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Abstract: With the rapid development of the economy, data have become a new production factor and
strategic asset, enhancing efficiency and energy for technological innovation and industrial upgrading
in enterprises. The evaluation of enterprise digital asset value (EDAV) is a typical multi-attribute
decision-making (MADM) problem. Generalized hesitant fuzzy numbers (GHFNs) can better express
the uncertainty and fuzziness of evaluation indexes, thus finding wide applications in MADM
problems. In this paper, we first propose the Kullback–Leibler (K-L) divergence distance of GHFNs
and prove its mathematical properties. Second, recognizing that decision-makers often have finite
rationality in practical problems, we combine the cumulative prospect theory (CPT) with the Complex
Proportional Assessment (COPRAS) method to propose the GHF-CPT-COPRAS model for solving
MADM problems. Simultaneously, we extend the distance correlation-based Criteria Importance
Through Intercriteria Correlation (D-CRITIC) method to the GHF environment to rationally calculate
the weights of attributes in the EDAV evaluation problem. Finally, we apply the proposed GHF-CPT-
COPRAS model to the EDAV evaluation problem and compare it with existing GHF decision-making
methods to verify its effectiveness and feasibility. This study provides an important reference for
addressing the EDAV assessment problem within an uncertain fuzzy environment and extends its
application methods in the decision-making field.

Keywords: generalized hesitant fuzzy numbers; complex proportional assessment; cumulative
prospect theory; D-CRITIC method; Kullback–Leibler (K-L) divergence measure; enterprise data
asset valuation

MSC: 90B50; 91B06

1. Introduction

Data are often referred to as the ‘oil’ of the 21st century, as it has become a new factor
of production and strategic asset, contributing significantly to technological innovation and
industrial upgrading. At the enterprise level, data play an increasingly important role as a
key element in enhancing the core competitiveness of enterprises. Therefore, a scientific
assessment of the value of enterprise data assets is crucial for enterprise development.
Feng [1] investigated data asset value and impact factors, suggesting a valuation model that
is adaptable across societal sectors. Brennan, Attard, Petkov, Nagle and Helfert [2] pointed
out that there is a lack of research on data valuation techniques and observed that data
value perceptions differ among organizations. Li and Alotaibi [3] utilized nonparametric
estimation methods and nonlinear expectations to build various risk metric models for the
asset pricing and financing risk assessments of small businesses. Harish, Liu, Zhong and
Huang [4] studied digital asset valuation and risk assessment of logistics companies and
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utilized digital assets of letters of credit to help finance logistics. However, the data model
in these studies is quantitative data [5–7].

The EDAV evaluation is a complex issue involving multiple variables and factors, with
some factors possibly being difficult to express in clear numerical terms. Zadeh [8] believed
that traditional set theory is too precise and difficult to handle the uncertainty and fuzziness
present in the real world. Therefore, he introduced the concept of Fuzzy sets (FSs) in 1965.
In the last few decades, the application of FSs has driven the development of various
fields and has given rise to numerous new variations and extensions (IFS [9], HFS [10],
PHFS [11], PDHFS [12], HFNs [13], GHFNs [14], etc. [15–17]). However, we found that
GHFNs can comprehensively describe the potential information of variables and enable the
representation of multiple possible degrees of membership. In MADM problems, they excel
at handling complex uncertainty and fuzziness scenarios. Keikha [14] proposed GHFNs
based on HFNs and introduced their definition, operation laws, aggregation operators, and
so on. Keikha [18] gave some useful distance measures for GHFNs and proposed updating
the TOPSIS method, which is applied to the selection of energy projects. Based on the
general forms of t-norm and t-conorm functions, Garg and Keikha [19] introduced several
aggregation operators for GHFNs, thereby expanding the aggregation theory of GHFNs.
Liu, Wang, Ning and Wei [20] extended the CPT-TODIM method to GHFNs and used it for
researcher selection. Liu, Wang and Wei [21] proposed a new score function and entropy
measure for GHFNs to select energy projects using the GHF-EDAS method. GHFNs have
been widely used in MADM problems, but there are currently no relevant applications for
EDAV evaluation.

The problem with MADM is how to fuse and rank the evaluative information being
processed. The COPRAS method is capable of considering the importance and validity
of various alternatives in the process of evaluating and ranking them, and its calculation
process is simple and transparent. Therefore, this method is widely used in MADM prob-
lems. Seker, Baglan, Aydin, Deveci and Ding [22] used the IVq-ROF-COPRAS method to
evaluate COVID-19 social risk factors. Mishra, Rani, Saha, Senapati, Hezam and Yager [23]
proposed the COPRAS method for Fermatean FSs and applied the method to the selection
of renewable energy sources. Naz, Akram and Muzammal [24] extended the COPRAS
method to the 2-tuple linguistic T-spherical fuzzy MAGDM problem. Dang, Nguyen,
Nguyen and Dang [25] proposed SFs Gray COPRAS (G-COPRAS) and applied it to the
SSS problem. Buyukozkan and Gocer [26] proposed the PFS-COPRAS method and applied
it to the MADM problem of partner selection. Yuan, Xu and Zhang [27] proposed a hy-
brid DEMATEL-COPRAS approach for probabilistic linguistic term sets and applied it to
third-party supplier selection. Song and Chen [28] proposed the COPRAS method for the
MADM problem in PHFS. The application of the COPRAS method in some other fuzzy
environments is not listed [29–31]. However, until now, the application of the COPRAS
method within the context of GHFNs has remained unexplored.

It is noteworthy that in real-world scenarios, decision-makers frequently exhibit
bounded rationality, not always aiming to maximize utility. Instead, they tend to opt for
choices that best align with their preferences. For this reason, Tversky and Kahneman [32]
proposed a CPT for decision analysis under uncertainty and risk conditions. Currently,
CPT has been successfully applied to a wide range of fuzzy information risk-based MADM
problems. Zhang, Wei, Guo and Wei [33] developed the CPT-TODIM model, which is the
MADM for 2TLPFSs, and applied it to company credit risk assessment. Zhang, Wei, Lin
and Chen [34] proposed an intuitionistic fuzzy TOPSIS method (IF-CPT-TOPSIS) based on
CPT and applied it to the MAGDM problem. Liao, Gao, Lin, Wei and Chen [35] proposed
the PHF-CPT-EDAS method by combining CPT and information entropy theory and used
it to solve the MAGDM. Zhang and Wei [36] established the SF-CPT-CoCoSo model based
on CPT in a spherical fuzzy environment and used this method for the location of electric
vehicle charging stations. Mao, Chen, Lv, Guo and Xie [37] proposed a MADM method
based on the CPT and DEMATEL methods and applied it to the problem of municipal
plastic solid waste disposal. Han, Zhang and Deng [38] proposed IF-CPT-VIKOR in an
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intuitionistic fuzzy environment based on the CPT and VIKOR decision-making methods
and applied it to commercial concrete supplier selection. However, research on CPT-
based generalized hesitant fuzzy MADM methods is still relatively limited to date. It is
interesting to note that the CPT-COPRAS method has not yet been proposed to cope with
the uncertainty problem in GHFNs.

Another problem with MADM is how to identify the weights of the criteria. In the
MADM problem, the objective weights method is based on the available data and infor-
mation to determine the weights, which can better reflect the relationship and importance
between the decision criteria and reduce the subjective bias and subjective judgment of the
DMs, thus making the decision-making process more objective and scientific. The objective
weight method mainly includes the entropy weight method [39], MEREC method [40],
CRITIC method [41], etc. The CRITIC method comprehensively determines the weights
through the intensity of comparison within the indexes and the degree of conflict between
the indexes. Therefore, the CRITIC method is widely used to determine attribute weights
in MADM problems [42–45]. As research into the CRITIC method deepens, we have identi-
fied distinct limitations in its approach to determining attribute weights: (1) The conflict
ability of the indices should only be associated with the degree of relevance, independent
of positive or negative correlations. Hence, it is necessary to eliminate the positive and
negative signs of the correlation coefficients. (2) The CRITIC method tends to assign higher
weights to attributes of indices that are directly assigned or less relevant, thereby requiring
a reduction in conflict ability. Recently, Krishnan, Kasim, Hamid and Ghazali [46] proposed
the D-CRITIC method, which integrates distance correlation into the CRITIC method to
capture linear and nonlinear relationships between criteria and overcomes the inadequacy
of conflicting relationships between Pearson’s correlation coefficients to obtain attribute
weights efficiently. Zhang and Wei [36] extended the D-CRITIC method to Spherical fuzzy
sets to compute attribute weights and apply it to uncertain fuzzy decision problems. Ma-
neengam [47] used the weights of the D-CRITIC method objective function and then used
the modified TOPSIS method to study the MRP problem with multiple objective functions.
Wu, Yan, Wang, Chen, Jin and Shen [48] used the modified CRITIC to calculate attribute
weights, then simulated a multidimensional connectivity cloud, and calculated the connec-
tivity relative to the evaluation criteria to evaluate eutrophication water quality. However,
there are fewer applications of the D-CRITIC method in other fuzzy environments. In the
D-CRITIC method, one of the key factors is the distance measure. Kullback–Leibler (K-L)
divergence is an evolved form of Jensen–Shannon divergence [49], and K-L divergence is an
effective method for data fusion that distinguishes between two probability distributions
on the same variable, reflecting the distance of one probability distribution from the other.
Kumar, Patel and Mahanta [50] proposed PFSs new distance measure using K-L divergence,
which proves its mathematical properties, and conducted a comparative study with existing
distance measures to verify the superiority of K-L divergence measures. Moreno, Ho and
Vasconcelos [51] derived the kernel function distance of the probabilistic models between
the generating models based on the K-L divergence. However, there are no relevant works
on the K-L divergence measure under GHFNs.

Therefore, it is clear from the study of the literature that the EDAV evaluation problem
is a typical MADM problem. In this paper, we first propose the CPT-based COPRAS
decision-making method given the DMs’ limited rational behavior and establish the GHF-
CPT-COPRAS model of MADM. Second, we propose the K-L divergence measures for
GHFNs and extend the D-CRITIC method to GHFNs to obtain the weights of MADM
criteria. Finally, we illustrate the applicability of the GHF-CPT-COPRAS model through an
EDAV evaluation examples analysis and conduct a comparative study to verify the validity
and feasibility of the model.

The primary motivations of this paper are as follows: (1) In the era of big data, EDAV
evaluation holds significant practical importance. However, there is a scarcity of related
studies. Therefore, this paper aims to establish an EDAV evaluation index system and
translate decision-making information into GHFNs to facilitate better decision-making on
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EDAV evaluation problems. (2) The K-L divergence measure distinguishes between two
probability distributions on the same variable, indicating the distance between them. This
measure has been extended to the GHF environment to reflect the distance measure of
two GHFNs. (3) The COPRAS method has been widely utilized due to its capability to
consider the importance and validity of different alternatives in the evaluation and ranking
process, along with its simple and transparent calculation process. Decision-makers exhibit
various psychological preferences when facing losses and gains, and CPT effectively simu-
lates these preferences. By integrating CPT with COPRAS, the CPT-COPRAS model can
fully capture DMs’ psychological preferences and provide effective and rational rankings.
(4) The D-CRITIC method combines distance correlation with the CRITIC method to capture
linear and nonlinear relationships between criteria, which overcomes the inadequacy of
conflicting relationships between Pearson’s correlation coefficients and minimizes the pos-
sible deviation of the final weights. However, so far, the D-CRITIC method has rarely been
applied in GHFNs. (5) It is important to apply the proposed GHF-CPT-COPRAS model to
the EDAV evaluation problem for decision-making. For the reasons stated above, this paper
first proposes the K-L divergence measure for GHFNs. Second, the GHF-CPT-COPRAS
model is established to be applied to uncertain fuzzy decision-making problems, and the
D-CRITIC method is extended to obtain the criteria weights in the MADM problem. Finally,
the developed model is applied to the EDAV evaluation problem to verify its effectiveness.
In addition, it further demonstrated the effectiveness and feasibility of the GHF-CPT-
COPRAS model through a comparative discussion with existing decision-making methods
for GHFNs.

The main contributions are as follows: (1) established the EDAV evaluation index
system and transformed the EDAV evaluation information into GHFNs; (2) proposed
the K-L divergence measure for GHFNs, which enriched the distance measure theory of
GHFNs; (3) extended the D-CRITIC method to assign the weights of unknown attributes in
the GHF environment decision-making; (4) established the GHF-CPT-COPRAS model to
solve the MADM problem, integrating decision-making habits of DMs and risk preferences
and integrating CPT theory into the COPRAS method for effective evaluation of the scheme;
(5) the proposed model was used for the EDAV evaluation problem to evaluate the value of
the data assets of five Internet financial enterprises, and the results of the study can provide
a reference to the managers; (6) further comparative analyses to validate the GHF-CPT-
COPRAS model’s validity and feasibility, which provides a reference for expanding the
CPT-COPRAS method to other decision-making environments and also providing some
ideas for expanding the established model to other MADM problems.

In addition to the above, this paper consists of the following sections: In Section 2,
we review the definition and operator laws of GHFNs, CPT theory, COPRAS method, and
D-CRITIC method. Section 3 proposes a distance measure of GHFNs based on the K-L
divergence measure. Section 4 introduces the GHF-CPT-COPRAS model, incorporating
the D-CRITIC method. In Section 5, we establish the EDAV evaluation system, apply the
proposed method to practical EDAV evaluation problems, and compare GHFN operators
and decision-making methods to illustrate the effectiveness and feasibility of the EDAV
evaluation method. Finally, Section 6 provides a summary of the paper and suggests
interesting directions for future research.

2. Preliminaries
2.1. GHFNs and Their Operational Laws

Definition 1 ([14]). Let R be the universal set; a GHFN is shown as

˜̃ℜH
= ⟨{r1, r2, · · · , rk}; {ϑ1, ϑ2, · · · , ϑl}⟩. (1)



Axioms 2024, 13, 297 5 of 26

In which ri, i = 1, 2, · · · , k are positive values, and ϑj, j = 1, 2, · · · , l are membership/doubtless

degrees. To make it easier in the use and calculation process, ˜̃ℜH
= ⟨{r1, r2, · · · , rk};{ϑ1, ϑ2, · · · , ϑl}⟩

is recorded as ˜̃ℜH
= ⟨h(ℜ); mh(ℜ)⟩.

To make GHFNs work efficiently, it is necessary for us to adjust GHFNs (AGHFNs). If k = m and

l = n, then ˜̃ℜH
= ⟨{r1, r2, · · · , rk};{ϑ1, ϑ2, · · · , ϑl}⟩ and ˜̃ℑH

= ⟨{s1, s2, · · · , sm};{ℏ1,ℏ2, · · · ,ℏn}⟩

are two AGHFNs. If this is not the case, let k < m and l < n, then ˜̃ℜH
must be extended.

For the pessimistic DMs, we put ℜmin = min(r1, r2, · · · , rm) repeated m − k times in the

real number part of ˜̃ℜH
, and ϑmin = min(ϑ1, ϑ2, · · · , ϑn) repeated n − l times in the membership

degree part of ˜̃ℜH
.

For the optimistic DMs, we put ℜmax = max(r1, r2, · · · , rm) repeated m − k times in the

real number part of ˜̃ℜH
, and ϑmax = max(ϑ1, ϑ2, · · · , ϑn) repeated n − l times in the membership

degree part of ˜̃ℜH
.

For the indifference DMs, we put r = r1+r2+···+rm
m repeated m − k times in the real number

part of ˜̃ℜH
, and ϑ = 0.5 repeated n − l times in the membership degree part of ˜̃ℜH

.
Next, some operation laws for GHFNs are given.

Let a > 0 and ˜̃ℜH
= ⟨{r1,r2, · · · ,rk};{ϑ1,ϑ2, · · · ,ϑl}⟩ and ˜̃ℑH

= ⟨{s1,s2, · · · ,sm};{ℏ1,ℏ2, · · · ,ℏn}⟩
be two AGHFNs, then operation laws for GHFNs are defined as [14]:

(1) a ˜̃ℜH
= ⟨{ar1, ar2, · · · , arm}; {ϑ1, ϑ2, · · · , ϑl}⟩;

(2) ( ˜̃ℜH
)

a
=

〈{
(r1)

a, (r2)
a, · · · , (rm)

a}; {ϑ1, ϑ2, · · · , ϑl}
〉
;

(3) ˜̃ℜH
⊕ ˜̃ℑH

=

〈
∪
i

{
r(i) + s(i)

}
; mh(ℜ) ∪ mh(ℑ)

〉
;

(4) ˜̃ℜH
⊗ ˜̃ℑH

=

〈
∪
i

{
r(i)s(i)

}
;∪

i
min

{
ϑ(i),ℏ(i)

}〉
;

where r(1), r(2), · · · , r(m) is a substitution of r1, r2, · · · , rm for any i with r(i) ≤ r(i−1), and
s(1), s(2), · · · , s(m) is a substitution of s1, s2, · · · , sm for any i with s(i) ≤ s(i−1).

Keikha [14] defined the score function and variance of GHFNs to compare the sizes of
two GHFNs.

Definition 2 ([14]). ˜̃ℜH
= ⟨{r1, r2, · · · , rk}; {ϑ1, ϑ2, · · · , ϑl}⟩ is a GHFN; the GHFN mean,

score, and variance functions are recorded as:

M( ˜̃ℜH
) = (r, ϑ) =


k
∑

i=1
ri

k
,

l
∑

j=1
ϑj

l

. (2)

Score( ˜̃ℜH
) = r × ϑ =

k
∑

i=1
ri

k
×

l
∑

j=1
ϑj

l
. (3)

Var( ˜̃ℜH
) =

√√√√√√
k
∑

i=1
(ri − r)2

k
+ ∑

i ̸=j
(ϑi − ϑj)

2. (4)

˜̃ℜH
= ⟨{r1, r2, · · · , rk}; {ϑ1, ϑ2, · · · , ϑl}⟩ and ˜̃ℑH

= ⟨{s1, s2, · · · , sm}; {ℏ1,ℏ2, · · · ,ℏn}⟩
are two AGHFNs, and the method of comparing the size of two AGHFNs was recorded as:
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(1) If M( ˜̃ℜH
) > M( ˜̃ℑH

), that is r > s, ϑ > ℏ, then ˜̃ℜH
≻s.s.

˜̃ℑH
, denoted ˜̃ℜH

is strongly

superior to ˜̃ℑH
.

(2) If Score( ˜̃ℜH
) > Score( ˜̃ℑH

), that is r > s, ϑ = ℏ (r = s, ϑ > ℏ), then ˜̃ℜH
≻s

˜̃ℑH
, denoted˜̃ℜH

is superior to ˜̃ℑH
.

(3) If Score( ˜̃ℜH
) ≥ Score( ˜̃ℑH

), that is r > s, ϑ < ℏ (r < s, ϑ > ℏ) or M( ˜̃ℜH
) = M( ˜̃ℑH

) and

Var( ˜̃ℜH
) < Var( ˜̃ℑH

), then ˜̃ℜH
≻w.s.

˜̃ℑH
, denoted ˜̃ℜH

is weakly superior to ˜̃ℑH
.

(4) If M( ˜̃ℜH
) = M( ˜̃ℑH

) and Var( ˜̃ℜH
) = Var( ˜̃ℑH

), then ˜̃ℜH
≡a.eq.

˜̃ℑH
, denoted ˜̃ℜH

is

almost equal to ˜̃ℑH
.

Next, we introduce the aggregation operator of GHFNs in detail.

Definition 3 ([14]). GHFNs arithmetic averaging operator (GHWAA). Let ˜̃ℜH
i = ⟨h(ℜi); mh(ℜi)⟩

i = 1, 2, · · · , k be AGHFNs, where ˜̃ℜH
i =

〈{
ri(1), ri(2), · · · , ri(m)

}
;
{

ϑi(1), ϑi(2), · · · , ϑi(n)

}〉
. The

weight vector is denoted as ℘ = (℘1,℘2, · · · ,℘k)
T and ℘i ∈ [0, 1],

k
∑

i=1
℘i = 1. Then,

GHWAA℘

(˜̃ℜH
1 , ˜̃ℜH

2 , · · · , ˜̃ℜH
k

)
=

〈
m
∪

j=1

{
k

∑
i=1

℘iri(j)

}
;

k
∪

i=1
mh(ℜi)

〉
. (5)

If ℘ = ( 1
k , 1

k , · · · , 1
k )

T
, the GHWAA operator is called the GHAA operator.

Definition 4 ([14]). GHFN geometric averaging operator (GHWGA). Let ˜̃ℜH
i = ⟨h(ℜi); mh(ℜi)⟩

i = 1, 2, · · · , k be AGHFNs, where ˜̃ℜH
i =

〈{
ri(1), ri(2), · · · , ri(m)

}
;
{

ϑi(1), ϑi(2), · · · , ϑi(n)

}〉
. The

weight vector is denoted as ℘ = (℘1,℘2, · · · ,℘k)
T and ℘i ∈ [0, 1],

k
∑

i=1
℘i = 1. Then,

GHWGA℘

(˜̃ℜH
1 , ˜̃ℜH

2 , · · · , ˜̃ℜH
k

)
=

〈
m
∪

j=1

{
k

∑
i=1

r℘i
i(j)

}
;

k
∩

i=1
mh(ℜi)

〉
. (6)

where
k
∩

i=1
mh(ℜi) = ∪

ϑi∈h(ℜi)
min{ϑ1, ϑ2, · · · , ϑn}. If ℘ = ( 1

k , 1
k , · · · , 1

k )
T

, the GHWGA operator

is called the GHGA operator.

Definition 5 ([14]). GHFNs order weighted arithmetic and geometric averaging operator

(GHOWA/GHOWG). Let ˜̃ℜH
i = ⟨h(ℜi); mh(ℜi)⟩ i = 1, 2, · · · , k be AGHFNs, where˜̃ℜH

i =
〈{

ri(1), ri(2), · · · , ri(m)

}
;
{

ϑi(1), ϑi(2), · · · , ϑi(n)

}〉
, and ˜̃ℜH

(1) < ˜̃ℜH
(2) < · · · < ˜̃ℜH

(k).

The weight vector is denoted as ℘ = (℘1,℘2, · · · ,℘k)
T and ℘i ∈ [0, 1],

k
∑

i=1
℘i = 1. Then, the

GHOWA operator and GHOWG operator are recorded as:

GHOWA℘

(˜̃ℜH
1 , ˜̃ℜH

2 , · · · , ˜̃ℜH
k

)
=

〈
m
∪

j=1

{
k

∑
i=1

℘ir(i)(j)

}
;

k
∪

i=1
mh(ℜ(i))

〉
, (7)

GHOWG℘

(˜̃ℜH
1 , ˜̃ℜH

2 , · · · , ˜̃ℜH
k

)
=

〈
m
∪

j=1

{
k

∑
i=1

r℘i
(i)(j)

}
;

k
∩

i=1
mh(ℜ(i))

〉
. (8)
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where
k
∩

i=1
mh(ℜ(i)) = ∪

ϑi∈h(ℜ(i))
min{ϑ1, ϑ2, · · · , ϑn}.

2.2. Cumulative Prospect Theory (CPT)

CPT was proposed by Tversky and Kahneman [32] based on PT, which is different from
the traditional expected utility theory. CPT consists of a reference point, value function, and
weighting function, which is based on the precondition of finite rationality, and can reflect
the psychological preference of DMs, which can effectively overcome the phenomenon that
PT contradicts with the advantage of randomness. The formula for the total prospective
value V is as follows:

V =
n

∑
i=1

v(∆xi)h(pi). (9)

where ∆xi = xi − x∗, with ∆xi as the value of the difference between the decision alterna-
tives relative to the reference point, when ∆xi ≥ 0, v(∆xi) is the gain; when ∆xi < 0, v(∆xi)
is the value of the loss.

The value function v(∆xi) and the probability weight function h(pi) are obtained
as follows:

v(∆xi) =

{
(∆xi)

α, ∆xi ≥ 0.
−λ(−∆xi)

β, ∆xi < 0.
, (10)

h(pi) =

{
(pi)

τ/((pi)
τ + (1 − pi)

τ)
1
τ , ∆xi ≥ 0

(pi)
κ/((pi)

κ + (1 − pi)
κ)

1
κ , ∆xi < 0

. (11)

where α and β denote the concavity of the power functions of gain and loss, respectively,
and both are less than 1; λ denotes the characteristic that loss is steeper than gain, and when
the value is greater than 1, it denotes the rejection of loss. Tversky and Kahneman [32]
utilized the method of linear regression to obtain cumulative prospect theory when the
parameters in the value function and weight function were α = β = 0.88, λ = 2.25, and the
parameters τ = 0.61, κ = 0.69, which was more consistent with the empirical data.

2.3. D-CRITIC Method

The CRITIC method is an objective weighting approach that hinges on data volatility
and conflict. Volatility is denoted by the standard deviation; a larger standard deviation
signifies greater volatility, which in turn corresponds to a higher weight. On the other
hand, conflict is represented by the correlation coefficient. A higher correlation coefficient
value between criteria suggests reduced conflict, leading to diminished weight. Based on
the existing research [52–54], there are the following shortcomings in using the CRITIC
method to assign the weights of criteria: (1) the conflict ability of criteria should only be
related to the degree of correlation of the criteria and has nothing to do with the positive or
negative, so it is necessary to eliminate the positive and negative signs of the correlation
coefficient; (2) If there are attributes of direct assignment type or low relevance, the CRITIC
method assigns higher weights to such attributes, so the conflictive ness needs to be
weakened. As an improved form of the original CRITIC method, D-CRITIC was proposed
by Krishnan, Kasim, Hamid and Ghazali [46]. This method integrates distance correlation
into the CRITIC method to capture linear and nonlinear relationships between attributes,
which overcomes the inadequacy of conflicting relationships between Pearson’s correlation
coefficients. It can more reliably model the conflicting relationships between attributes and
thus obtain attribute weights efficiently. The computational steps of the D-CRITIC method
are as follows:
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Assume that in the MADM problem under uncertainty, ℜ = {ℜ1,ℜ2, · · · ,ℜu} is the
set of alternatives, ζ = {ζ1, ζ2, · · · , ζs} is the set of attributes to evaluate the alternatives.
Determining the decision matrix based on the DMs is given as follows:

ℜ =
[
ℜij

]
u×s =


ℜ11 ℜ12 · · · ℜ1s
ℜ21 ℜ22 · · · ℜ2s

...
...

...
...

ℜu1 ℜu2 · · · ℜus

. (12)

Step 1. The decision matrix is normalized by Equation (13):

ℜ∗
ij =


ℜij−min

i
ℜij

max
i

ℜij−min
i
ℜij

, j ∈ B;

max
i

ℜij−ℜij

max
i

ℜij−min
i
ℜij

, j ∈ C;
(13)

Step 2. The standard deviation for each attribute is calculated using Equation (14):

Λp =

√√√√√ u
∑

i=1
(ℜ∗

ip −ℜp)
2

u − 1
, p = 1, 2, · · · , s. (14)

where Λp and ℜp denote the standard deviation and mean of attribute p, respectively.
Step 3. The distance correlation is calculated for each pair of attributes. The main

difference between the traditional CRITIC method and the D-CRITIC method is in this
step. The former calculates the Pearson correlation between attributes; when the Pear-
son correlation coefficient is zero, it may not be completely independent. The CRITIC
method associates a higher weight to such attributes, so it needs to be weakly conflicting.
Therefore, Szekely and Rizzo [55] presented a new measure of correlation called distance
correlation, which is effective in capturing the nonlinear relationship between variables.
In the D-CRITIC approach, distance correlation is used as an alternative way of modeling
relationships to minimize possible errors in the final weights. The distance correlation
coefficient between attributes ζp and ζq is calculated as follows:

dCor(ζp, ζq) =
dCov(ζp, ζq)√

dVar(ζp) · dVar(ζq)
, p, q = 1, 2, · · · , s. (15)

where dCov(ζp, ζq) is the distance covariance between attributes ζp and ζq, dCov(ζp, ζq) is
the distance covariance of the attribute ζp, dVar(ζp), and dVar(ζq) are interpreted in the
same way. The detailed calculation procedure is listed below:

(1) In all alternatives, the distance matrix is constructed for each attribute ζp based on
Equation (16).

Ap = (ap
mn)u×u = (ℜ∗

mp −ℜ∗
np)u×u

, m, n = 1, 2, · · · , u; p = 1, 2, · · · , s. (16)

(2) The double-centered matrix Bp for attributes is obtained based on Equation (17).

Bp = (bp
mn)u×u,

bp
mn = ap

mn − 1
u

u
∑

n=1
ap

mn − 1
u

u
∑

m=1
ap

mn +
1

u2

u
∑

m=1

u
∑

n=1
ap

mn, p = 1, 2, · · · , s, (17)
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where 1
u

u
∑

m=1
ap

mn and 1
u

u
∑

n=1
ap

mn denote the average of the m th row and n th column of Ap,

respectively, and 1
u2

u
∑

m=1

u
∑

n=1
ap

mn denotes the total average of Ap.

(3) The distance covariance of attributes ζp and ζq is determined through Equation (18).

dCov(ζp, ζq) =

√√√√√ u
∑

m=1

u
∑

n=1
bp

mn · bq
mn

u2 , p, q = 1, 2, · · · , s. (18)

(4) The distance variance of the attribute ζp is determined through Equation (19).

dVar(ζp) = dCov(ζp, ζp), p = 1, 2, · · · , s. (19)

(5) Using the covariance and variance of the attribute distances, a distance correlation
between the attributes is obtained.

Step 4. The information content of each attribute is determined through Equation (20):

ϕp = Λp ·
s

∑
q=1

(1 − dCor(ζp, ζq)), p = 1, 2, · · · , s. (20)

Step 5. The weights are calculated through Equation (21).

⌢
ϖ

′
p =

ϕp
s
∑

p=1
ϕp

, p = 1, 2, · · · , s. (21)

2.4. COPRAS Method

The COPRAS method [56] is a tool to efficiently deal with the MCDM problem, which
is used to evaluate the values of the maximization and minimization indexes and to
separately consider the influence of the attribute maximization and minimization indexes
on the evaluation of the results. The advantages of this method are its simplicity of
calculation, its ability to clearly reflect the degree of improvement and deterioration of the
alternatives compared to other alternatives, ensuring that the ranking results are reasonable
and reliable. The initial decision matrix is assumed to be given in Equation (12), where the

weights of the attributes form a set
⌢
ϖ =

{
⌢
ϖ

′
1,

⌢
ϖ

′
2, · · · ,

⌢
ϖ

′
s

}T
that satisfies

⌢
ϖ

′
j ≥ 0 and

s
∑

j=1

⌢
ϖ

′
j = 1. The COPRAS method is calculated as follows:

Step 1. The decision matrix is normalized by Equation (22):

ℜ′
ij =

ℜij
u
∑

i=1
ℜij

, j = 1, 2, · · · , s. (22)

Step 2. The weighted normalization is performed by Equation (23):

⌢

ℜ′
ij = ℜ′

ij ·
⌢
ϖ j, i = 1, 2, · · · , u; j = 1, 2, · · · , s. (23)

Step 3. To obtain the maximizing and minimizing indexes for each attribute for the
given attribute type, Equations (24) and (25) can be used:

ℑ+i =
g

∑
j=1

⌢

ℜ′
ij, i = 1, 2, · · · , u, (24)
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ℑ−i =
s

∑
j=g+1

⌢

ℜ′
ij, i = 1, 2, · · · , u, (25)

Here, g represents the number of positive attributes, s − g represents the number of
negative attributes, and the maximizing and minimizing indexes ℑi of the attributes are
defined according to the type of attributes.

Step 4. The relative significance value Yi is calculated by Equation (26):

Yi = ℑ+i +

u
∑

i=1
ℑ−i

ℑ−i
u
∑

i=1

1
ℑ−i

. (26)

Step 5. The relative significance values are ranked in descending order.

3. GHFNs K–L Divergence Measure

In this section, we propose a new distance measure for GHFNs based on K-L diver-
gence measures. It is an effective data fusion method that quantifies the proximity of
two probability distributions for highly precise estimations. The K-L divergence distin-
guishes between two probability distributions on the same variable, reflecting the distance
of one probability distribution from the other.

For any discrete random variable R′, suppose T and U are two probability distributions.
Then, define the K-L divergence between T and U as:

dKL(T, U) = ∑
a∈R′

T(a) log
T(a)
U(a)

. (27)

To avoid the situation where U(a) = 0, dKL(T, U) can be modified as follows:

dKL(T, U) = ∑
a∈R′

(
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where   is a value with 0 1< ≤ . 
This is because the K-L divergence does not satisfy the symmetric property. There-

fore, we obtain the following result by transforming it into a symmetric divergence: 

( , ) ( , ) ( , ),KL KL KLD T U d T U d U T= +  

( ( ))( , ) ( ( ) ( )) log .
( ( ))KL

a R

T aD T U T a U a
U a′∈

+
= −

+∑ 



 
(29) 

Since all possibilities are less than 1, which is the case, we set 1= . 

+ T(a)) log
(
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This is because the K-L divergence does not satisfy the symmetric property. Therefore,

we obtain the following result by transforming it into a symmetric divergence:

DKL(T, U) = dKL(T, U) + dKL(U, T),DKL(T, U) = ∑
a∈R′

(T(a)− U(a)) log
(
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Since all possibilities are less than 1, which is the case, we set 1= . 

+ T(a))
(
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Since all possibilities are less than 1, which is the case, we set 1= . 

= 1.

DKL(T, U) = ∑
a∈R′

(T(a)− U(a)) log
(1 + T(a))
(1 + U(a))

. (30)

Divergence is used to measure the difference or dissimilarity between two probability
distributions. Therefore, we can construct a distance measure to measure the difference
between information using K-L divergence. Next, we define the K-L divergence measure
for two GHFNs.

Let ˜̃T = ⟨{t(1), t(2), · · · , t(m)};{ℏ(1),ℏ(2), · · · ,ℏ(n)}⟩ and ˜̃U == ⟨{u(1), u(2), · · · , u(m)};
{
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To expedite the proof of the distance properties, we exploit the following function 
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(A1) Obtained the partial derivatives of ( , )F τ υ  with respect to τ  and υ  as 
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(n)}⟩ be two GHFNs, then the new distance measures of GHFNs are
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Since 0 ≤ t(i),u(i) ≤ 1 and 0 ≤ ℏ(i),
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( , ) [0,1] [0,1]τ υ ∈ ×  

2
2 2

2

1( , ) ( ) log .
1

F ττ υ τ υ
υ

+
= −

+
 (34) 

(A1) Obtained the partial derivatives of ( , )F τ υ  with respect to τ  and υ  as 
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the distance measure DKL(

˜̃T, ˜̃U) takes the maximum value n log(2) + m log(2), which

is more than 1. Consequently DKL(
˜̃T, ˜̃U) is not limited to the interval [0, 1]. Therefore,

we normalize the distance measure DKL(
˜̃T, ˜̃U) by dividing it by its maximum value.

DNKL(
˜̃T, ˜̃U) = 1

2m log(2)

m
∑

i=1
(t2(i)− u2(i)) log (1+t2(i))

(1+u2(i))+

1
2n log(2)

n
∑

j=1
(ℏ2(j)−
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(A1) Obtained the partial derivatives of ( , )F τ υ  with respect to τ  and υ  as 

2(j)) log (1+ℏ2(j))

(1+

Axioms 2024, 13, x FOR PEER REVIEW 11 of 28 
 

(1 ( ))( , ) ( ( ) ( )) log .
(1 ( ))KL

a R

T aD T U T a U a
U a′∈

+
= −

+∑  (30) 

Divergence is used to measure the difference or dissimilarity between two probabil-
ity distributions. Therefore, we can construct a distance measure to measure the difference 
between information using K-L divergence. Next, we define the K-L divergence measure 
for two GHFNs. 

Let { } { }(1), (2), , ( ) ; (1), (2), , ( )T t t t m n=       and { }(1), (2), , ( ) ;U u u u m==



  

{ }(1), (2), , ( )n     be two GHFNs, then the new distance measures of GHFNs are rec-
orded as: 

2 2
2 2 2 2

2 2
1 1

(1 ( )) (1 ( ))( , ) ( ( ) ( )) log ( ( ) ( )) log .
(1 ( )) (1 ( ))

m n

KL
i j

t i jD T U t i u i j j
u i j= =

+ +
= − + −

+ +∑ ∑ 

 

 

 



 (31) 

Since ( ) ( )0 , 1i it u≤ ≤  and ( ) ( )0 , 1i i≤ ≤   when { } { }1,1, ,1 ; 0,0, ,0T =   , 

{ } { }0,0, ,0 ; 1,1, ,1U =    and { } { }0,0, ,0 ; 1,1, ,1T =   , { } { }1,1, ,1 ; 0,0, ,0U =    

the distance measure ( , )KLD T U    takes the maximum value log(2) log(2)n m+ , which is 

more than 1. Consequently ( , )KLD T U    is not limited to the interval [0, 1]. Therefore, we 

normalize the distance measure ( , )KLD T U    by dividing it by its maximum value. 

2
2 2

2
1

2
2 2

2
1

1 (1 ( ))( , ) ( ( ) ( )) log
2 log(2) (1 ( ))

1 (1 ( ))( ( ) ( )) log .
2 log(2) (1 ( ))

m

NKL
i

n

j

t iD T U t i u i
m u i

jj j
n j

=

=

+
= − +

+

+
−

+

∑

∑

 

 



 



 (32) 

Theorem 1. Let { } { }(1), (2), , ( ) ; (1), (2), , ( )H s s s m nα α α=



  , { }(1), (2), , ( ) ;H v v v m=



A  

{ }(1), (2), , ( )nβ β β  and { } { }(1), (2), , ( ) ; (1), (2), , ( )H w w w m nθ θ θ=



 M  be three 
AGHFNs, and if NKLD  satisfies the three properties of distance, then NKLD  is the distance meas-
ure between two AGHFNs. 

(A1) ( )0 , 1H H
NKLD≤ ≤

 A ; 

(A2) ( ), 0H H
NKLD =

 A if and only if H H= 

 A ; 

(A3) ( ) ( ), ,H H H H
NKL NKLD D=  

   A A ; 

Proof:  
The GHFNs K-L divergence measure Equation (32) can be reformulated as follows: 

1 1

1 1( , ) ( ( ), ( )) ( ( ), ( )).
2 log(2) 2 log(2)

m n

NKL T U T U
i j

D T U F t i u i F i i
m n= =

= +∑ ∑ 

 

   (33) 

To expedite the proof of the distance properties, we exploit the following function 
( , ) [0,1] [0,1]τ υ ∈ ×  

2
2 2

2

1( , ) ( ) log .
1

F ττ υ τ υ
υ

+
= −

+
 (34) 

(A1) Obtained the partial derivatives of ( , )F τ υ  with respect to τ  and υ  as 

2
(j))

.
(32)

Theorem 1. Let ˜̃SH
= ⟨{s(1),s(2), · · · ,s(m)};{α(1),α(2), · · · ,α(n)}⟩, ˜̃AH

= ⟨{v(1),v(2), · · · ,v(m)};

{β(1), β(2), · · · , β(n)}⟩ and ˜̃
M

H
= ⟨{w(1),w(2), · · · ,w(m)};{θ(1),θ(2), · · · ,θ(n)}⟩ be three AGHFNs,

and if DNKL satisfies the three properties of distance, then DNKL is the distance measure
between two AGHFNs.

(A1) 0 ≤ DNKL

(˜̃SH
, ˜̃AH

)
≤ 1;

(A2) DNKL

(˜̃SH
, ˜̃AH

)
= 0 if and only if ˜̃SH

= ˜̃AH
;

(A3) DNKL

(˜̃SH
, ˜̃AH

)
= DNKL

(˜̃SH
, ˜̃AH

)
;

Proof. The GHFNs K-L divergence measure Equation (32) can be reformulated as follows:

DNKL(
˜̃T, ˜̃U) =

1
2m log(2)

m

∑
i=1

F(tT(i), uU(i)) +
1

2n log(2)

n

∑
j=1

F(ℏT(i),
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(A1) ( )0 , 1H H
NKLD≤ ≤

 A ; 

(A2) ( ), 0H H
NKLD =

 A if and only if H H= 
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NKL NKLD D=  
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To expedite the proof of the distance properties, we exploit the following function 
( , ) [0,1] [0,1]τ υ ∈ ×  

2
2 2

2

1( , ) ( ) log .
1

F ττ υ τ υ
υ

+
= −

+
 (34) 

(A1) Obtained the partial derivatives of ( , )F τ υ  with respect to τ  and υ  as 

U(i)). (33)

To expedite the proof of the distance properties, we exploit the following function
(τ, υ) ∈ [0, 1]× [0, 1]

F(τ, υ) = (τ2 − υ2) log
1 + τ2

1 + υ2 . (34)

(A1) Obtained the partial derivatives of F(τ, υ) with respect to τ and υ as

∂F(τ,υ)
∂τ = 2τ log 1+τ2

1+υ2 + (τ2 − υ2) 2τ
1+τ2 ,

∂F(τ,υ)
∂υ = (−2υ) log 1+τ2

1+υ2 + (τ2 − υ2) (−2υ)
1+υ2 .

(35)

Assuming τ ≥ υ has no loss of normality, we have F(τ, υ) = F(υ, τ). In addition, we
also obtain ∂F(τ,υ)

∂τ ≥ 0 and ∂F(τ,υ)
∂υ ≤ 0. This shows that the monotonicity of F(τ, υ) with

respect to τ is the exact opposite of that with respect to υ. That is, the largest value of
F(τ, υ) occurs at (1,0), and the largest value is log(2). Furthermore, since τ ≥ υ, then there
is log 1+τ2

1+υ2 ≥ 1, so we have F(τ, υ) ≥ 0.
Since max(F(τ, υ)) = log(2), then, we get max(DNKL(T, U)) = 1, so 0 ≤ DNKL(T, U) ≤ 1.

(A2) If ˜̃SH
= ˜̃AH

, then s(i) = v(i), i = 1, 2, · · · , m and α(j) = β(j), j = 1, 2, · · · , n,
therefore, s2(i)− v2(i) = 0, i = 1, 2, · · · , m. and α2(j)− β2(j) = 0, j = 1, 2, · · · , n.,
we obtain

DNKL

(˜̃SH
, ˜̃AH

)
= 1

2m log(2)

m
∑

i=1
(s2(i)− v2(i)) log (1+s2(i))

(1+v2(i))+

1
2n log(2)

n
∑

j=1
(α2(j)− β2(j)) log (1+α2(j))

(1+β2(j)) = 0.
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(A3) Since

DNKL

(˜̃SH
, ˜̃AH

)
= 1

2m log(2)

m
∑

i=1
(s2(i)− v2(i)) log (1+s2(i))

(1+v2(i))+

1
2n log(2)

n
∑

j=1
(α2(j)− β2(j)) log (1+α2(j))

(1+β2(j))

= 1
2m log(2)

m
∑

i=1
(v2(i)− s2(i)) log (1+v2(i))

(1+s2(i))+

1
2n log(2)

n
∑

j=1
(β2(j)− α2(j)) log (1+β2(j))

(1+α2(j))

= DNKL

(˜̃AH
, ˜̃SH

)
.

Therefore, the equation holds. □

4. COPRAS Method Based on CPT and D-CRITIC Weights for MADM under GHFNs

Assume that in the multi-attribute EDAV evaluation decision problem under uncertainty,
Ξ= {Ξ1, Ξ2, · · · , Ξu} is the set of alternatives, use s attributes ζ = {ζ1, ζ2, · · · , ζs} to evaluate

the alternatives, where the weights of the attributes form a set
⌢
ϖ =

{
⌢
ϖ
′
1,

⌢
ϖ
′
2, · · · ,

⌢
ϖ
′
s

}T
that

satisfies
⌢
ϖ

′
j ≥ 0 and

s
∑

j=1

⌢
ϖ

′
j = 1. To address the problems, this paper proposes a fresh

CPT-COPRAS method with a D-CRITIC method for GHFNs with the following steps:

4.1. Phase 1: Construct Evaluation Information for GHFNs

Step 1. The evaluation expert team evaluated the alternatives based on all attributes
and allowed the evaluation values to be shown as uncertainty values represented in decision
matrix ℜ =

(
ℜij

)
u×s. Then, decision matrix ℜ =

(
ℜij

)
u×s is converted to the generalized

hesitant fuzzy decision matrix ˜̃ℜH
=

(˜̃ℜH
ij

)
u×s

.

Step 2. Since the real and membership degree parts of each GHFN are not of the same

length, the generalized hesitant fuzzy decision matrix ˜̃ℜH
=

(˜̃ℜH
ij

)
u×s

should be adjusted,

as in ˜̃ℜH
ij =

〈{
r(1)ij , r(2)ij , · · · , r(m)

ij

}
;
{
ℏ(1)ij ,ℏ(2)ij , · · · ,ℏ(n)ij

}〉
, where x(l)ij and
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To expedite the proof of the distance properties, we exploit the following function 
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(A1) Obtained the partial derivatives of ( , )F τ υ  with respect to τ  and υ  as 

(l)
ij are the l th

largest values in their corresponding set.

˜̃ℜH
=

[ ˜̃ℜH
ij

]
u×s

=


˜̃ℜH

11
˜̃ℜH

12 · · · ˜̃ℜH
1s˜̃ℜH

21
˜̃ℜH

22 · · · ˜̃ℜH
2s

...
...

...
...˜̃ℜH

u1
˜̃ℜH

u2 · · · ˜̃ℜH
us

.

4.2. Phase 2: Calculation of Weights Using the D-CRITIC Method

Step 3. GHF decision matrix ˜̃ℜH
=

(˜̃ℜH
ij

)
u×s

must be free of scales. Normalized GHF deci-

sion matrix N ˜̃ℜH
=

(˜̃ℵH
ij

)
u×s

, in which ˜̃ℵH
ij =

〈{
x(1)ij , x(2)ij , · · · , x(m)

ij

}
;
{
ℏ(1)ij ,ℏ(2)ij , · · · ,ℏ(n)ij

}〉
,

results in:

x(l)ij =


r(l)ij −r(l)min

j

r(l)max
j −r(l)min

j

, j ∈ B;

r(l)max
j −r(l)ij

r(l)max
j −r(l)min

j

, j ∈ C;
l = 1, 2, · · · , m. (36)
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Step 4. The expected mean of the attributes of the decision matrix is obtained, which
is used as a reference point for the loss of gain.

˜̃ℵH

j =

〈 {
1
u

u
∑

i=1
r(1)ij , 1

u

u
∑

i=1
r(2)ij , · · · , 1

u

u
∑

i=1
r(m)

ij

}
;{

1
u

u
∑

i=1
ℏ(1)ij , 1

u

u
∑

i=1
ℏ(2)ij , · · · , 1

u

u
∑

i=1
ℏ(n)ij

} 〉
. (37)

Step 5. The standard deviation for each attribute was calculated using Equation (38):

Λj =

√√√√√√ u
∑

i=1
(DNKL(

˜̃ℵH
ij , ˜̃ℵH

j ))

2

u − 1
, j = 1, 2, · · · , s, (38)

where DNKL(
˜̃ℵH

ij , ˜̃ℵH

j ) denotes the GHFN K-L divergence measure computed by Equation (32).
Step 6. The distance correlation is calculated for each pair of attributes.

(1) In all alternatives, distance matrix Aj is constructed for each attribute ζ j using Equa-
tion (39).

Aj = (aj
mn)u×u = DNKL(

˜̃ℵH
mj,

˜̃ℵH
nj)u×u

, m, n = 1, 2, · · · , u; j = 1, 2, · · · , s. (39)

Here, Aj stands for the distance matrix about attribute ζ j, and DNKL(
˜̃ℵH

mj,
˜̃ℵH

nj) denotes

the K-L divergence measure between ˜̃ℵH
mj and ˜̃ℵH

nj computed by Equation (32).

(2) The double-centered matrix Bj for attribute ζ j is obtained based on Equation (40).

Bj = (bj
mn)u×u,

bj
mn = aj

mn − 1
u

u
∑

n=1
aj

mn − 1
u

u
∑

m=1
aj

mn +
1

u2

u
∑

m=1

u
∑

n=1
aj

mn, j = 1, 2, · · · , s.
(40)

where 1
u

u
∑

m=1
aj

mn and 1
u

u
∑

n=1
aj

mn denote the average of the mth row and nth column of Aj,

respectively, and 1
u2

u
∑

m=1

u
∑

n=1
aj

mn denotes the total average of Aj.

(3) The distance covariance of attributes ζ j and ζt is determined through Equation (41).

dCov(ζ j, ζt) =

√√√√√ u
∑

m=1

u
∑

n=1
bj

mn · bt
mn

u2 , j, t = 1, 2, · · · , s. (41)

(4) The distance variance of attribute ζ j is determined through Equation (42).

dVar(ζ j) = dCov(ζ j, ζ j), j = 1, 2, · · · , s. (42)

(5) The distance correlation coefficient between attributes ζ j and ζt is calculated as follows:

dCor(ζ j, ζt) =
dCov(ζ j, ζt)√

dVar(ζ j) · dVar(ζt)
, j, t = 1, 2, · · · , s. (43)
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Step 7. The information content of each attribute is calculated through Equation (44).

ϕj = Λj ·
s

∑
t=1

(1 − dCor(ζ j, ζt)), j = 1, 2, · · · , s. (44)

Step 8. The weights are calculated through Equation (45).

⌢
ϖ

′
j =

ϕj
s
∑

j=1
ϕj

, j = 1, 2, · · · , s. (45)

4.3. Phase 3: GHF-CPT-COPRAS

Step 9. Decision matrix ˜̃ℜH
=

(˜̃ℜH
ij

)
u×s

is normalized using Equation (46), obtaining the

normalized ˜̃ΨH
=

(˜̃ψH
ij

)
u×s

matrix, in which ˜̃ψH
ij =

〈{
ψ
(1)
ij ,ψ(2)

ij , · · · ,ψ(m)
ij

}
;
{
ℏ(1)ij ,ℏ(2)ij , · · · ,ℏ(n)ij

}〉
.

ψ
(l)
ij =

r(l)ij
u
∑

i=1
r(l)ij

, l = 1, 2, · · · , m. (46)

Step 10. The expected mean of the attributes of decision matrix ˜̃ΨH
=

(˜̃ψH
ij

)
u×s

is obtained.

˜̃ψH

j =

〈 {
1
u

u
∑

i=1
ψ
(1)
ij , 1

u

u
∑

i=1
ψ
(2)
ij , · · · , 1

u

u
∑

i=1
ψ
(m)
ij

}
;{

1
u

u
∑

i=1
ℏ(1)ij , 1

u

u
∑

i=1
ℏ(2)ij , · · · , 1

u

u
∑

i=1
ℏ(n)ij

} 〉
. (47)

Step 11. The distance matrix between each GHFN and the expected value of the
corresponding attribute is calculated according to Equation (48):

⌢
∆ = (δij)u×s = (DNKL(

˜̃ψH
ij , ˜̃ψH

j ))u×s
, i ∈ U, j ∈ S. (48)

where DNKL(
˜̃ψH

ij , ˜̃ψH

j ) denotes the GHFN K-L divergence measure computed by Equation (32).
Step 12. The transformed probability weight of each alternative is calculated through

Equation (49):

⌢
ωij =

 (
⌢
ϖ

′
j)

τ

/((
⌢
ϖ

′
j)

τ

+ (1 −
⌢
ϖ

′
j)

τ

)

1
τ

, S(˜̃ψH
ij ) ≥ S(˜̃ψH

j )

(
⌢
ϖ

′
j)

κ

/((
⌢
ϖ

′
j)

κ

+ (1 −
⌢
ϖ

′
j)

κ

)

1
κ

, S(˜̃ψH
ij ) < S(˜̃ψH

j )

. (49)

Tversky and Kahneman [32] utilized the method of linear regression to obtain the
cumulative prospect theory, when parameters τ = 0.61 and κ = 0.69, which is more
consistent with the empirical data.

Step 13. The comprehensive prospect value matrix ♢ = (♢ij)u×s is computed from
Equation (50):

♢ij =

 (DNKL(
˜̃ψH

ij , ˜̃ψH

j ))
β

, S(˜̃ψH
ij ) ≥ S(˜̃ψH

j )

−
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 M  be three 
AGHFNs, and if NKLD  satisfies the three properties of distance, then NKLD  is the distance meas-
ure between two AGHFNs. 

(A1) ( )0 , 1H H
NKLD≤ ≤

 A ; 

(A2) ( ), 0H H
NKLD =

 A if and only if H H= 
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Proof:  
The GHFNs K-L divergence measure Equation (32) can be reformulated as follows: 

1 1

1 1( , ) ( ( ), ( )) ( ( ), ( )).
2 log(2) 2 log(2)

m n

NKL T U T U
i j

D T U F t i u i F i i
m n= =

= +∑ ∑ 

 

   (33) 

To expedite the proof of the distance properties, we exploit the following function 
( , ) [0,1] [0,1]τ υ ∈ ×  

2
2 2

2

1( , ) ( ) log .
1

F ττ υ τ υ
υ

+
= −

+
 (34) 

(A1) Obtained the partial derivatives of ( , )F τ υ  with respect to τ  and υ  as 

(DNKL(
˜̃ψH

ij , ˜̃ψH

j ))
α

, S(˜̃ψH
ij ) < S(˜̃ψH

j )

. (50)

Tversky and Kahneman [32] utilized the method of linear regression to obtain cumula-
tive prospect theory when the parameters in the value function and weight function were
α = β = 0.88 and λ = 2.25.
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Step 14. To obtain the maximizing and minimizing indexes for each attribute for the
given attribute type, Equations (51) and (52) can be used:

ℑ+i =
g

∑
j=1

♢ij
⌢
ωij, i = 1, 2, · · · , u, (51)

ℑ−i =
s

∑
j=g+1

♢ij
⌢
ωij, i = 1, 2, · · · , u. (52)

Here, g represents the number of positive attributes, s − g represents the number of
negative attributes, and the maximizing and minimizing indexes ℑi of the attributes are
defined according to the type of attributes.

Step 15. The relative significance value Yi is calculated by Equation (53):

Yi = ℑ+i +

u
∑

i=1
ℑ−i

ℑ−i
u
∑

i=1

1
ℑ−i

. (53)

Step 16. Relative significance values are ranked in descending order.
The flowchart of the proposed GHF-CPT-COPRAS method is shown in Figure 1.
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5. An Illustrative Example

One company plans to carry out data business cooperation with Internet financial
enterprises and now evaluates the data asset value of five Internet financial enterprises; the
five enterprises are Ξi (i = 1, 2, 3, 4, 5). The GHF-CPT-COPRAS method is applied to the
EDAV evaluation problem in the following sections.

5.1. Background

Data assets encompass the data that an enterprise owns and manages, which, in
turn, can generate value for the enterprise. Examining the EDAV evaluation’s inputs, they
primarily comprise labor, equipment, material, power and related expenses associated
with data collection, storage, analysis and business applications. These can be further
categorized into costs for data carriers, operations and maintenance, and services. From
an output perspective, value manifests in two main ways. First, there is the directly
tangible value from external services, evident in the amount of processed and analyzed
data provided to external customers, its quality, and the resulting gains. Second, it is the
value derived from the internally processed data used as an enterprise resource, influencing
quality and contributing to decision-making support. Guided by the principles of being
systematic, hierarchical, objective and comparable, we structure the EDAV evaluation index
system as illustrated in Figure 2.
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Figure 2. The EDAV evaluation index system.

Data cost reflects the value of various types of cost inputs. It mainly includes the
following indexes: ζ1 Carrier cost, the construction and transformation cost of creating var-
ious types of business data systems and convergent data systems (such as data warehouses,
data marts) and other data carriers; ζ2 Operation and maintenance cost, the cost of daily
data collection, cleaning, loading, storage, dynamic monitoring, and integration, as well as
the cost of security and maintenance, fault detection, etc.; ζ3 Service cost, the cost to meet
the needs of the enterprise’s internal business scenarios and customer customization needs,
the cost of data computation, analysis, mining, delivery of products and outputs.

The apparent value reflects the quantity and quality of data assets, which are the
source of current service value and its future value added. It mainly includes the following
indexes: ζ4 Data scale, the amount of data owned and controlled by the enterprise; ζ5 Data
completeness, the completeness of the coverage of the delivered data to support internal
decision-making in the business area and external services; and ζ6 Data rationality, the
degree of accuracy and reasonableness of the delivered data.

Service value includes both external and internal services and reflects the application
value of EDAV. It mainly includes the following indexes: ζ7 Service revenue, the amount
of revenue gained from the delivery of data products to external customers; ζ8 External
customer satisfaction, the degree of satisfaction of external customers with the quality
and delivery time of data deliverables; and ζ9 Decision support contribution, the level of
contribution of the data deliverables or data sources to the enterprise’s decision support in
terms of strategy, operation and so on.
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In practice, EDAV evaluation indexes have both quantitative and qualitative indexes.
When dealing with decision-making problems containing uncertainty and ambiguity, the
unified conversion to the form of GHFNs has certain advantages and can avoid the problem
of more information distortion caused by converting uncertain variables to deterministic
variables. According to this EDAV evaluation system: ζ1, ζ2, ζ3, and ζ7 are quantitative
indexes, the real part of GHFNs is composed of experts according to the actual survey data,
and the membership degree part expresses the degree of the hesitancy of the experts to
the survey data, and the assessment includes a set of a finite number of values ranging
from 0 to 1. ζ4, ζ5, ζ6, ζ8, and ζ9 are qualitative indexes, and the real part of GHFNs is
composed of experts according to the interviews and surveys, the quantitative assessment
includes a finite set of values from 0 to 10, the membership degree part expresses the degree
of hesitation of experts in evaluating the data, and the assessment includes a finite set of
values from 0 to 1.

5.2. Decision Process

Step 1: The EDAV evaluation results are obtained through the research and organized
into a data matrix expressed by GHFNs. The evaluation results are displayed in Tables 1–3.

Table 1. The GHF decision information matrix ˜̃ℜH
=

(˜̃ℜH
ij

)
u×s

.

Enterprises ζ1 ζ2 ζ3

Ξ1 ⟨{429, 450}; {0.8, 0.2, 1}⟩ ⟨{3.5, 4.8, 5.4}; {0.8, 0.2, 0.6}⟩ ⟨{18, 35, 41}; {0.2, 0.6}⟩
Ξ2 ⟨{354, 330, 365}; {0.5, 0.6, 0.7}⟩ ⟨{2.3, 2.5, 3.5}; {0.6, 0.7}⟩ ⟨{15, 23, 27}; {0.6, 0.7, 0.9}⟩
Ξ3 ⟨{405, 398}; {0.3, 0.6, 0.9}⟩ ⟨{2.8, 3.5, 4.2}; {0.7, 0.6}⟩ ⟨{20, 26, 38}; {0.3, 0.6, 0.8}⟩
Ξ4 ⟨{338, 325}; {1, 0.6}⟩ ⟨{2.9, 2.5, 3.2}; {0.9, 0.6}⟩ ⟨{12, 17, 21}; {0.9, 0.8}⟩
Ξ5 ⟨{326, 338}; {0.2}⟩ ⟨{2.7, 3.9}; {0.2, 0.9, 1}⟩ ⟨{14, 21, 25}; {0.9, 0.6}⟩

Table 2. The GHF decision information matrix ˜̃ℜH
=

(˜̃ℜH
ij

)
u×s

.

Enterprises ζ4 ζ5 ζ6

Ξ1 ⟨{7, 8, 9}; {0.8, 0.6, 0.7}⟩ ⟨{9, 10}; {0.5, 0.4, 0.7}⟩ ⟨{5, 8}; {0.3, 0.4, 0.7}⟩
Ξ2 ⟨{5, 8}; {0.7, 0.9}⟩ ⟨{4, 7, 5}; {0.7, 0.9, 0.4}⟩ ⟨{9}; {0.6, 0.8}⟩
Ξ3 ⟨{5, 7}; {0.3, 0.9, 0.8}⟩ ⟨{6, 9}; {0.5, 0.9, 0.8}⟩ ⟨{2, 8, 5}; {0.9, 0.7}⟩
Ξ4 ⟨{3, 4, 5}; {0.9, 1}⟩ ⟨{5, 8, 7}; {0.6, 1, 0.5}⟩ ⟨{6, 8}; {0.6, 0.4}⟩
Ξ5 ⟨{6, 10}; {0.9}⟩ ⟨{9}; {0.4, 0.5}⟩ ⟨{6, 7}; {0.4, 0.5, 0.9}⟩

Table 3. The GHF decision information matrix ˜̃ℜH
=

(˜̃ℜH
ij

)
u×s

.

Enterprises ζ7 ζ8 ζ9

Ξ1 ⟨{310, 356, 425}; {0.3, 0.4, 0.5}⟩ ⟨{8, 7}; {0.6, 0.7}⟩ ⟨{6, 7, 8}; {0.2, 0.9, 0.7}⟩
Ξ2 ⟨{201, 225, 351}; {0.6, 0.8}⟩ ⟨{7, 9}; {0.6}⟩ ⟨{7, 8}; {0.9, 0.8}⟩
Ξ3 ⟨{247, 301, 366}; {0.9, 0.7, 0.6}⟩ ⟨{8, 6}; {0.9, 0.7, 0.8}⟩ ⟨{6, 7, 8}; {0.9, 0.5, 0.3}⟩
Ξ4 ⟨{196, 220, 324}; {0.6, 0.4, 0.8}⟩ ⟨{9, 7}; {0.6, 0.8}⟩ ⟨{4, 6, 7}; {0.6, 0.8}⟩
Ξ5 ⟨{232, 300, 350}; {0.5, 0.9}⟩ ⟨{10, 9, 8}; {0.8, 0.9}⟩ ⟨{8, 9}; {0.7, 0.9}⟩

Next, we select the optimal cooperative enterprise using the new GHF-CPT-COPRAS
method and the D-CRITIC method.

Step 2: Since GHF decision matrix ˜̃ℜH
=

(˜̃ℜH
ij

)
u×s

of GHFNs is not of equal length,

we need to adjust GHFNs, and in this paper, we use an optimistic way to adjust it and

obtain the adjusted matrix ˜̃ℜH
=

(˜̃ℜH
ij

)
u×s

, which is exhibited in Tables 4–6.
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Table 4. The adjusted GHF decision information matrix ˜̃ℜH
=

(˜̃ℜH
ij

)
u×s

.

Enterprises ζ1 ζ2 ζ3

Ξ1 ⟨{429, 450, 450}; {0.8, 0.2, 1}⟩ ⟨{3.5, 4.8, 5.4}; {0.2, 0.6, 0.8}⟩ ⟨{18, 35, 41}; {0.2, 0.6, 0.6}⟩
Ξ2 ⟨{330, 354, 365}; {0.5, 0.6, 0.7}⟩ ⟨{2.3, 2.5, 3.5}; {0.6, 0.7, 0.7}⟩ ⟨{15, 23, 27}; {0.6, 0.7, 0.9}⟩
Ξ3 ⟨{398, 405, 405}; {0.3, 0.6, 0.9}⟩ ⟨{2.8, 3.5, 4.2}; {0.6, 0.7, 0.7}⟩ ⟨{20, 26, 38}; {0.3, 0.6, 0.8}⟩
Ξ4 ⟨{325, 338, 338}; {0.6, 1, 1}⟩ ⟨{2.5, 2.9, 3.2}; {0.6, 0.9, 0.9}⟩ ⟨{12, 17, 21}; {0.8, 0.9, 0.9}⟩
Ξ5 ⟨{326, 338, 338}; {0.2, 0.2, 0.2}⟩ ⟨{2.7, 3.9, 3.9}; {0.2, 0.9, 1}⟩ ⟨{14, 21, 25}; {0.6, 0.9, 0.9}⟩

Table 5. The adjusted GHF decision information matrix ˜̃ℜH
=

(˜̃ℜH
ij

)
u×s

.

Enterprises ζ4 ζ5 ζ6

Ξ1 ⟨{7, 8, 9}; {0.6, 0.7, 0.8}⟩ ⟨{9, 10, 10}; {0.4, 0.5, 0.7}⟩ ⟨{5, 8, 8}; {0.3, 0.4, 0.7}⟩
Ξ2 ⟨{5, 8, 8}; {0.7, 0.9, 0.9}⟩ ⟨{4, 5, 7}; {0.4, 0.7, 0.9}⟩ ⟨{9, 9, 9}; {0.6, 0.8, 0.8}⟩
Ξ3 ⟨{5, 7, 7}; {0.3, 0.8, 0.9}⟩ ⟨{6, 9, 9}; {0.5, 0.8, 0.9}⟩ ⟨{2, 5, 8}; {0.7, 0.9, 0.9}⟩
Ξ4 ⟨{3, 4, 5}; {0.9, 1, 1}⟩ ⟨{5, 7, 8}; {0.5, 0.6, 1}⟩ ⟨{6, 8, 8}; {0.4, 0.6, 0.6}⟩
Ξ5 ⟨{6, 10, 10}; {0.9, 0.9, 0.9}⟩ ⟨{9, 9, 9}; {0.4, 0.5, 0.5}⟩ ⟨{6, 7, 7}; {0.4, 0.5, 0.9}⟩

Table 6. The adjusted GHF decision information matrix ˜̃ℜH
=

(˜̃ℜH
ij

)
u×s

.

Enterprises ζ7 ζ8 ζ9

Ξ1 ⟨{310, 356, 425}; {0.3, 0.4, 0.5}⟩ ⟨{7, 8, 8}; {0.6, 0.7, 0.7}⟩ ⟨{6, 7, 8}; {0.2, 0.7, 0.9}⟩
Ξ2 ⟨{201, 225, 351}; {0.6, 0.8, 0.8}⟩ ⟨{7, 9, 9}; {0.6, 0.6, 0.6}⟩ ⟨{7, 8, 8}; {0.8, 0.9, 0.9}⟩
Ξ3 ⟨{247, 301, 366}; {0.6, 0.7, 0.9}⟩ ⟨{6, 8, 8}; {0.7, 0.8, 0.9}⟩ ⟨{6, 7, 8}; {0.3, 0.5, 0.9}⟩
Ξ4 ⟨{196, 220, 324}; {0.4, 0.6, 0.8}⟩ ⟨{7, 9, 9}; {0.6, 0.8, 0.8}⟩ ⟨{4, 6, 7}; {0.6, 0.8, 0.8}⟩
Ξ5 ⟨{232, 300, 350}; {0.5, 0.9, 0.9}⟩ ⟨{8, 9, 10}; {0.8, 0.9, 0.9}⟩ ⟨{8, 9, 10}; {0.7, 0.9, 0.9}⟩

Step 3: In the EDAV evaluation decision problem, attributes ζ1, ζ2 and ζ3 are cost
attributes and attributes ζ4, ζ5, ζ6, ζ7, ζ8 and ζ9 are benefit attributes. The matrix is
normalized according to Equation (36) and the results are displayed in Tables 7–9.

Table 7. The normalized matrix N ˜̃ℜH
=

(˜̃ℵH
ij

)
u×s

.

Enterprises ζ1 ζ2 ζ3

Ξ1 ⟨{0, 0, 0}; {0.8, 0.2, 1}⟩ ⟨{0, 0, 0}; {0.2, 0.6, 0.8}⟩ ⟨{0.25, 0, 0}; {0.2, 0.6, 0.6}⟩
Ξ2 ⟨{0.95, 0.86, 0.76}; {0.5, 0.6, 0.7}⟩ ⟨{1, 1, 0.86}; {0.6, 0.7, 0.7}⟩ ⟨{0.63, 0.67, 0.7}; {0.6, 0.7, 0.9}⟩
Ξ3 ⟨{0.30, 0.40, 0.40}; {0.3, 0.6, 0.9}⟩ ⟨{0.58, 0.56, 0.55}; {0.6, 0.7, 0.7}⟩ ⟨{0, 0.5, 0.15}; {0.3, 0.6, 0.8}⟩
Ξ4 ⟨{1, 1, 1}; {0.6, 1, 1}⟩ ⟨{0.83, 0.83, 1}; {0.6, 0.9, 0.9}⟩ ⟨{1, 1, 1}; {0.8, 0.9, 0.9}⟩
Ξ5 ⟨{0.99, 1, 1}; {0.2, 0.2, 0.2}⟩ ⟨{0.67, 0.39, 0.68}; {0.2, 0.9, 1}⟩ ⟨{0.75, 0.78, 0.8}; {0.6, 0.9, 0.9}⟩

Table 8. The normalized matrix N ˜̃ℜH
=

(˜̃ℵH
ij

)
u×s

.

Enterprises ζ4 ζ5 ζ6

Ξ1 ⟨{1, 0.67, 0.8}; {0.6, 0.7, 0.8}⟩ ⟨{1, 1, 1}; {0.4, 0.5, 0.7}⟩ ⟨{0.43, 0.75, 0.5}; {0.3, 0.4, 0.7}⟩
Ξ2 ⟨{0.5, 0.67, 0.6}; {0.7, 0.9, 0.9}⟩ ⟨{0, 0, 0}; {0.4, 0.7, 0.9}⟩ ⟨{1, 1, 1}; {0.6, 0.8, 0.8}⟩
Ξ3 ⟨{0.5, 0.5, 0.4}; {0.3, 0.8, 0.9}⟩ ⟨{0.4, 0.8, 0.67}; {0.5, 0.8, 0.9}⟩ ⟨{0, 0, 0.5}; {0.7, 0.9, 0.9}⟩
Ξ4 ⟨{0, 0, 0}; {0.9, 1, 1}⟩ ⟨{0.2, 0.4, 0.33}; {0.5, 0.6, 1}⟩ ⟨{0.57, 0.75, 0.5}; {0.4, 0.6, 0.6}⟩
Ξ5 ⟨{0.75, 1, 1}; {0.9, 0.9, 0.9}⟩ ⟨{1, 0.8, 0.67}; {0.4, 0.5, 0.5}⟩ ⟨{0.57, 0.5, 0}; {0.4, 0.5, 0.9}⟩
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Table 9. The normalized matrix N ˜̃ℜH
=

(˜̃ℵH
ij

)
u×s

.

Enterprises ζ7 ζ8 ζ9

Ξ1 ⟨{1, 1, 1}; {0.3, 0.4, 0.5}⟩ ⟨{0.5, 0, 0}; {0.6, 0.7, 0.7}⟩ ⟨{0.5, 0.33, 0.5}; {0.2, 0.7, 0.9}⟩
Ξ2 ⟨{0.04, 0.04, 0.27}; {0.6, 0.8, 0.8}⟩ ⟨{0.5, 1, 0.5}; {0.6, 0.6, 0.6}⟩ ⟨{0.75, 0.67, 0.5}; {0.8, 0.9, 0.9}⟩
Ξ3 ⟨{0.45, 0.60, 0.42}; {0.6, 0.7, 0.9}⟩ ⟨{0, 0, 0}; {0.7, 0.8, 0.9}⟩ ⟨{0.5, 0.33, 0.5}; {0.3, 0.5, 0.9}⟩
Ξ4 ⟨{0, 0, 0}; {0.4, 0.6, 0.8}⟩ ⟨{0.5, 1, 0.5}; {0.6, 0.8, 0.8}⟩ ⟨{0, 0, 0}; {0.6, 0.8, 0.8}⟩
Ξ5 ⟨{0.32, 0.59, 0.26}; {0.5, 0.9, 0.9}⟩ ⟨{1, 1, 1}; {0.8, 0.9, 0.9}⟩ ⟨{1, 1, 1}; {0.7, 0.9, 0.9}⟩

Step 4. The decision reference point for the loss of gain for each attribute is calculated
by Equation (37), and the results are displayed in Tables 10–12.

Table 10. The decision reference point for each attribute.

Attributes ζ1 ζ2 ζ3

˜̃ℵH

j

〈
{0.65, 0.65, 0.63};
{0.36, 0.64, 0.76}

〉 〈
{0.62, 0.56, 0.62};
{0.44, 0.76, 0.82}

〉 〈
{0.53, 0.59, 0.53};
{0.5, 0.74, 0.82}

〉

Table 11. The decision reference point for each attribute.

Attributes ζ4 ζ5 ζ6

˜̃ℵH

j

〈
{0.55, 0.57, 0.56};
{0.68, 0.86, 0.9}

〉 〈
{0.52, 0.6, 0.53};
{0.44, 0.62, 0.8}

〉 〈
{0.51, 0.6, 0.5};
{0.48, 0.64, 0.78}

〉

Table 12. The decision reference point for each attribute.

Attributes ζ7 ζ8 ζ9

˜̃ℵH

j

〈
{0.36, 0.44, 0.38};
{0.48, 0.68, 0.78}

〉 〈
{0.5, 0.6, 0.4};
{0.66, 0.78, 0.8}

〉 〈
{0.55, 0.47, 0.5};
{0.52, 0.76, 0.88}

〉

Step 5. The standard deviation of each attribute is calculated through Equation (38),
and the results are displayed in Table 13.

Table 13. The standard deviation.

Attributes ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9

Λj 0.180 0.108 0.139 0.111 0.135 0.127 0.188 0.146 0.139

Step 6. The distance correlation matrix for each pair of attributes is calculated through
Equations (39)–(43), and the results are displayed in Table 14.

Table 14. Distance correlation matrix.

Attributes ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9

ζ1 1.000 0.714 0.941 0.770 0.541 0.607 0.756 0.903 0.723
ζ2 0.743 1.000 0.722 0.733 0.836 0.829 0.814 0.675 0.420
ζ3 0.894 0.767 1.000 0.645 0.357 0.537 0.747 0.800 0.300
ζ4 0.708 0.743 0.653 1.000 0.764 0.636 0.637 0.709 0.797
ζ5 0.593 0.952 0.583 0.851 1.000 0.735 0.722 0.579 0.656
ζ6 0.422 0.685 0.356 0.417 0.645 1.000 0.468 0.623 0.551
ζ7 0.790 0.865 0.748 0.646 0.783 0.391 1.000 0.646 0.391
ζ8 0.955 0.670 0.785 0.704 0.580 0.465 0.647 1.000 0.771
ζ9 0.759 0.436 0.325 0.805 0.543 0.484 0.412 0.803 1.000
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Step 7. The information content of each attribute is calculated through Equation (44),
and the results are displayed in Table 15.

Table 15. The information content of each attribute.

Attributes ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9

ϕj 0.384 0.233 0.403 0.269 0.397 0.422 0.526 0.331 0.470

Step 8. The D-CRITIC method weights are calculated through Equation (45), and the
results are displayed in Table 16.

Table 16. The D-CRITIC method weights
⌢
ϖ j.

Attributes ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9
⌢
ϖ j 0.112 0.068 0.117 0.078 0.116 0.123 0.153 0.096 0.137

Step 9. Using Equation (46), we obtain the normalized ˜̃ΨH
=

(˜̃ψH
ij

)
u×s

matrix, and

the results are displayed in Tables 17–19.

Table 17. The normalized matrix ˜̃ΨH
=

(˜̃ψH
ij

)
u×s

.

Enterprises ζ1 ζ2 ζ3

Ξ1 ⟨{0.24, 0.24, 0.24}; {0.2, 0.8, 1}⟩ ⟨{0.25, 0.27, 0.27}; {0.2, 0.6, 0.8}⟩ ⟨{0.23, 0.29, 0.27}; {0.2, 0.6, 0.6}⟩
Ξ2 ⟨{0.18, 0.19, 0.19}; {0.5, 0.6, 0.7}⟩ ⟨{0.17, 0.14, 0.17}; {0.6, 0.7, 0.7}⟩ ⟨{0.19, 0.19, 0.18}; {0.6, 0.7, 0.9}⟩
Ξ3 ⟨{0.22, 0.21, 0.21}; {0.3, 0.6, 0.9}⟩ ⟨{0.2, 0.2, 0.21}; {0.6, 0.7, 0.7}⟩ ⟨{0.25, 0.21, 0.25}; {0.3, 0.6, 0.8}⟩
Ξ4 ⟨{0.18, 0.18, 0.18}; {0.6, 1, 1}⟩ ⟨{0.18, 0.16, 0.16}; {0.6, 0.9, 0.9}⟩ ⟨{0.15, 0.14, 0.14}; {0.8, 0.9, 0.9}⟩
Ξ5 ⟨{0.18, 0.18, 0.18}; {0.2, 0.2, 0.2}⟩ ⟨{0.2, 0.22, 0.19}; {0.2, 0.9, 1}⟩ ⟨{0.18, 0.17, 0.16}; {0.6, 0.9, 0.9}⟩

Table 18. The normalized matrix ˜̃ΨH
=

(˜̃ψH
ij

)
u×s

.

Enterprises ζ4 ζ5 ζ6

Ξ1 ⟨{0.27, 0.22, 0.23}; {0.6, 0.7, 0.8}⟩ ⟨{0.27, 0.25, 0.23}; {0.4, 0.5, 0.7}⟩ ⟨{0.18, 0.22, 0.2}; {0.3, 0.4, 0.7}⟩
Ξ2 ⟨{0.19, 0.22, 0.21}; {0.7, 0.9, 0.9}⟩ ⟨{0.12, 0.13, 0.16}; {0.4, 0.7, 0.9}⟩ ⟨{0.32, 0.24, 0.23}; {0.6, 0.8, 0.8}⟩
Ξ3 ⟨{0.19, 0.19, 0.18}; {0.3, 0.8, 0.9}⟩ ⟨{0.18, 0.23, 0.21}; {0.5, 0.8, 0.9}⟩ ⟨{0.07, 0.14, 0.2}; {0.7, 0.9, 0.9}⟩
Ξ4 ⟨{0.12, 0.11, 0.13}; {0.9, 1, 1}⟩ ⟨{0.15, 0.18, 0.19}; {0.5, 0.6, 1}⟩ ⟨{0.21, 0.22, 0.2}; {0.4, 0.6, 0.6}⟩
Ξ5 ⟨{0.23, 0.27, 0.26}; {0.9, 0.9, 0.9}⟩ ⟨{0.27, 0.23, 0.21}; {0.4, 0.5, 0.5}⟩ ⟨{0.21, 0.19, 0.18}; {0.4, 0.5, 0.9}⟩

Table 19. The normalized matrix ˜̃ΨH
=

(˜̃ψH
ij

)
u×s

.

Enterprises ζ7 ζ8 ζ9

Ξ1 ⟨{0.26, 0.25, 0.23}; {0.3, 0.4, 0.5}⟩ ⟨{0.2, 0.21, 0.18}; {0.6, 0.7, 0.7}⟩ ⟨{0.19, 0.19, 0.2}; {0.2, 0.7, 0.9}⟩
Ξ2 ⟨{0.17, 0.16, 0.19}; {0.6, 0.8, 0.8}⟩ ⟨{0.2, 0.13, 0.2}; {0.6, 0.6, 0.6}⟩ ⟨{0.23, 0.22, 0.2}; {0.8, 0.9, 0.9}⟩
Ξ3 ⟨{0.21, 0.21, 0.2}; {0.6, 0.7, 0.9}⟩ ⟨{0.17, 0.21, 0.18}; {0.7, 0.8, 0.9}⟩ ⟨{0.19, 0.19, 0.2}; {0.3, 0.5, 0.9}⟩
Ξ4 ⟨{0.17, 0.16, 0.18}; {0.4, 0.6, 0.8}⟩ ⟨{0.2, 0.23, 0.2}; {0.6, 0.8, 0.8}⟩ ⟨{0.13, 0.16, 0.18}; {0.6, 0.8, 0.8}⟩
Ξ5 ⟨{0.2, 0.21, 0.19}; {0.5, 0.9, 0.9}⟩ ⟨{0.23, 0.23, 0.23}; {0.8, 0.9, 0.9}⟩ ⟨{0.26, 0.24, 0.23}; {0.7, 0.9, 0.9}⟩

Step 10. The expected mean of the attributes is obtained by Equation (47), and the
results are displayed in Tables 20–22.
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Table 20. The expected mean for each attribute.

Attributes ζ1 ζ2 ζ3

˜̃ψH

j
⟨{0.2, 0.2, 0.2}; {0.36, 0.64, 0.76}⟩ ⟨{0.2, 0.2, 0.2}; {0.44, 0.76, 0.82}⟩ ⟨{0.2, 0.2, 0.2}; {0.5, 0.74, 0.82}⟩

Table 21. The expected mean for each attribute.

Attributes ζ4 ζ5 ζ6

˜̃ψH

j
⟨{0.2, 0.2, 0.2}; {0.68, 0.86, 0.9}⟩ ⟨{0.2, 0.2, 0.2}; {0.44, 0.62, 0.8}⟩ ⟨{0.2, 0.2, 0.2}; {0.48, 0.64, 0.78}⟩

Table 22. The expected mean for each attribute.

Attributes ζ7 ζ8 ζ9

˜̃ψH

j
⟨{0.2, 0.2, 0.2}; {0.48, 0.68, 0.78}⟩ ⟨{0.2, 0.2, 0.2}; {0.66, 0.78, 0.8}⟩ ⟨{0.2, 0.2, 0.2}; {0.52, 0.76, 0.88}⟩

Step 11. The distance matrix
⌢
∆ = (δij)u×s between each GHFN and the expected value

of the corresponding attribute is computed according to Equation (48), and the results are
displayed in Table 23.

Table 23. The distance matrix
⌢
∆ = (δij)u×s.

Enterprises ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9

Ξ1 0.034 0.014 0.031 0.015 0.007 0.018 0.043 0.007 0.012
Ξ2 0.005 0.012 0.005 0.001 0.006 0.013 0.008 0.007 0.031
Ξ3 0.008 0.011 0.012 0.028 0.015 0.042 0.009 0.005 0.025
Ξ4 0.084 0.016 0.038 0.032 0.018 0.011 0.003 0.001 0.005
Ξ5 0.083 0.027 0.015 0.019 0.029 0.011 0.024 0.016 0.017

Step 12. The transformed probability weight of each alternative is computed through
Equation (49), and the results are displayed in Table 24.

Table 24. The transformed probability weight.

Enterprises ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9

Ξ1 0.052 0.023 −0.107 0.025 0.013 −0.066 −0.141 −0.027 −0.047
Ξ2 −0.020 −0.045 −0.023 0.002 −0.027 0.021 −0.033 −0.028 0.046
Ξ3 0.015 0.020 −0.044 −0.096 0.025 −0.139 0.016 −0.020 −0.088
Ξ4 0.113 −0.058 −0.127 −0.108 −0.066 −0.044 −0.014 0.003 −0.020
Ξ5 −0.251 0.041 −0.055 0.030 −0.101 −0.044 0.037 0.027 0.027

Step 13. The comprehensive prospect value matrix ♢ = (♢ij)u×s is computed from
Equation (50), and the results are displayed in Table 25.

Table 25. The comprehensive prospect value matrix ♢ = (♢ij)u×s.

Enterprises ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9

Ξ1 0.197 0.154 0.187 0.165 0.200 0.192 0.219 0.166 0.205
Ξ2 0.182 0.135 0.187 0.165 0.186 0.206 0.219 0.166 0.217
Ξ3 0.197 0.154 0.187 0.147 0.200 0.192 0.229 0.166 0.205
Ξ4 0.197 0.135 0.187 0.147 0.186 0.192 0.219 0.183 0.205
Ξ5 0.182 0.154 0.187 0.165 0.186 0.192 0.229 0.183 0.217
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Step 14. Given that the negative attributes are ζ1, ζ2 and ζ3, and the positive attributes
are ζ4, ζ5, ζ6, ζ7, ζ8 and ζ9. The maximizing and minimizing indexes of each attribute are
obtained by Equations (51) and (52), and the results are displayed in Table 26.

Table 26. The results of the GHF-CPT-COPRAS method.

Enterprises Ξ1 Ξ2 Ξ3 Ξ4 Ξ5

ℑ+i −0.051 −0.002 −0.054 −0.043 −0.003
ℑ−i −0.006 −0.014 −0.002 −0.009 −0.050
Yi −0.067 −0.009 −0.098 −0.054 −0.005

The ranking Ξ5 ≻ Ξ2 ≻ Ξ4 ≻ Ξ1 ≻ Ξ3

Step 15. The relative significance value Yi is calculated through Equation (53), and the
results are displayed in Table 26.

Step 16. Relative significance values were ranked in descending order, and the optimal
cooperative enterprise is Ξ5.

5.3. Comparative Analysis

In this subsection, we compare and rank the proposed model with the GHWAA
operator [14], the GHWGA operator [14], the A-GHWAA operator [19], the A-GHWGA
operator [19], the GHF-TOPSIS method [18] and the GHF-CPT-TODIM method (τ = 0.61,
κ = 0.69, α = β = 0.88 and λ = 2.25) [20]. The results are shown in Tables 27 and 28, and
the Ξ5 is the preferable alternative.

Table 27. Calculations for different GHFNs decision-making methods.

Methods Ξ1 Ξ2 Ξ3 Ξ4 Ξ5

The GHWAA score [14] 0.127 0.124 0.125 0.119 0.134
The GHWGA score [14] 0.114 0.121 0.112 0.117 0.133

The A-GHWAA score [19] 0.150 0.142 0.140 0.149 0.168
The A-GHWGA score [19] 0.121 0.128 0.130 0.121 0.134

The closeness of
GHF-TOPSIS [18] 0.272 0.686 0.575 0.322 0.695

The overall degree of
dominance of

GHF-CPT-TODIM [20]
0.026 0.985 0.000 0.560 1.000

Table 28. Ranking results of different methods.

Methods Ranking

GHWAA [14] Ξ5 ≻ Ξ1 ≻ Ξ3 ≻ Ξ2 ≻ Ξ4
GHWGA [14] Ξ5 ≻ Ξ2 ≻ Ξ4 ≻ Ξ1 ≻ Ξ3

A-GHFNWA [19] Ξ5 ≻ Ξ1 ≻ Ξ4 ≻ Ξ2 ≻ Ξ3
A-GHFNWG [19] Ξ5 ≻ Ξ3 ≻ Ξ2 ≻ Ξ4 ≻ Ξ1
GHF-TOPSIS [18] Ξ5 ≻ Ξ2 ≻ Ξ3 ≻ Ξ4 ≻ Ξ1

GHF-CPT-TODIM [20] Ξ5 ≻ Ξ2 ≻ Ξ4 ≻ Ξ1 ≻ Ξ3
Our proposed GHF-CPT-COPRAS Ξ5 ≻ Ξ2 ≻ Ξ4 ≻ Ξ1 ≻ Ξ3

From Table 28, it can be seen that the results of the GHF-CPT-COPRAS method are
almost the same as those of the other methods, except that the ordering of the individual
solutions is not consistent. The GHWAA operator and the A-GHWAA operator emphasize
the overall impact, while the GHWGA operator and the A-GHWGA operator emphasize
the impact of the extremes. The GHF-TOPSIS method measures the distance from the
ideal solution to evaluate each solution. The GHF-CPT-TODIM method describes the
decision-making process by taking into account the limited rational behavior of the DMs
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and using the overall value to measure the degree of dominance of the alternatives. How-
ever, our proposed method in this paper not only utilizes the advantages of the COPRAS
method but also integrates CPT into the decision-making process, which fully simulates
the psycho-behavioral characteristics of DMs facing risks. In addition, we use the proposed
K-L divergence distance measure to effectively extend the D-CRITIC method to assign at-
tribute objective weights under GHFNs. Therefore, the proposed D-CRITIC-based method
and GHF-CPT-COPRAS technique make the EDAV evaluation results more scientific. In
addition, Table 29 shows further details of the advantages of the various methods.

Table 29. Comparison of the characteristics of different methods.

Methods Detect Information Widely Adjust Parameter Flexibly Reflects DMs
“Psychological Behavior”

The Nonlinear Relationship
between Attributes

Is Simulated

GHWAA [14]
√

× × ×
GHWGA [14]

√
× × ×

A-GHFNWA [19]
√

× × ×
A-GHFNWG [19]

√
× × ×

GHF-TOPSIS [18]
√

× × ×
GHF-CPT-TODIM [20]

√ √ √
×

Our proposed
GHF-CPT-COPRAS

√ √ √ √

6. Conclusions

In this paper, we propose a MADM method based on CPT and COPRAS in a GHF
environment. Considering the advantages of the D-CRITIC method in obtaining nonlinear
relationships between attributes using distance correlation, we develop a K-L divergence
distance measure for GHFNs and apply this distance to the D-CRITIC method to compute
attribute weights. Subsequently, we propose the GHF-CPT-COPRAS model by integrating
the CPT method into the COPRAS method by considering the decision maker’s psycho-
behavioral factors, i.e., risk preference and loss aversion. Finally, the GHF-CPT-COPRAS
model proposed in this paper is applied to the evaluation problem of EDAV. Therefore, the
research results of this paper are summarized as follows: (1) we propose a new GHFNs
K-L divergence measure, which enriches the theory of GHFNs and provides more choices
for calculating the differences between GHFNs; (2) a new GHF-CPT-COPRAS model is
developed to solve the uncertainty fuzzy decision-making problem; (3) the D-CRITIC
method is applied for the first time to assign the unknown attribute weights under GHFNs;
(4) the developed GHF-CPT-COPRAS model is applied to the EDAV evaluation, and the
example analysis shows that the constructed EDAV evaluation index system and model
system are feasible and effective, which enriches the theory of EDAV evaluation to some
extent and also provides inspiration and references for the actual EDAV evaluation. In
addition, further comparisons prove the validity and feasibility of the GHF-CPT-COPRAS
model; (5) the established model provides more choices for solving the MADM problem
and also provides some references for the extension of the CPT-COPRAS method in other
decision-making environments.

In the future, we will focus on the following research. First, the D-CRITIC method
determines the weights more objectively and ignores the subjective weights of the experts.
Therefore, in the future, we will consider integrating the D-CRITIC method with other
objective weights, such as AHP [57], BWM [58] and KEMIRA [59]. Second, because of the
complexity of decision information and the diversity of decision attributes, in the future, we
will consider integrating the CPT-COPRAS model with other FSs, such as Z-numbers [60],
q-Rung Orthopair Probabilistic Hesitant Fuzzy [61], etc. Finally, the model can also be
applied to other decision problems, such as green supplier selection [62], stock invest-
ment [63], investment decision-making [64], sustainable circular supplier selection [65],
etc. [66,67].
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