure 1

ΦBox(p1, p2, p3, p4) =
∫ ddk

k2(k + p1)2(k + p1 + p2)2(k + p1 + p2 + p3)2 , (112)

which is a function of 6 Lorentz invariants. As usual in particle theory, we use the six scalar variables
p2

i (i = 1, 2, 3, 4) and s2 = (p1 + p2)
2 and t2 = (p1 + p3)

2. We introduce dual variables yi, redefining
the momenta in terms of these

k = y51, p1 = y12, p2 = y23, p3 = y34 (113)

with yij = yi − yj, and rewrite the integral in the form

ΦBox(y1, y2, y3, y4) =
∫ ddy5

y2
15y2

25y2
35y2

45
. (114)
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The action of Kκ is realized in the form I · T · I , as a sequence of inversion, translation and
inversion transformations, rather than as a differential action (by Kκ , as in (36)). We recall that under
an inversion (I)

I(ddy5) = ddy5(y2
5)
−d I(y2

ij) =
y2

ij

y2
i y2

j
(115)

and in order to have an expression which is invariant under special conformal transformation, it is
necessary to include a pre-factor in ΦBox, in the form

s2t2ΦBox(p1, p2, p3, p4) = y2
13y2

24ΦBox(y1, y2, y3, y4), (116)

and then it is easy to check that under the action of I the integrand

I
(

ddy5y2
13y2

24
y2

15y2
25y2

35y2
45

)
=

(
ddy5(y2

5)
4−dy2

13y2
24

y2
15y2

25y2
35y2

45

)
. (117)

is invariant if d = 4. Obviously, the invariance under the complete action IT I is ensured. It is easily
checked that the integrand is also scale invariant. It is then clear that the expression of the box diagram
in d = 4 can only be of the form

ΦBox =
1

y2
13y2

24
F
(
u(yi), v(yi)

)
(118)

with u and v given by

u(yi) =
y2

12y2
34

y2
13y2

24
v(yi) =

y2
23y2

41
y2

13y2
24

(119)

which can be expressed directly in terms of the original momentum invariants, due to the relations (113).
Notice that, by construction u and v satisfy the first order equations in the y variables

Kκ
0(y) u(yi) ≡

4

∑
j=1

(
−y2

j
∂

∂yκ
j
+ 2yκ

j yα
j

∂

∂yα
j

)
u(yi) = 0

Kκ
0(y) v(yi) ≡

4

∑
j=1

(
−y2

j
∂

∂yκ
j
+ 2yκ

j yα
j

∂

∂yα
j

)
v(yi) = 0.

(120)

Dual conformal Feynman diagrams, such as the one discussed above, satisfy in the y variables (113)
CWI’s as in ordinary coordinate space. The y variables are, however, variables of momentum space,
being linear combinations of the fundamental momenta pi, obtained from the Fourier transform of the
original correlator in coordinate space.

It then interesting to search for solutions to the 4-point functions which are at the same time
conformal in the coordinate variables (xi), as well in the auxiliary variables yi introduced by the
mapping (113).

This implies that a scalar 4-point function, once written in momentum space and re-expressed
in terms of the yi variables, has necessarily to take a form similar to (118), for being conformal in
such variables. The simultaneous conditions of conformal and dual conformal invariance are then
satisfied if a scalar correlator takes the form (118) and, at the same time, by imposing that it satisfies
the ordinary CWI in the ordinary momentum variables, once the y variables are re-expressed in terms
of the momenta using (113). We have shown in [51] that the form taken by F(u, v) is unique. We are
going to illustrate the construction of such solutions.
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y5y2 y4

y3

y1

p2 p3

p1 p4

Figure 1. The Feynman diagram corresponding to the box topology with its dual. The momenta pi are
all incoming. yi are dual variables in momentum space.

5.1. The CWIs for Scalar 4-Point Correlators

To illustrate the approach in a realistic case, let’s consider a generic scalar four-point function in
momentum space

〈O(p1)O(p2)O(p3)O(p̄4)〉 = Φ(p1, p2, p3, p4, s, t), (121)

with the definitions of the invariants and Mandelstam variables as

pi = |pi|, s = |p1 + p2|, t = |p2 + p3|. (122)

This correlation function, to be conformal invariant, has to verify the dilatation Ward Identity[
4

∑
i=1

∆i − 3d−
3

∑
i=1

pµ
i

∂

∂pµ
i

]
〈O(p1)O(p2)O(p3)O(p̄4)〉 = 0 (123)

and the special conformal Ward Identities

3

∑
i=1

[
2(∆i − d)

∂

∂pi κ
− 2pα

i
∂2

∂pα
i ∂pκ

i
+ pκ

i
∂2

∂pα
i ∂pi α

]
〈O(p1)O(p2)O(p3)O(p̄4)〉 = 0, (124)

which are conditions generated by the conformal symmetry in the ordinary variables xi, parameterizing
the correlator in coordinate space. By turning to momentum space and using the chain rules

∂

∂p1 µ
=

pµ
1

p1

∂

∂p1
−

p̄µ
4

p4

∂

∂p4
+

pµ
1 + pµ

2
s

∂

∂s
(125)

∂

∂p2 µ
=

pµ
2

p2

∂

∂p2
−

p̄µ
4

p4

∂

∂p4
+

pµ
1 + pµ

2
s

∂

∂s
+

pµ
2 + pµ

3
t

∂

∂t
(126)
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and similar, one derives the two equations

C2 =

{
∂2

∂p2
2
+

(d− 2∆2 + 1)
p2

∂

∂p2
− ∂2

∂p2
4
− (d− 2∆4 + 1)

p4

∂

∂p4

+
1
s

∂

∂s

(
p1

∂

∂p1
+ p2

∂

∂p2
− p3

∂

∂p3
− p4

∂

∂p4

)
+

(∆3 + ∆4 − ∆1 − ∆2)

s
∂

∂s

+
1
t

∂

∂t

(
p2

∂

∂p2
+ p3

∂

∂p3
− p1

∂

∂p1
− p4

∂

∂p4

)
+

(∆1 + ∆4 − ∆2 − ∆3)

t
∂

∂t

+
(p2

2 − p2
4)

st
∂2

∂s∂t

}
Φ(p1, p2, p3, p4, s, t) = 0 (127)

C13 =

{
∂2

∂p2
1
+

(d− 2∆1 + 1)
p1

∂

∂p1
− ∂2

∂p2
3
− (d− 2∆3 + 1)

p3

∂

∂p3

+
1
s

∂

∂s

(
p1

∂

∂p1
+ p2

∂

∂p2
− p3

∂

∂p3
− p4

∂

∂p4

)
+

(∆3 + ∆4 − ∆1 − ∆2)

s
∂

∂s

+
1
t

∂

∂t

(
p1

∂

∂p1
+ p4

∂

∂p4
− p2

∂

∂p2
− p3

∂

∂p3

)
+

(∆2 + ∆3 − ∆1 − ∆4)

t
∂

∂t

+
(p2

1 − p2
3)

st
∂2

∂s∂t

}
Φ(p1, p2, p3, p4, s, t) = 0. (128)

together with a third one, that we omit, which takes a similar form. A detailed discussion of such
systems of equations has been presented in [51]. Clearly, these equations do not define in general,
to a hypergeometric system. However, once we require that the solutions of these equations also
be invariant in the momentum variables yij, where the yij are treated as ordinary coordinates xi,
we generate a hypergeometric system of equations also for such 4-point functions.

As we have already mentioned, the strategy to solve the equations is to start with an expression
of these correlators of the form (56) and to impose on them the conditions of conformal invariance.
Clearly, both these conditions are only formulated in momentum space.

5.2. DCC Solutions

To identify the dual conformal/conformal solutions, we choose the ansatz

Φ(pi, s, t) =
(
s2t2)ns F(x, y), (129)

where ns is a coefficient (scaling factor of the ansatz) that we will fix below by the dilatation WI, and the
variables x and y are defined by the quartic ratios

x =
p2

1 p2
3

s2 t2 , y =
p2

2 p2
4

s2 t2 . (130)

Such quartic ratios are nothing else but the two variables u and v of (119) re-expressed in
momentum space.

By inserting the ansatz (129) into the dilatation Ward Identities, and turning to the new variables
x and y, after some manipulations we obtain from the dilatation WI the constraint[

(∆t − 3d)−
4

∑
i=1

pi
∂

∂pi
− s

∂

∂s
− t

∂

∂t

](
s2t2)c F(x, y),

=
(
s2t2)ns[(∆t − 3d)− 4ns

]
F(x, y) = 0 (131)
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which determines ns = (∆t − 3d)/4, giving

Φ(pi, s, t) =
(
s2t2)(∆t−3d)/4 F(x, y). (132)

We will be using this specific form of the solution in two of three special CWIs of the form C2 and
C13. The functional form of F(x, y) will then be further constrained.

In order to determine the conditions on F(x, y) from (127) and (128), we re-express these two
equations in terms of x and y using several identities. In particular we will use the relations

∂2

∂s∂t
F(x, y) =

4
st
[(

x ∂x + y∂y
)

F +
(
x2∂xx + 2xy ∂xy + y2∂yy

)
F
]
, (133)

together with(
p1

∂

∂p1
+ p2

∂

∂p2
− p3

∂

∂p3
− p4

∂

∂p4

)
F(x, y) =

(
2x ∂x + 2y ∂y − 2x ∂x − 2y ∂y

)
F(x, y) = 0,

(
p1

∂

∂p1
+ p4

∂

∂p4
− p3

∂

∂p3
− p2

∂

∂p2

)
F(x, y) =

(
2x ∂x + 2y ∂y − 2x ∂x − 2y ∂y

)
F(x, y) = 0.

(134)

Both relations can be worked out after some lengthy computations.
We start investigating the solutions of these equations by assuming, for example, that the scaling

dimensions of all the fields φi are equal ∆1 = ∆2 = ∆3 = ∆4 = ∆.
Using (133) and (134), we write the first Equation (127) associated to C2 in the new variable x and

y as

C2 = 4
(

p2
2 − p2

4
)
(s2)ns−1(t2)ns−1

×
[

y(1− y)∂yy − 2x y ∂xy − x2∂xx − (1− 2ns)x ∂x +

(
1− ∆ +

d
2
− y(1− 2ns)

)
∂y − n2

s

]
F(x, y) = 0 (135)

and the second one (128) associated to C13 as

C13 = 4
(

p2
1 − p2

3
)
(s2)ns−1(t2)ns−1

×
[

x(1− x)∂xx − 2x y ∂xy − y2∂yy − (1− 2ns)y ∂y +

(
1− ∆ +

d
2
− x(1− 2ns)

)
∂x − n2

s

]
F(x, y) = 0 (136)

where we recall that ns is the scaling under dilatations, now given by

ns = ∆− 3d
4

(137)

since ∆t = 4 ∆.
By inspection, one easily verifies that (135) and (136) define a hypergeometric system of two

equations whose solutions can be expressed as linear combinations of 4 Appell functions of two
variables F4, as in the case of 3-point functions discussed before. The general solution of such system is
expressed as

Φ(pi, s, t) =
(
s2t2)(∆t−3d)/4 F(x, y)

F(x, y) = ∑
a,b

c(a, b,~∆t)xaybF4
(
α(a, b), β(a, b), γ(a), γ′(b); x, y

)
, (138)

with ~∆t = ∆(1, 1, 1, 1), if we choose the operators of equal scalings. Notice that the solution is similar
to that of the 3-point functions given in the previous section.
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The general solution (138) has been written as a linear superposition of these with independent
constants c(a, b), labelled by the exponents a, b

a = 0, ∆− d
2

, b = 0, ∆− d
2

, (139)

which fix the dependence of the F4

α(a, b) =
3
4

d− ∆ + a + b, β(a, b) =
3
4

d− ∆ + a + b,

γ(a) =
d
2
− ∆ + 1 + 2a, γ′(b) =

d
2
− ∆ + 1 + 2b. (140)

The proof that the ansatz (129) satisfies the CWIs as given by C2 and C13 we use the following
identities for the Appell hypergeometric function

∂x F4(a, b, c1, c2; x, y) =
a b
c1

F4(a + 1, b + 1, c1 + 1, c2; x, y) (141)

∂y F4(a, b, c1, c2; x, y) =
a b
c2

F4(a + 1, b + 1, c1, c2 + 1; x, y) (142)

x ∂x F4(a, b, c1, c2; x, y) = (c1 − 1)
[
F4(a, b, c1 − 1, c2; x, y)− F4(a, b, c1, c2; x, y)

]
. (143)

We can use these identities to derive the relations

x ∂xx F4(a, b, c1, c2; x, y) = (c1 − 1)∂x F4(a, b, c1 − 1, c2; x, y)− c1 ∂x F4(a, b, c1, c2; x, y)

= a b
[
F4(a + 1, b + 1, c1, c2; x, y)− F4(a + 1, b + 1, c1 + 1, c2; x, y)

]
(144)

with an analogous expression obtained for the y variable. The intermediate steps are rather involved
and can be found in [51]. The final result is that the original ansatz (129) indeed satisfies the CWI’s
in momentum space if the function F(x, y) is a hypergeometric function of the new variables x and y
given in (130). The solution takes the form

Φ(p1, p2, p3, p4, s, t) = c1

{(
p2

1 p2
3

)∆− 3
4 d
[

F4

(
d
4

,
3
4

d− ∆ , 1 ,
d
2
− ∆ + 1 ;

s2t2

p2
1 p2

3
,

p2
2 p2

4
p2

1 p2
3

)

+
Γ
(

∆− d
4

)
Γ
(
1 + ∆− 3

4 d
)

Γ
(

1− ∆ + d
2

)
Γ
(
∆− 3

4 d
)

Γ
(
1− ∆ + 3

4 d
)

Γ
(

1 + ∆− d
2

) ( p2
2 p2

4
p2

1 p2
3

)∆− d
2

F4

(
∆− d

4
,

d
4

, 1 , 1− d
2
+ ∆ ;

s2t2

p2
1 p2

3
,

p2
2 p2

4
p2

1 p2
3

)]

+
(

p2
2 p2

3

)∆− 3
4 d
[

F4

(
d
4

,
3
4

d− ∆ , 1 ,
d
2
− ∆ + 1 ;

s2u2

p2
2 p2

3
,

p2
1 p2

4
p2

2 p2
3

)

+
Γ
(

∆− d
4

)
Γ
(
1 + ∆− 3

4 d
)

Γ
(

1− ∆ + d
2

)
Γ
(
∆− 3

4 d
)

Γ
(
1− ∆ + 3

4 d
)

Γ
(

1 + ∆− d
2

) ( p2
1 p2

4
p2

2 p2
3

)∆− d
2

F4

(
∆− d

4
,

d
4

, 1 , 1− d
2
+ ∆ ;

s2u2

p2
2 p2

3
,

p2
1 p2

4
p2

2 p2
3

)]

+
(

p2
1 p2

2

)∆− 3
4 d
[

F4

(
d
4

,
3
4

d− ∆ , 1 ,
d
2
− ∆ + 1 ;

u2t2

p2
1 p2

2
,

p2
3 p2

4
p2

1 p2
2

)

+
Γ
(

∆− d
4

)
Γ
(
1 + ∆− 3

4 d
)

Γ
(

1− ∆ + d
2

)
Γ
(
∆− 3

4 d
)

Γ
(
1− ∆ + 3

4 d
)

Γ
(

1 + ∆− d
2

) ( p2
3 p2

4
p2

1 p2
2

)∆− d
2

F4

(
∆− d

4
,

d
4

, 1 , 1− d
2
+ ∆ ;

u2t2

p2
1 p2

2
,

p2
3 p2

4
p2

1 p2
2

,

)]}

(145)

which can be shown to be symmetric under all the possible permutations of the momenta
(p1, p2, p3, p4) and c1 is an overall constant. As shown in [51] such a solution is unique. This
property is guaranteed by the absence of unphysical singularities in the domain of convergence of the
solution found.
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In this case, we can reformulate such solution in terms of 3K integrals using the expression

I d
2−1{∆− d

2 ,∆− d
2 ,0}(p1 p3, p2 p4, s, t) =

= (p1 p3)
∆− d

2 (p2 p4)
∆− d

2

∫ ∞

0
dx x

d
2−1 K∆− d

2
(p1 p3 x)K∆− d

2
(p2 p4 x)K0(st x), (146)

which is the close in form to the result obtained from 3-point functions, but now expressed in terms of
quartic ratios of momenta. Using (80) one can derive several relations, such as

∂2

∂p2
1

Iα{β1,β2,β3} = − p2
3 Iα+1{β1−1,β2,β3} + p2

1 p4
3 Iα+2{β1−2,β2,β3} (147)

which generate identities such as

p2
1 p2

3 Iα+2{β1−2,β2,β3} = Iα+2{β1,β2,β3} − 2(β1 − 1) Iα+1{β1−1,β2,β3}. (148)

One can show that the I integrals satisfy the differential equations

1
s

∂

∂s

(
p1

∂

∂p1
+ p2

∂

∂p2
− p3

∂

∂p3
− p4

∂

∂p4

)
Iα{β1,β2,β3} = 0 (149)

1
t

∂

∂t

(
p1

∂

∂p1
+ p4

∂

∂p4
− p2

∂

∂p2
− p3

∂

∂p3

)
Iα{β1,β2,β3} = 0. (150)

In the case ∆1 = ∆3 = ∆x and ∆2 = ∆4 = ∆y, the special CWI’s can be written as

〈O(p1)O(p2)O(p3)O(p̄4)〉 = ¯̄α I d
2−1{∆x− d

2 ,∆y− d
2 ,0}(p1 p3; p2 p4; s t), (151)

with ¯̄α an arbitrary constant, in agreement with the solution found for the three-point function.

6. Lauricella Functions

We come to the last part of this overview, illustrating the presence of another type of functions of
hypergeometric type.

Lauricella systems of equations are generated if we look for asymptotic solutions of the CWIs
characterized by large s and t invariants, under the condition that p2

i � s2, t2, recalling the definition
of these variables in (122). In a 2-to-2 process describe d by 4-point functions, a scattering at a fixed
angle is characterized by −t/s fixed. We are allowed to take both s and t large, keeping their ratio
fixed. In this limit, one can show that the CWIs satisfy an approximate factorization in which we
separate the dependence of Φ on the invariants p2

i from the pair s and t.
It is also possible to show that a Lauricella system describes a particular solution of the special

CWIs of the form C2 and C13. The analysis has been presented in [51] and [53], to which we refer for
further details.

The equations in this case take the form

K14φ = 0, K24φ = 0, K34φ = 0. (152)

This operator can be rearranged by introducing a change of variables of the form (p2
1, p2

2, p2
3, p2

4)

to (x, y, z, p2
4) where

x =
p2

1
p2

4
, y =

p2
2

p2
4

, z =
p2

3
p2

4
(153)
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are the dimensionless ratios x, y and z, not to be confused with coordinate points in a three dimensional
space. The ansatz for the solution can be taken of the form

φ(p1, p2, p3, p4) = (p2
4)

ns xa yb zc F(x, y, z), (154)

which is consistent with the corresponding dilatation WI for 4-point functions if

ns =
∆t

2
− 3d

2
. (155)

With this ansatz, equations (152) take the form

K14φ =4p∆t−3d−2
4 xa yb zc

[
(1− x)x

∂2

∂x2 − 2x y
∂2

∂x∂y
− y2 ∂2

∂y2 − 2x z
∂2

∂x∂z
− z2 ∂2

∂z2 − 2y z
∂2

∂y∂z

+ (Ax + γ)
∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z
+

(
E +

G
x

) ]
F(x, y, z) = 0 (156)

with

A = ∆1 + ∆2 + ∆3 −
5
2

d− 2(a + b + c)− 1 (157a)

E = −1
4
(
3d− ∆t + 2(a + b + c)

)(
2d + 2∆4 − ∆t + 2(a + b + c)

)
(157b)

G =
a
2
(d− 2∆1 + 2a) (157c)

γ =
d
2
− ∆1 + 2a + 1. (157d)

Similar constraints are obtained from the equation K34φ = 0 that can be written as0

K24φ =4p∆t−3d−2
4 xa yb zc

[
− x2 ∂2

∂x2 − 2x y
∂2

∂x∂y
+ (1− y)y

∂2

∂y2 − 2x z
∂2

∂x∂z
− z2 ∂2

∂z2 − 2y z
∂2

∂y∂z

+ A′x
∂

∂x
+ (A′y + γ′)

∂

∂y
+ A′z

∂

∂z
+

(
E′ +

G′

x

) ]
F(x, y, z) = 0 (158)

with

A′ = ∆1 + ∆2 + ∆3 −
5
2

d− 2(a + b + c)− 1 (159a)

E′ = −1
4
(
3d− ∆t + 2(a + b + c)

)(
2d + 2∆4 − ∆t + 2(a + b + c)

)
(159b)

G′ =
b
2
(d− 2∆2 + 2b) (159c)

γ′ =
d
2
− ∆2 + 2b + 1 (159d)

and

K34φ =4p∆t−3d−2
4 xa yb zc

[
− x2 ∂2

∂x2 − 2x y
∂2

∂x∂y
− y2 ∂2

∂y2 − 2x z
∂2

∂x∂z
+ (1− z)z

∂2

∂z2 − 2y z
∂2

∂y∂z

+ A′′x
∂

∂x
+ A′′y

∂

∂y
+ (A′′z + γ′′)

∂

∂z
+

(
E′′ +

G′′

x

) ]
F(x, y, z) = 0 (160)
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with

A′′ = ∆1 + ∆2 + ∆3 −
5
2

d− 2(a + b + c)− 1 (161a)

E′′ = −1
4
(
3d− ∆t + 2(a + b + c)

)(
2d + 2∆4 − ∆t + 2(a + b + c)

)
(161b)

G′′ =
c
2
(d− 2∆3 + 2c) (161c)

γ′′ =
d
2
− ∆3 + 2c + 1. (161d)

In this case, as for 3-poin functions, in order to perform the reduction to the hypergeometric form
of the equations, we need to set G = 0, G′ = 0 and G′′ = 0, which imply that the Fuchsian points a, b, c
take the values

a = 0, ∆1 −
d
2

(162a)

b = 0, ∆2 −
d
2

(162b)

c = 0, ∆3 −
d
2

. (162c)

We find also that E = E′ = E′′ = −α(a, b, c) β(a, b, c) where

α(a, b, c) = d + ∆4 −
∆t

2
+ a + b + c

β(a, b, c) =
3d
2
− ∆t

2
+ a + b + c (163)

as well as A = A′ = A′′ = −(α(a, b, c) + β(a, b, c) + 1), indeed

A = A′ = A′′ = −(α(a, b, c) + β(a, b, c) + 1) = ∆1 + ∆2 + ∆3 −
5
2

d− 2(a + b + c)− 1 (164)

and finally

γ(a) =
d
2
− ∆1 + 2a + 1 , γ′(b) =

d
2
− ∆2 + 2b + 1 , γ′′(c) =

d
2
− ∆3 + 2c + 1. (165)

With this redefinition of the coefficients, the equations are then expressed in the form [51]
xj(1− xj)

∂2F
∂x2

j
+ ∑

s 6=j for r=j
xr ∑ xs

∂2F
∂xr∂xs

+
[
γj − (α + β + 1)xj

]
∂F
∂xj
− (α + β + 1) ∑

k 6=j
xk

∂F
∂xk
− α β F = 0

(j = 1, 2, 3)
(166)

having redefined γ1 = γ, γ2 = γ′ and γ3 = γ′′ and x1 = x, x2 = y and x3 = z. This system of
equations allows solutions in the form of the Lauricella hypergeometric function FC of three variables,
which are defined defined by the series

FC(α, β, γ, γ′, γ′′, x, y, z) =
∞

∑
m1,m2,m3

(α)m1+m2+m3(β)m1+m2+m3

(γ)m1(γ
′)m2(γ

′′)m3 m1! m2! m3!
xm1 ym2 zm3 , (167)

where the Pochhammer symbol (λ)k with an arbitrary λ and k a positive integer not equal to zero, was
previously defined in (51). The convergence region of this series is defined by the condition∣∣√x

∣∣+ |√y|+
∣∣√z

∣∣ < 1. (168)
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The function FC is the generalization of the Appell F4 to the case of three variables. The system of
equations (166) admits 8 independent solutions given by

S1(α, β, γ, γ′, γ′′, x, y, z) = FC
(
α, β, γ, γ′, γ′′, x, y, z

)
,

S2(α, β, γ, γ′, γ′′, x, y, z) = x1−γ FC
(
α− γ + 1, β− γ + 1, 2− γ, γ′, γ′′, x, y, z

)
,

S3(α, β, γ, γ′, γ′′, x, y, z) = y1−γ′ FC
(
α− γ′ + 1, β− γ′ + 1, γ, 2− γ′, γ′′, x, y, z

)
,

S4(α, β, γ, γ′, γ′′, x, y, z) = z1−γ′′ FC
(
α− γ′′ + 1, β− γ′′ + 1, γ, γ′, 2− γ′′, x, y, z

)
,

S5(α, β, γ, γ′, γ′′, x, y, z) = x1−γy1−γ′ FC
(
α− γ− γ′ + 2, β− γ− γ′ + 2, 2− γ, 2− γ′, γ′′, x, y, z

)
,

S6(α, β, γ, γ′, γ′′, x, y, z) = x1−γz1−γ′′ FC
(
α− γ− γ′′ + 2, β− γ− γ′′ + 2, 2− γ, γ′, 2− γ′′, x, y, z

)
,

S7(α, β, γ, γ′, γ′′, x, y, z) = y1−γ′ z1−γ′′ FC
(
α− γ′ − γ′′ + 2, β− γ′ − γ′′ + 2, γ, 2− γ′, 2− γ′′, x, y, z

)
,

S8(α, β, γ, γ′, γ′′, x, y, z) = x1−γy1−γ′ z1−γ′′

× FC
(
α− γ− γ′ − γ′′ + 2, β− γ− γ′ − γ′′ + 2, 2− γ, 2− γ′, 2− γ′′, x, y, z

)
, (169)

having defined

α ≡ α(0, 0, 0) = d + ∆4 −
∆t

2

β ≡ β(0, 0, 0) =
3d
2
− ∆t

2

γ ≡ γ(0) =
d
2
− ∆1 + 1

γ′ ≡ γ′(0) =
d
2
− ∆2 + 1

γ′′ ≡ γ′′(0) =
d
2
− ∆3 + 1. (170)

The most general solution of the system is obtained by taking linear combinations of such
fundamental solutions with arbitrary constants. In this case, as in the cases discussed above for
3-point functions, one needs to impose the symmetry of the solution under exchanges of the momenta
and of the scaling dimensions ∆i. This is most easily accomplished by establishing a link between
the Lauricella function FC and some parametric integrals of four Bessel functions, which have been
introduced in [51].

6.1. Lauricella’s as 4-K Integrals

The introduction of parametric representations of the solutions of the CWI’s in terms of 3K
integrals (81) in [42] has as its advantage the possibility of implementing the symmetry constraints of
a 3-point function quite directly. On the contrary, the use of the 4 fundamental solutions introduced
in (68) and (69) requires significant manipulations (see the discussion in [41]) in order to obtain the
same result. In the case of 4-point functions, the possibility of expressing the dual conformal/conformal
solution in the form of a 4K integral appears to be the natural generalization of such previous approach,
and allowing also to discuss the kinematical limits in which the dynamics of a 4-point function reduces
to that of a 3-point one.

One can show that hypergeometrics of three-variables, which belong to the class of Lauricella
functions can be related to 4K integrals.
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The key identity necessary to obtain the relation between the Lauricella functions and the 4K
integral is given by the expression

∫ ∞

0
dx xα−1

3

∏
j=1

Jµj (aj x)Kν(c x) = 2α−2 c−α−λ Γ
(

α + λ− ν

2

)
Γ
(

α + λ + ν

2

)

×
3

∏
j=1

a
µj
j

Γ(µj + 1)
FC

(
α + λ− ν

2
,

α + λ + ν

2
, µ1 + 1, µ2 + 1, µ3 + 1;−

a2
1

c2 ,−
a2

2
c2 ,−

a2
3

c2

)
[

λ =
3

∑
j=1

µj ; Re(α + λ) > |Re(ν)|, Re(c) >
3

∑
j=1
|Im aj|

]
. (171)

If we rewrite the solutions of such systems in the form

Iα−1{ν1,ν2,ν3,ν4}(a1, a2, a3, a4) =
∫ ∞

0
dx xα−1

4

∏
i=1

(ai)
νi Kνi (ai x) (172)

with the Bessel functions Iν, Jν, Kν related by the identities

Iν(x) = i−ν Jν(i x) (173)

Kν(x) =
π

2 sin(π ν)

[
I−ν(x)− Iν(x)

]
=

1
2

[
iν Γ(ν)Γ(1− ν) J−ν(i x) + i−ν Γ(−ν)Γ(1 + ν) Jν(i x)

]
(174)

where we have used the properties of the Gamma functions

π

sin(πν)
= Γ(ν) Γ(1− ν), − π

sin(πν)
= Γ(−ν) Γ(1 + ν), (175)

the dilatation Ward identities in this case can be written as[
(∆t − 3d)−

4

∑
i=1

pi
∂

∂pi

]
Iα{β1,β2,β3,β4}(p1, p2, p3, p4) = 0. (176)

Using some properties of 4K integrals [51] one can derive the relation

(α− βt + 1 + ∆t − 3d)Iα{β1,β2,β3,β4}(p1, p2, p3, p4) = 0 (177)

where ∆t = ∑4
i=1 ∆i, which is identically satisfied if the α exponent is equal to α̃

α̃ = βt + 3d− ∆t − 1. (178)

The conformal Ward identities can be re-expressed in the form
K14 Iα̃{β1,β2,β3,β4} = 0

K24 Iα̃{β1,β2,β3,β4} = 0

K34 Iα̃{β1,β2,β3,β4} = 0,

(179)

generating the final relations
(d− 2∆4 + 2β4)Iα̃+1{β1,β2,β3,β4−1} − (d− 2∆1 + 2β1)Iα̃+1{β1−1,β2,β3,β4} = 0

(d− 2∆4 + 2β4)Iα̃+1{β1,β2,β3,β4−1} − (d− 2∆2 + 2β2)Iα̃+1{β1,β2−1,β3,β4} = 0

(d− 2∆4 + 2β4)Iα̃+1{β1,β2,β3,β4−1} − (d− 2∆3 + 2β3)Iα̃+1{β1,β2,β3−1,β4} = 0

(180)
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which are satisfied if

βi = ∆i −
d
2

, i = 1, . . . , 4 (181)

giving
α̃ = d− 1. (182)

Finally, the final solution can be written as

φ(p1, p2, p3, p4) = ¯̄α Id−1{∆1− d
2 ,∆2− d

2 ,∆3− d
2 ,∆4− d

2}(p1, p2, p3, p4)

=
∫ ∞

0
dx xd−1

4

∏
i=1

(pi)
∆i− d

2 K∆i− d
2
(pi x), (183)

where ¯̄α is a undetermined constant.
Notice that given

Iα{β1,β2,β3,β4}(p1, p2, p3, p4) =
∫ ∞

0
dx xα

4

∏
i=1

(pi)
βi Kβi (pi x) (184)

its first derivative with respect the mgnitudes of the momenta is given by

pi
∂

∂pi
Iα{β j} = −p2

i Iα+1{β j−δij}, i, j = 1, . . . , 4. (185)

One can derive various relations satisfied by these types of integrals, as shown in [51]. For
instance, using

∫ ∞

0
xα+1 ∂

∂x

[
4

∏
i=1

pβi
i Kβi (pi x)

]
= −

∫ ∞

0

[
∂xα+1

∂x

] 4

∏
i=1

pβi
i Kβi (pi x) (186)

one derives the identity

4

∑
i=1

p2
i Iα+1{β j−δij} = (α− βt + 1) Iα{β j}, j = 1, . . . , 4 (187)

where βt = β1 + β2 + β3 + β4. One of the advantages of the use of the 4K integral expression of a
solution is the simplified way by which the symmetry conditions can be imposed. In fact, by taking
each of the 8 independent solutions identified in (169), and by rewriting them in the form of 4K
integrals, the permutational symmetry of the correlators under the exchanges of the external momenta
pi and scaling dimensions ∆i becomes trivial.

7. Conclusions

We have reviewed recent progress on the analysis of the CWIs in momentum space for 3- and
4-point functions of ordinary CFTs in d > 2.

The momentum space approach, as mentioned in our introduction, allows to look at such theories
from a very different perspective, which is simply not accessible from coordinate space. It allows us to
perform direct comparisons with the ordinary analysis of scattering amplitudes expressed in terms of
Feynman diagrams, providing access to a wide class of methods that have been developed in this area
of perturbative quantum field theories.

The emergence of hypergeometric structures in the context of the CWI’s is for sure an interesting
feature of such equations which will be further explored in the near future, with interesting new results
in this area. The study of the conformal phases quantum field theories is a fascinating topic that will
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probably receive continuing attention for its important physical applications and may shed light on
several phenomena, ranging from condensed matter theory to high energy theory. Therefore, the
understanding of the fundamental mathematical structures which are part of this analysis and that can
help in this process is of considerable importance.
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Appendix A. Properties of Triple-K Integrals

The modified Bessel function of the second kind is defined by

Kν(x) =
π

2 sin(νx)
[I−ν(x)− Iν(x)], ν ∈ Z. (A1)

If ν = 1
2 + n, for n integer, the Bessel function reduced to elementary functions

Kν(x) =
√

π

2
e−x
√

x

b |ν|−1/2c

∑
j=0

(|ν| − 1/2 + j)!
j!(|ν| − 1/2− j)!

1
(2x)j , ν + 1/2 ∈ Z, (A2)

where we have used the floor function. In particular

K 1
2
(x) =

√
π
2

e−x
√

x , K 3
2
(x) =

√
π

2
e−x
√

x3
(1 + x),

K 5
2
(x) =

√
π
2

e−x
√

x5 , (x2 + 3x + 3), K 7
2
(x) =

√
π

2
e−x
√

x5
(x3 + 6x3 + 15x + 5). (A3)

Using this expressions the triple-K integrals can be calculated in a very simple way. For example,
considering the case of the βi half-integers, the triple-K integral takes the form

Iα{β1 β2,β3} =
∫ ∞

0
dx xα pβ1

1 pβ2
2 pβ3

3 Kβ1 (p1x)Kβ2 (p2x)Kβ3 (p3x)

=
|β1 |− 1

2

∑
k1=0

|β2 |− 1
2

∑
k2=0

|β3 |− 1
2

∑
k3=0

pβ1− 1
2−k1

1 pβ2− 1
2−k2

2 pβ3− 1
2−k3

3 pkt−α− 1
2

t Ck1 (β1)Ck2 (β2)Ck3 (β3) Γ
(

α− kt −
1
2

)
(A4)

where kt = k1 + k2 + k3 and pt = p1 + p2 + p3 and we have define Cki
(βi) as

Cki
(βi) ≡

√
π

22ki+1
(|βi| − 1/2 + ki) !

ki ! (|βi| − 1/2− ki) !
, (A5)

and we have used the definition of the gamma function in order to write the integral

∫ ∞

0
dx xα−kt− 3

2 e−pt x = pkt−α+ 1
2

t

∫ ∞

0
dy yα−kt− 3

2 e− y = pkt−α+ 1
2

t Γ
(

α− kt −
1
2

)
(A6)
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Using (A4) we can calculate for instance the integrals

I 9
2{ 3

2 , 3
2 ,− 1

2} =
(π

2

)3/2 3(p2
1 + p2

2) + p2
3 + 12p1 p2 + 4p3(p1 + p2)

p3(p1 + p2 + p3)4 (A7)

I 7
2{ 3

2 , 3
2 , 1

2} =
(π

2

)3/2 2(p2
1 + p2

2) + p2
3 + 6p1 p2 + 3p3(p1 + p2)

p3(p1 + p2 + p3)3 (A8)

and any integrals with half-integer β j, j = 1, 2, 3.
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