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nonlinear version of the second Henry–Gronwall inequality for integral inequalities with the tempered
Ψ–Hilfer fractional integral is derived. By using this inequality, an existence and uniqueness result
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1. Introduction

The classical linear Gronwall integral inequality has played a fundamental role in the
theory of ordinary and partial differential equations.

Many linear and nonlinear versions of this inequality can be found in the mono-
graphs [1–3]. All of such integral inequalities contained in these monographs have regular
kernels. The most known and very often quoted nonlinear one is the Bihari inequality,
originally proved in the paper [4]. Many other nonlinear integral inequalities are, in some
sense, modifications of this inequality. The first result on linear integral inequality with the
weakly singular kernel

(t − s)α−1, α > 0, (1)

frequently called the Henry lemma or Henry inequality, is proved in the famous monograph
by D. Henry ([5], Lemma 7.1.1). In the book, it plays a fundamental role in the theory
of semilinear parabolic equations. Another result also proved in this monograph ([5],
Lemma 7.1.2) concerns the linear integral inequality with the weakly singular kernel

(t − s)α−1sγ−1, α, γ > 0.

These two results are proved by an iteration argument. Unfortunately, this method is
not applicable in nonlinear cases. A new approach (so-called desingularization method),
presented in the papers [6,7], is suitable also for the investigation of nonlinear integral
inequalities with various types of weakly singular kernels. This method is helpful in the

Axioms 2024, 13, 301. https://doi.org/10.3390/axioms13050301 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13050301
https://doi.org/10.3390/axioms13050301
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-4740-8292
https://orcid.org/0000-0002-1071-3077
https://doi.org/10.3390/axioms13050301
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13050301?type=check_update&version=1


Axioms 2024, 13, 301 2 of 16

theory of fractional differential equations (see, e.g., [8]), abstract evolution differential equa-
tions (see, e.g., [7,9–11]), and parabolic partial differential equations. The results from the
papers [6,7] are included altogether with their proofs in monographs ([12], Theorem 1.2.17)
and ([13], Theorems 1.4.7–1.4.9).A generalization of ([13], Theorem 1.4.9) to nonlinear frac-
tional iterative integral inequalities is proved in [14]. It is also applied in the proof of a
sufficient condition for the nonexistence of blow-up solutions in a class of nonlinear integral
equations with several integrals possessing weakly singular kernels of the form of (1), as in
([5], Lemma 7.1.1).

The desingularization method was successfully applied in many papers on integral
inequalities with weakly singular kernels (see, e.g., recently published papers [15–18]) and
in the study of asymptotic properties of fractional differential equations. The first result of
this type was published in the paper [19]. Later, other papers followed (e.g., [9,20–26]). It is
worth to mention that the Henry lemmas were generalized to weakly singular nonlinear
integral inequalities with a delay [27], stochastic inequalities with singular kernels [28],
integral inequalities with doubly singular kernels [29], etc.

In the present paper, we apply the desingularization method to nonlinear integral
inequalities with the weakly singular kernel

Kα,γ,λ
Ψ (t, s) :=(Ψ(t)− Ψ(s))α−1Ψ(s)γ−1e−λ(Ψ(t)−Ψ(s))Ψ′(s), (2)

where Ψ is a C1–function with a positive derivative. The case γ = 1 was studied in the
paper [30] and its linear form in [31], where the definition of the tempered Ψ–Caputo
fractional derivative was introduced.

It is obvious that the second Henry inequality is obtained if Ψ(t) ≡ 1, λ = 0, and the
first one if, in addition, γ = 1. Clearly, the new integral inequality can be applied to some
modifications of the above-mentioned fractional problems in the framework of tempered
Ψ–fractional differential equations.

The structure of this paper is as follows: In the next part, we introduce the tempered
Ψ–Riemann–Liouville fractional derivative and the tempered Ψ–Caputo fractional deriva-
tive. Moreover, some of their properties are derived. In Section 3, we prove the Henry–
Gronwall inequality for integrals with kernel Kα,γ,λ

Ψ . In Section 4, we apply the integral
inequality to obtain results for fractional differential equations involving the tempered
Ψ–Caputo derivative. Here, we also provide examples of initial value problems with
explicit solutions. Finally, Section 5 summarizes the results and outlines possible future
research directions.

In the whole paper, we denote by N and N0 the set of all positive and nonnegative
integers, respectively. Next, for a, b ∈ Z, a < b, we use Zb

a for a discrete interval [a, b] ∩Z =
{a, a + 1, . . . , b}.

2. Preliminaries

In this section, we recall known definitions and prove auxiliary results. Here, we also
define the tempered Ψ–Riemann–Liouville fractional derivative.

Definition 1 ([31]). Let α > 0, λ ≥ 0, and Ψ ∈ C1[a, b] satisfy Ψ′(t) > 0 for all t ∈ [a, b]. The
tempered Ψ–Hilfer fractional integral of order α > 0 of a function x ∈ C[a, b] is defined by

Iα,λ,Ψ
a x(t) =

1
Γ(α)

∫ t

a
Kα,λ

Ψ (t, s) x(s) ds

for t ∈ [a, b], where Kα,λ
Ψ (t, s) = Kα,1,λ

Ψ (t, s) for Kα,γ,λ
Ψ (t, s) given by (2) and Γ(·) is the Euler

gamma function.

Note that
Iα,λ,Ψ
a x(t) = e−λΨ(t) Iα,Ψ

a (eλΨ(t)x(t)), (3)
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where Iα,Ψ
a = Iα,0,Ψ

a is the Ψ–Riemann–Liouville fractional integral [32,33], sometimes
referred to as the fractional integral with respect to function Ψ. It is worth to mention that
if x ∈ C[a, b], then Iα,λ,Ψ

a x ∈ C⌊α⌋, where ⌊·⌋ is the floor function.

Definition 2. Let n ∈ N, n − 1 < α < n, λ ≥ 0, and Ψ ∈ Cn[a, b] satisfy Ψ′(t) > 0 for
all t ∈ [a, b]. The tempered Ψ–Riemann–Liouville fractional derivative of order α of a function
x ∈ Cn−1[a, b] is defined by

RLDα,λ,Ψ
a x(t) = e−λΨ(t)

(
In−α,λ,Ψ
a x(t)

)[n]
λ,Ψ

where

x[n]λ,Ψ(t) =
(

1
Ψ′(t)

d
dt

)n(
eλΨ(t)x(t)

)
,

i.e.,

RLDα,λ,Ψ
a x(t) =

e−λΨ(t)

Γ(n − α)

(
1

Ψ′(t)
d
dt

)n ∫ t

a
(Ψ(t)− Ψ(s))n−α−1Ψ′(s)eλΨ(s)x(s) ds.

Note that
RLDα,λ,Ψ

a x(t) = e−λΨ(t) RLDα,Ψ
a (eλΨ(t)x(t)) (4)

for the Ψ–Riemann–Liouville fractional derivative, RLDα,Ψ
a = RLDα,0,Ψ

a , as introduced
in [34].

Definition 3. Let n ∈ N, n − 1 < α < n, λ ≥ 0, and Ψ ∈ Cn[a, b] satisfy Ψ′(t) > 0 for all
t ∈ [a, b]. The tempered Ψ–Caputo fractional derivative of order α of a function x ∈ Cn−1[a, b] is
defined by

CDα,λ,Ψ
a x(t) = RLDα,λ,Ψ

a

[
x(t)− e−λΨ(t)

n−1

∑
k=0

(Ψ(t)− Ψ(a))k

k!
x[k]λ,Ψ(a)

]
(5)

for t ∈ [a, b].

By denoting y(t) = eλΨ(t)x(t), we obtain

CDα,λ,Ψ
a x(t) = e−λΨ(t) RLDα,Ψ

a

[
y(t)−

n−1

∑
k=0

(Ψ(t)− Ψ(a))k

k!
y[k]Ψ (a)

]
,

where y[n]Ψ (t) = y[n]0,Ψ(t). Now, if x ∈ Cn[a, b], by using the definition of the Ψ–Caputo

fractional derivative, CDα,Ψ
a , from ([34], Definition 1), by ([35], Theorem 3),CDα,λ,Ψ

a x(t)
reads

CDα,λ,Ψ
a x(t) = e−λΨ(t) CDα,Ψ

a y(t)

= e−λΨ(t) In−α,Ψ
a

(
1

Ψ′(t)
d
dt

)n
y(t)

= e−λΨ(t) In−α,Ψ
a x[n]λ,Ψ(t)

=
e−λΨ(t)

Γ(n − α)

∫ t

a
(Ψ(t)− Ψ(s))n−α−1Ψ′(s) x[n]λ,Ψ(s) ds,

(6)

which agrees with the definition of the tempered Ψ–Caputo fractional derivative from ([31],
Definition 6).

Next, we summarize several properties of the above-defined fractional operators in
auxiliary lemmas.
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Lemma 1. Let λ ≥ 0 and Ψ ∈ C1[a, b] satisfy Ψ′(t) > 0 for all t ∈ [a, b]. A continuous function
x defined on [a, b] fulfills the following:

1. Iα,λ,Ψ
a Iβ,λ,Ψ

a x(t) = Iα+β,λ,Ψ
a x(t) for α, β > 0;

2.
(

Iα,λ,Ψ
a x(t)

)[n]
λ,Ψ

= eλΨ(t) Iα−n,λ,Ψ
a x(t) for α > n ∈ N0;

3.
(

In,λ,Ψ
a x(t)

)[n]
λ,Ψ

= eλΨ(t)x(t) for n ∈ N.

Proof. By making use of fractional integral composition (see [34,36]), one derives

Iα,λ,Ψ
a Iβ,λ,Ψ

a x(t) = e−λΨ(t) Iα,Ψ
a Iβ,Ψ

a (eλΨ(t)x(t))

= e−λΨ(t) Iα+β,Ψ
a (eλΨ(t)x(t))

= Iα+β,λ,Ψ
a x(t).

Statement 1 is proved.

If n = 0, then
(

Iα,λ,Ψ
a x(t)

)[n]
λ,Ψ

= eλΨ(t) Iα,λ,Ψ
a x(t). This confirms Statement 2 for n = 0.

Let n > 0. Then, Iα,λ,Ψ
a x ∈ C⌊α⌋[a, b] with ⌊α⌋ ≥ n. By subsequently differentiating,

one obtains(
Iα,λ,Ψ
a x(t)

)[n]
λ,Ψ

=

(
1

Ψ′(t)
d
dt

)n(
eλΨ(t) Iα,λ,Ψ

a x(t)
)

=
1

Γ(α)

(
1

Ψ′(t)
d
dt

)n ∫ t

a
(Ψ(t)− Ψ(s))α−1Ψ′(s)eλΨ(s)x(s) ds

=
1

Γ(α − 1)

(
1

Ψ′(t)
d
dt

)n−1 ∫ t

a
(Ψ(t)− Ψ(s))α−2Ψ′(s)eλΨ(s)x(s) ds

=
(

Iα−1,λ,Ψ
a x(t)

)[n−1]

λ,Ψ
= · · · =

(
Iα−n+1,λ,Ψ
a x(t)

)[1]
λ,Ψ

=
1

Γ(α − n + 1)Ψ′(t)
d
dt

∫ t

a
(Ψ(t)− Ψ(s))α−nΨ′(s)eλΨ(s)x(s) ds.

Now, if α = n, this is equal to

1
Ψ′(t)

d
dt

∫ t

a
eλΨ(s)x(s)Ψ′(s) ds = eλΨ(t)x(t)

proving Statement 3; on the other hand, for α > n, one can differentiate once more to obtain

1
Γ(α − n)

∫ t

a
(Ψ(t)− Ψ(s))α−n−1Ψ′(s)eλΨ(s)x(s) ds = eλΨ(t) Iα−n,λ,Ψ

a x(t),

which proves Statement 2 for n > 0.

From now on, we refer to the statements of the latter lemma by adding the correspond-
ing number, e.g., Lemma 1(1). The same holds for the next lemma.

Lemma 2. Let n ∈ N, n − 1 < α < n, λ ≥ 0, and Ψ ∈ Cn[a, b] satisfy Ψ′(t) > 0 for all
t ∈ [a, b]. Then, the following holds:

1. for k ∈ N0,

CDα,λ,Ψ
a

(
e−λΨ(t)(Ψ(t)− Ψ(a))k

)
=

{
0, n > k,
e−λΨ(t)k!

Γ(k+1−α)
(Ψ(t)− Ψ(a))k−α, n ≤ k.

2. CDα,λ,Ψ
a Iβ,λ,Ψ

a x(t) = Iβ−α,λ,Ψ
a x(t) for α < β and x ∈ C[a, b].
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3. CDα,λ,Ψ
a Iα,λ,Ψ

a x(t) = x(t) for x ∈ C[a, b].
4. for x ∈ Cn−1[a, b].

Iα,λ,Ψ
a

CDα,λ,Ψ
a x(t) = x(t)− e−λΨ(t)

n−1

∑
k=0

(Ψ(t)− Ψ(a))k

k!
x[k]λ,Ψ(a).

Proof. First, observe that[
e−λΨ(t)(Ψ(t)− Ψ(a))k

][n]
λ,Ψ

=

(
1

Ψ′(t)
d
dt

)n[
(Ψ(t)− Ψ(a))k

]
=

{
0, n > k,

k!
(k−n)! (Ψ(t)− Ψ(a))k−n, n ≤ k.

Then, Formula (6) is applied to immediately see that Statement 1 holds whenever n > k. If
n ≤ k, the substitution Ψ(s) = σ(Ψ(t)− Ψ(a)) + Ψ(a) results in

CDα,λ,Ψ
a

(
e−λΨ(t)(Ψ(t)− Ψ(a))k

)
=

e−λΨ(t)

Γ(n − α)

∫ t

a
(Ψ(t)− Ψ(s))n−α−1Ψ′(s)

[
e−λΨ(s)(Ψ(s)− Ψ(a))k

][n]
λ,Ψ

ds

=
e−λΨ(t)k!

Γ(n − α)(k − n)!

∫ t

a
(Ψ(t)− Ψ(s))n−α−1(Ψ(s)− Ψ(a))k−n Ψ′(s) ds

=
e−λΨ(t)(Ψ(t)− Ψ(a))k−αk!

Γ(n − α)(k − n)!

∫ 1

0
(1 − σ)n−α−1σk−n ds

=
e−λΨ(t)k!

Γ(n − α)(k − n)!
B(n − α, k − n + 1)(Ψ(t)− Ψ(a))k−α

=
e−λΨ(t)k!

Γ(k + 1 − α)
(Ψ(t)− Ψ(a))k−α,

where B(·, ·) is the Euler beta function. So, Statement 1 is proved.
Now, Iβ,λ,Ψ

a x ∈ C⌊β⌋[a, b] with ⌊β⌋ ≥ n − 1. So, in general, Formula (6) cannot be
used. Instead, we use Definition 3. Under the assumptions of Statement 2, we obtain, as a
consequence of Lemma 1(2),(

Iβ,λ,Ψ
a x(t)

)[k]
λ,Ψ

∣∣∣∣
t=a

= 0, k = 0, 1, . . . , n − 1 = ⌊α⌋ < β.

Consequently, by using (5), Definition 2, and Lemma 1, we have

CDα,λ,Ψ
a Iβ,λ,Ψ

a x(t) = RLDα,λ,Ψ
a Iβ,λ,Ψ

a x(t)

= e−λΨ(t)
(

In−α,λ,Ψ
a Iβ,λ,Ψ

a x(t)
)[n]

λ,Ψ

= e−λΨ(t)
(

In+β−α,λ,Ψ
a x(t)

)[n]
λ,Ψ

= e−λΨ(t)eλΨ(t) Iβ−α,λ,Ψ
a x(t)

= Iβ−α,λ,Ψ
a x(t).

This proves Statement 2.
Similarly, we have(

Iα,λ,Ψ
a x(t)

)[k]
λ,Ψ

∣∣∣∣
t=a

= 0, k = 0, 1, . . . , n − 1 = ⌊α⌋,
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and

CDα,λ,Ψ
a Iα,λ,Ψ

a x(t) = e−λΨ(t)
(

In,λ,Ψ
a x(t)

)[n]
λ,Ψ

= x(t)

due to Lemma 1(3), which proves Statement 3.
To show Statement 4, we apply an analogous result for λ = 0 proved in ([34], Theo-

rem 1):

Iα,λ,Ψ
a

CDα,λ,Ψ
a x(t) = e−λΨ(t) Iα,Ψ

a
CDα,Ψ

a (eλΨ(t)x(t))

= e−λΨ(t)

[
eλΨ(t)x(t)−

n−1

∑
k=0

(Ψ(t)− Ψ(a))k

k!

(
eλΨ(t)x(t)

)[k]
Ψ

∣∣∣∣
t=a

]

= x(t)− e−λΨ(t)
n−1

∑
k=0

(Ψ(t)− Ψ(a))k

k!
x[k]λ,Ψ(a).

This completes the proof.

Let us consider the following initial value problem:

CDα,λ,Ψ
a x(t) = f (t, x(t)), t ≥ a, (7)

x[k]λ,Ψ(a) = xk
a, k ∈ Zn−1

0 (8)

for some xk
a ∈ RN , k ∈ Zn−1

0 , where n − 1 < α < n ∈ N, λ ≥ 0, Ψ ∈ Cn[a, ∞) satisfies
Ψ′(t) > 0 for all t ≥ a, and f ∈ C([a, ∞)×RN ,RN). Here, the differential operator is to
be understood component-wise. In accordance with ([37], Definition 4) and Definition 3,
function x ∈ Cn−1[a, a + h) for some 0 < h ≤ ∞ is a solution of initial value problem (7)
and (8) if Dα,λ,Ψ

a x(t) exists and is continuous on [a, a + h), and x fulfills Equation (7) for all
t ∈ [a, a + h) and initial conditions (8).

The following theorem extends ([37], Theorem 2) to Cn−1–functions.

Theorem 1. Function x is a solution of initial value problem (7) and (8) if and only if it satisfies

x(t) = e−λΨ(t)
n−1

∑
k=0

(Ψ(t)− Ψ(a))k

k!
xk

a +
1

Γ(α)

∫ t

a
Kα,λ

Ψ (t, s) f (s, x(s)) ds, t ≥ a. (9)

Proof. If x solves (7) and (8), the application of operator Iα,λ,Ψ
a to Equation (7) yields (9),

due to Lemma 2(4) and conditions (8).
Now, assume that x fulfills integral Equation (9). Applying CDα,λ,Ψ

a results in

CDα,λ,Ψ
a x(t) = CDα,λ,Ψ

a

(
e−λΨ(t)

n−1

∑
k=0

(Ψ(t)− Ψ(a))k

k!
xk

a

)
+ CDα,λ,Ψ

a Iα,λ,Ψ
a f (t, x(t))

= f (t, x(t)),

where Statements 1 and 3 of Lemma 2 were applied. It only remains to verify initial
conditions (8). For each j ∈ Zn−1

0 , we have(
e−λΨ(t)

n−1

∑
k=0

(Ψ(t)− Ψ(a))k

k!
xk

a

)[j]

λ,Ψ

=

(
1

Ψ′(t)
d
dt

)j n−1

∑
k=0

(Ψ(t)− Ψ(a))k

k!
xk

a

=
n−1

∑
k=j

(Ψ(t)− Ψ(a))k−j

(k − j)!
xk

a,



Axioms 2024, 13, 301 7 of 16

that is equal to xj
a at t = a. Moreover,(

Iα,λ,Ψ
a f (t, x(t))

)[j]
λ,Ψ

= eλΨ(t) Iα−j,λ,Ψ
a f (t, x(t))

by Lemma 1(2). Here, we used 0 ≤ j ≤ ⌊α⌋ < α. One can easily see that(
Iα,λ,Ψ
a f (t, x(t))

)[j]
λ,Ψ

∣∣∣∣
t=a

= 0 for each j ∈ Zn−1
0 .

This verifies the initial conditions and completes the proof.

3. Integral Inequalities

Here, we investigate the integral inequality

u(t) ≤ a(t) + b(t)
∫ t

a
Kα,γ,λ

Ψ (t, s) F(s)ω(u(s)) ds, a ≤ t < T. (10)

In [33], an inequality of the Henry–Gronwall type (see ([33], Theorem 3)) is proved for
inequality (10) with λ = 0, ω(u) ≡ u, and F(t) ≡ 1. In the papers [6,7], inequality (10) with
λ = 0 and Ψ(t) ≡ t is studied.

First, we recall a generalized Hölder inequality.

Lemma 3. Let n ∈ N and pj > 1 for j ∈ Zn
1 satisfy

n

∑
j=1

1
pj

= 1. (11)

Then, ∫ b

a

n

∏
j=1

uj(s) ds ≤
n

∏
j=1

( ∫ b

a
|uj(s)|pj ds

) 1
pj

. (12)

This lemma was proved by A. Kufner, O. John, and S. Fučík in ([38], p. 67) (see
also ([39], 5.9c, pp. 355–356)).

Theorem 2. Let a ∈ R; α, γ ∈ (0, 1); λ > 0; p, q, r > 1; p < (1 − α)−1; q < (1 − γ)−1

satisfy 1
p + 1

q + 1
r = 1; a, b ∈ C[a, T) be nonnegative functions; b(·) be nondecreasing, where

a < T ≤ ∞; and Ψ ∈ C1[a, ∞) satisfy Ψ′(t) > 0 for all t ∈ (a, ∞). Let ω ∈ C[0, ∞) be a
positive, nondecreasing function; F, u ∈ C[a, T) be nonnegative functions; and u satisfy inequality
(10). Then,

u(t) ≤
[

Ξ−1
(

Ξ(A(t)) + B(t)
∫ t

a
erΨ(s)Ψ′(s)F(s)rds

)]1/r
(13)

for all a ≤ t < T for which the right side makes sense, where

A(t) = 2r−1 sup
a≤s≤t

a(s)r, B(t) = 2r−1Kr sup
a≤s≤t

b(s)r,

K = K(α, γ, λ, p, q) = K1(α, λ, p)K2(γ, q),

K1(α, λ, p) =
[

Γ(p(α − 1) + 1)
(pλ)p(α−1)+1

]1/p
,

K2(γ, q) =
[

Γ(q(γ − 1) + 1)
qq(γ−1)+1

]1/q
,

Ξ(z) =
∫ z

z0

dσ

ω(σ1/r)r for z0, z ≥ 0,

(14)
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and Ξ−1 is the inverse of Ξ.

Proof. Since 1
p + 1

q + 1
r = 1, we rewrite Ψ′(t) as Ψ′(t)1/p Ψ′(t)1/q Ψ′(t)1/r. By using this

equality, the identity eΨ(t) e−Ψ(t) = 1, and Lemma 3, we obtain∫ t

a
Kα,λ,Ψ

Ψ (t, s) F(s)ω(u(s)) ds

≤
(∫ t

a
Ψ′(s)(Ψ(t)− Ψ(s))p(α−1)e−pλ(Ψ(t)−Ψ(s))ds

)1/p

×
(∫ t

a
Ψ′(s)e−qΨ(s)Ψ(s)q(γ−1)ds

)1/q(∫ t

a
Ψ′(s) erΨ(s)F(s)rω(u(s))rds

)1/r

=

(∫ Ψ(t)−Ψ(a)

0
σp(α−1)e−pλσ dσ

)1/p(∫ Ψ(t)

Ψ(a)
e−qττq(γ−1) dτ

)1/q

×
(∫ t

a
erΨ(s)F(s)rω(u(s))rΨ′(s) ds

)1/r

≤
(

Γ(p(α − 1) + 1)
(pλ)p(α−1)+1

)1/p(Γ(q(γ − 1) + 1)
qq(γ−1)+1

)1/q

×
(∫ t

a
erΨ(s)F(s)rω(u(s))r Ψ′(s) ds

)1/r
.

(15)

By (10), this yields the inequality

u(t) ≤ a(t) + Kb(t)
(∫ t

a
erΨ(s)F(s)rω(u(s))r Ψ′(s) ds

)1/r
, (16)

where the constant K is defined by (14). By using the estimation (ξ + ζ)r ≤ 2r−1(ξr + ζr)
valid for any ξ, ζ ≥ 0, we obtain, from (16),

u(t)r ≤ ā(t) + b̄(t)
∫ t

a
erΨ(s)F(s)rω(u(s))r Ψ′(s) ds, (17)

where
ā(t) = 2r−1a(t)r, b̄(t) = 2r−1Krb(t)r. (18)

If v(t) = u(t)r, we rewrite inequality (17) as

v(t) ≤ ā(t) + b̄(t)
∫ t

a
erΨ(s)Ψ′(s)F(s)r[ω(v(s)1/r)]r ds. (19)

A theorem of Butler and Rogers ([40], Theorem, p. 78) implies

v(t) ≤ Ξ−1
(

Ξ(A(t)) + B(t)
∫ t

a
erΨ(s)Ψ′(s)F(s)r ds

)
. (20)

Thus, inequality (13) is verified.

For our purpose, it is worth to explicitly state the following corollary.

Corollary 1. Let a ∈ R; α, γ ∈ (0, 1); λ > 0; p, q, r > 1; p < (1 − α)−1; q < (1 − γ)−1

satisfy 1
p + 1

q +
1
r = 1; b ∈ C[a, T) be a nonnegative, nondecreasing function, where a < T ≤ ∞;

and Ψ ∈ C1[a, ∞) satisfy Ψ′(t) > 0 for all t ∈ (a, ∞). Let u ∈ C[a, T) be a nonnegative
function satisfying

u(t) ≤ b(t)
∫ t

a
Kα,γ,λ

Ψ (t, s) ds, a ≤ t < T.
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Then,

u(t) ≤ 2
r−1

r K

(
erΨ(t) − erΨ(a)

r

) 1
r

sup
a≤s≤t

b(s) (21)

for all a ≤ t < T, where K is given by (14).
In particular, ∫ t

a
Kα,γ,λ

Ψ (t, s) ds ≤ 2
r−1

r K

(
erΨ(t) − erΨ(a)

r

) 1
r

for all a ≤ t < T.

Proof. The direct use of Theorem 2 with a(t) ≡ 0 and F(t) ≡ 1 ≡ ω(t) yields (21). Notice
that this time, Ξ(z) = ln z

z0
, so the inverse in (13) is defined for any t.

4. Applications to Initial Value Problems Involving the Tempered Ψ–Caputo Derivative

This section applies the results proved in Section 3 to initial value problems cor-
responding to fractional differential equations with the tempered Ψ–Caputo fractional
derivative. We consider the following assumptions:

H1 There is γ ∈ (0, 1) such that

t1−γ∥ f (t, x)− f (t, y)∥ ≤ L∥x − y∥ for all (t, x), (t, y)∈ [a, ∞)×RN .

H2 Ψ(t) ≤ t for all t ≥ a.

The type of “Lipschitz condition” assumed in H1 was introduced in the paper [41].
First, we state a result on the existence of a unique solution of the initial value problem.

Theorem 3. Let α ∈ (0, 1), λ > 0, and Ψ ∈ C1[a, ∞) satisfy Ψ′(t) > 0 for all t ∈ (a, ∞).
Moreover, let conditions H1 and H2 be fulfilled and

α + γ > 1. (22)

Then, there exists h > 0 such that there is a unique solution x of initial value problem (7) and (8)
on the interval Ih = [a, a + h).

Proof. Let us fix p, q, r > 1, p < (1 − α)−1, q < (1 − γ)−1 such that 1
p + 1

q + 1
r = 1. Note

that by (22), such p, q, and r exist. Indeed, one can set

p =
1

1 − α + ε
, q =

1
1 − γ + ε

, r =
1
ε

, ε =
α + γ − 1

3
.

Then, it is easy to see that 0 < ε < 1
3 , r > 3, p < (1 − α)−1, q < (1 − γ)−1, and

1
p
+

1
q
+

1
r
= 2 − α − γ + 3ε = 1.

Let h > 0 be arbitrary and fixed. By Theorem 1, it suffices to prove the existence of a
unique solution of integral Equation (9) on Ih. Let Xh = C[a, a + h) be the Banach space
equipped with the norm |u| = supt∈Ih

∥u(t)∥. Define the operator F : Xh → Xh by

F (x)(t) = e−λΨ(t)x0
a +

1
Γ(α)

∫ t

a
Kα,λ

Ψ (t, s) f (s, x(s)) ds, t ∈ Ih. (23)
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If x, y ∈ Xh, then by using conditions H1 and H2, we obtain

∥F (x)(t)−F (y)(t)∥ ≤ 1
Γ(α)

∫ t

a
Kα,γ,λ

Ψ (t, s)Ψ(s)1−γ∥ f (s, x(s))− f (s, y(s))∥︸ ︷︷ ︸
≤s1−γ∥ f (s,x(s))− f (s,y(s))∥

ds

≤ 1
Γ(α)

∫ t

a
Kα,γ,λ

Ψ (t, s) s1−γ∥ f (s, x(s))− f (s, y(s))∥︸ ︷︷ ︸
≤L∥x(s)−y(s)∥

ds

≤ L
(

1
Γ(α)

∫ t

a
Kα,γ,λ

Ψ (t, s) ds
)
|x − y|.

(24)

By applying Corollary 1, we obtain

∥F (x)(t)−F (y)(t)∥ ≤ 2
r−1

r LK
Γ(α)

(
erΨ(t) − erΨ(a)

r

) 1
r

|x − y| (25)

for all t ∈ [a, a + h). Hence, we obtain

|F (x)−F (y)| ≤ 2
r−1

r LK
Γ(α)

(
erΨ(a+h) − erΨ(a)

r

) 1
r

|x − y|. (26)

Since the coefficient on the right side of the above inequality tends to 0 as h → 0+, for h > 0
sufficiently small, operator F is contractive. The Banach fixed point theorem yields the
existence of a unique fixed point.

Remark 1. If condition H1 holds only for all (t, x), (t, y) ∈ [a, a + H)×RN for some H > 0,
Theorem 3 remains valid with 0 < h < H.

Next, we present a version of Theorem 3 under the local “Lipschitz condition”

H1’ There is γ ∈ (0, 1) such that

t1−γ∥ f (t, x)− f (t, y)∥ ≤ L∥x − y∥ for all (t, x), (t, y) ∈ [a, ∞)× BR

for some R > 0, where BR = {z ∈ RN | ∥z − e−λΨ(a)x0
a∥ ≤ R}.

Theorem 4. Theorem 3 remains valid if H1 is replaced by H1’.

Proof. Let p, q, and r be as in the proof of Theorem 3. Let us fix h > 0 such that

∥e−λΨ(a+h)x0
a − e−λΨ(a)x0

a∥ ≤ R
2

. (27)

Let us consider the set

Xh =

{
u ∈ C[a, a + h)

∣∣∣∣∣ sup
t∈Ih

∥u(t)− e−λΨ(t)x0
a∥ ≤ R

2

}

equipped with the supremum norm | · | and define the operator F : Xh → C[a, a + h) by
(23). Clearly, (Xh, | · |) is a Banach space. Let us denote M := sup(s,x)∈Ih×BR

∥ f (s, x)∥. Then,
for (t, x) ∈ Ih × Xh,

∥F (x)(t)− e−λΨ(t)x0
a∥ ≤ M

Γ(α)

∫ t

a
Kα,λ

Ψ (t, s) ds.
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The substitution λ(Ψ(t)− Ψ(s)) = σ yields

∥F (x)(t)− e−λΨ(t)x0
a∥ ≤ M

Γ(α)λα

∫ λ(Ψ(t)−Ψ(a))

0
σα−1e−σdσ

=
M γ(α, λ(Ψ(t)− Ψ(a)))

Γ(α)λα
,

where γ(·, ·) is the incomplete gamma function (see, e.g., [42]). Note that γ(α, λ(Ψ(t)−
Ψ(a))) → 0+ as t → a+. So, if h > 0 is sufficiently small, then F : Xh → Xh. Now, if x ∈ Xh,
then

sup
t∈Ih

∥x(t)− e−λΨ(a)x0
a∥ ≤ sup

t∈Ih

∥x(t)− e−λΨ(t)x0
a∥

+ sup
t∈Ih

∥e−λΨ(t)x0
a − e−λΨ(a)x0

a∥

≤ R
2
+

R
2
= R

by the property of Xh and (27). Hence, x(t) ∈ BR for all t ∈ Ih. As a consequence, one can
show exactly as in the proof of Theorem 3 that F is a contraction by assuming that h > 0 is
small enough. The use of the Banach fixed point theorem completes the proof.

The following examples illustrate the above existence results.

Example 1. Let us consider the initial value problem

CDα,λ,Ψ
a x(t) = c, t ≥ a,

x[0]λ,Ψ(a) = x0
a

(28)

for some c, x0
a ∈ R; α ∈ (0, 1); λ > 0; and Ψ ∈ C1[a, ∞) satisfying condition H2 and Ψ′(t) > 0

for all t ≥ a.

It is obvious that condition H1 is fulfilled for any γ ∈ (0, 1) and L ≥ 0. Theorem 3
gives the existence of a unique solution to (28). In this case, it can be evaluated from the
integral equation

x(t) = e−λΨ(t)x0
a +

c
Γ(α)

∫ t

a
Kα,λ

Ψ (t, s) ds

= e−λΨ(t)x0
a +

c γ(α, λ(Ψ(t)− Ψ(a)))
Γ(α)

.

Example 2. Let us consider the initial value problem

CDα,λ,Ψ
a x(t) =

e−λΨ(t)Γ(1 − β)

Γ(1 − α − β)

(
eλΨ(t)x(t)− x0

a

) α+β
β , t ≥ a,

x[0]λ,Ψ(a) = x0
a

(29)

for some x0
a ∈ R; α, β ∈ (0, 1); α + β < 1; λ > 0; and Ψ ∈ C1[a, ∞) satisfying condition H2 and

Ψ′(t) > 0 for all t ≥ a.
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Let us estimate

| f (t, x)− f (t, y)| = e−λΨ(t)Γ(1 − β)

Γ(1 − α − β)

∣∣∣∣∣(eλΨ(t)x − x0
a

) α+β
β −

(
eλΨ(t)y − x0

a

) α+β
β

∣∣∣∣∣
=

(α + β)e−λΨ(t)Γ(1 − β)

β Γ(1 − α − β)

∣∣∣eλΨ(t)θ − x0
a

∣∣∣ α
β |x − y|

for some θ between x and y. If x, y ∈ BR for some R > 0, then θ ∈ BR, and one obtains∣∣∣eλΨ(t)θ − x0
a

∣∣∣ α
β
= e

αλΨ(t)
β

∣∣∣θ − e−λΨ(t)x0
a

∣∣∣ α
β

≤ e
αλΨ(t)

β

(∣∣∣θ − e−λΨ(a)x0
a

∣∣∣+ ∣∣∣e−λΨ(a)x0
a − e−λΨ(t)x0

a

∣∣∣) α
β

≤ e
αλΨ(t)

β (2R)
α
β

for all t sufficiently close to a, let us say that t ∈ [a, a + H) for some H > 0. Consequently,

| f (t, x)− f (t, y)| ≤ tγ−1

[
(α + β) Γ(1 − β) (2R)

α
β

β Γ(1 − α − β)
eλΨ(t)

(
1− α

β

)
t1−γ

]
|x − y|.

Now, one can take the supremum of the bracket over all t ∈ [a, a + H) as the constant L. It
results that condition H1’ is fulfilled for all t ∈ [a, a + H). The use of Theorem 4 along with
a remark analogous to Remark 1 proves the existence of a unique solution to (29). It can be
easily verified that the solution is given by

x(t) = e−λΨ(t)
(

x0
a + (Ψ(t)− Ψ(a))−β

)
.

Next, we give a result on the nonexistence of a blow-up solution. This means that
under certain conditions, every solution of the initial value problem is bounded. We need
one more assumption.

H3 There is γ ∈ (0, 1) such that

t1−γ∥ f (t, x)∥ ≤ F(t)ω(∥x∥) for all (t, x) ∈ [a, ∞)×RN .

Theorem 5. Let α ∈ (0, 1), λ > 0, and Ψ ∈ C1[a, ∞) satisfy condition H2 and Ψ′(t) > 0 for all
t ∈ (a, ∞). Let us assume that condition H3 is fulfilled for some positive function F ∈ C[a, ∞).
Moreover, let (22) hold and ∫ ∞

v0

σr−1dσ

ω(σ)r = ∞ (30)

for some r > (α + γ − 1)−1 and v0 ≥ 0. Then, there is no blow-up solution to initial value problem
(7) and (8).

Proof. Let us set

ε =
1
2

(
α + γ − 1 − 1

r

)
, p =

1
1 − α + ε

, q =
1

1 − γ + ε
.

Then, 0 < ε < 1
2 min{α, γ}, 1 < p < (1 − α)−1, 1 < q < (1 − γ)−1, 1 < r, and

1
p
+

1
q
= 2 − α − γ + 2ε = 1 − 1

r
.
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Let x : [a, T) → RN be a continuous solution of integral Equation (9) with a < T < ∞,
and limt→T− ∥x(t)∥ = ∞. Analogously to estimates (24), by using H3, we derive, for
t ∈ [a, T),

∥x(t)∥ ≤ ∥x0
a∥+

1
Γ(α)

∫ t

a
Kα,λ

Ψ (t, s)∥ f (s, x(s))∥ ds

≤ ∥x0
a∥+

1
Γ(α)

∫ t

a
Kα,γ,λ

Ψ (t, s)s1−γ∥ f (s, x(s))∥ ds

≤ ∥x0
a∥+

1
Γ(α)

∫ t

a
Kα,γ,λ

Ψ (t, s)F(s)ω(∥x(s)∥) ds.

From Theorem 2, it follows that

Ξ(∥x(t)∥r) =
∫ ∥x(t)∥r

v0

dz
ω(z1/r)r

= r
∫ ∥x(t)∥

v1/r
0

σr−1dσ

ω(σ)r

≤ Ξ(2r−1∥x0
a∥r) +

2r−1Kr

Γ(α)r

∫ t

a
erΨ(s)Ψ′(s)F(s)rds for all t ∈ [a, T),

(31)

where K is given by (14). Since

lim
t→T−

∫ ∥x(t)∥

v1/r
0

σr−1dσ

ω(σ)r = ∞ (32)

and the limit of the right-hand side of inequality (31) is finite as t → T−, we have a
contradiction. This completes the proof.

Example 3. Let us consider the initial value problem

CD
1
4 ,λ,Ψ
1 x(t) =

x(t) Γ( 3
4 )√

π
(√√

t − 1 + (
√

t − 1)
1
4

) , t ≥ 1,

x[0]λ,Ψ(1) = 1

(33)

with Ψ(t) =
√

t for t ≥ 1 and λ > 0.

For γ = 7
8 , condition H3 has the form

t1−γ| f (t, x)| ≤
t

7
8 Γ( 3

4 )√
π
(√√

t − 1 + (
√

t − 1)
1
4

) |x|.

Since ∫ ∞

v0

σr−1 dσ

σr =
∫ ∞

v0

dσ

σ
= ∞

for any fixed v0 > 0 and arbitrary r > 8, all assumptions of Theorem 5 are fulfilled.
Therefore, initial value problem (33) does not possess a blow-up solution. It can be verified
that its solution is given by

x(t) = e−λ
√

t
(

1 + (
√

t − 1)−
1
4

)
.
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Remark 2. In Example 3, the majorant function (ω) had the form ω(z) = z. Another often-used
majorant satisfying (30) is ω(z) = [ln(zr + c)]

1
r for c > 0. Then,

∫ ∞

v0

σr−1dσ

ω(σ)r =
∫ ∞

v0

σr−1dσ

ln(σr + c)
=

1
r

∫ ∞

vr
0

dτ

ln(τ + c)
= ∞

for any fixed v0 ≥ 0 and appropriate r.

5. Conclusions

In this paper, new definitions of fractional derivatives of order α for n− 1 < α < n ∈ N
were presented, namely, the tempered Ψ–Riemann–Liouville fractional derivative and the
tempered Ψ–Caputo fractional derivative. Both definitions were given for only Cn−1–
functions, unlike the recent definition of the Caputo one from [31], which required a
Cn–function. Next, a new Henry-type nonlinear integral inequality with a weakly singular
kernel was derived. It was applied to prove the existence of a unique solution of an
initial value problem corresponding to fractional differential equations with the tempered
Ψ–Caputo derivative. A result on nonexistence of a blow-up solution was also proved.
Illustrative examples of initial value problems were given.

Additional potential uses of the new nonlinear integral inequality include investigating
the stability, asymptotics, and controllability of solutions to initial value problems; the
study of boundedness and other asymptotic properties of nonoscillatory solutions like
in [43,44]; or generalization to retarded or stochastic integral inequalities as mentioned in
Section 1.
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