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Abstract: The objective of this research is to describe and investigate a novel class of separation
axioms and discuss some of their fundamental characteristics using a nano weakly generalized closed
set. In nano topological space, N𝓌ℊ-closed graph and strongly N𝓌ℊ-closed graph functions are
introduced and explored. We also analyse some of the characterizations of closed graph functions
with the separation axioms via a nano weakly generalized closed set.
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1. Introduction

The concept “closed sets” in general topology is important, and many topologists are
currently focusing their research in this area. Topologists have developed generalizations
for this concept, leading to the discovery of interesting results. One of the most well-
known concepts and sources of inspiration is the notion of the g-closed set, which was first
proposed by Levine [1]. In 1969, Long [2] discussed properties induced by functions with
closed graphs on their domain and range spaces. Subsequently, Long and Herrington [3]
defined strongly closed graphs in 1975. Based on this, in 1978, Noiri [4] examined functions
with strongly closed graphs. Then, in 2009, Noiri and Popa [5] investigated generalized
closed graphs and strongly generalized closed graphs. Lellis Thivagar [6] introduced nano
topological space using an equivalence relation on the boundary area of a universal set
and its approximations. Weakly generalized closed sets and weakly generalized closed
graphs were defined in topological space by Nagaveni et al. [7–9], who also expanded their
research into nano topological spaces.

In 2016, Lellis Thivagar et al. [10] defined the concept of nano topological space using
general graphs. Arafa et al. (2020) [11] introduced a new method for generating nano
topological spaces using the vertices of a graph. A novel approach for creating a nano
topological structure using the ideas of the graph’s boundary, closure and interior was
also introduced. Using nano continuity, Atik et al. [12,13] examined the isomorphisms
between simple graphs. Khalifa et al. (2021) [14] introduced a nano topological space
based on graph theory that depends on neighbourhood relationships between the vertices
within an undirected graph, illustrated with examples. The idea of continuity has been
generalized through graph theory to provide additional characterizations and is applicable
to simple graphs.

In this article, we define and analyse the characterizations of N𝓌ℊ-closed graph and
strongly N𝓌ℊ-closed graph functions using nano weakly generalized closed sets. We
also examined the relationships of strongly N𝓌ℊ-closed graphs with N𝓌ℊ-irresolute,
nano quasi 𝓌ℊ-irresolute, nano θ𝓌ℊ-irresolute, etc. We extensively explored this concept
and ascertained that those functions with strongly N𝓌ℊ-closed graphs are a stronger
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notion than N𝓌ℊ-closed graphs. We investigated some separation properties induced by
closed graph functions on their domain, range, or both spaces. We discuss an example of
N𝓌ℊ-closed graphs using graph theory, which depends on neighbourhood relationships
between vertices in a simple graph.

In this article, (U , τR1(X )) and (V , σR2(Y)) represent two nano topological spaces
(NTSs) with respect to X and Y , where X ⊆ U and Y ⊆ V . Additionally,R1 is an
equivalence relation defined on the set U , and U/R1 denotes the collection of equivalence
classes of U by R1. Similarly, R2 is an equivalence relation on V , and V/R2 denotes the
collection of equivalence classes of V induced by R2.

2. Preliminaries

Descriptions of some of the terminologies used in this sequel are provided in this section.

Definition 1. ([6]). Let U be a non-empty finite set of objects called the universe and R be an
equivalence relation on U , referred to as the indiscernibility relation. The pair (U , R) is said to
be the approximation space. Let X ⊆ U . The lower approximation, upper approximation and
boundary of the region of X with respect to R is defined as LR(X ) =

⋃
X∈U{R(x) : R(x) ⊆ X},

UR(X ) =
⋃
X∈U{R(x) : R(x) ∩ X ̸= ∅} and BR(X ) = UR(X ) − LR(X ), where R(x)

denotes the equivalence class determined by X ∈ U . Then, the nano topology (NT) τR(X ) =
{U ,∅, LR(X ),UR(X ), BR(X )} is defined on U . The τR(X ) satisfies the following axioms:

(i) U and ∅ ∈ τR(X ).
(ii) The union of the elements of any subcollection of τR(X ) is in τR(X ).
(iii) The intersection of the elements of any finite subcollection of τR(X ) is in τR(X ). We call (U

, τR(X )) a nano topological space (briefly NTS).

Definition 2. ([7]). Let (U , τR(X )) be a nano topological space. Subset A of (U , τR(X )) is
referred to as a nano weakly generalized closed set (briefly N𝓌ℊ CS) if NCl(N Int(A)) ⊆ V , where
A ⊆ V and V is nano open. The complement of the N𝓌ℊ-closed set is an N𝓌ℊ-open set (briefly
N𝓌ℊ -OS). The family of all nano weakly generalized open sets is denoted by NWGO(U ). We
set NWGO(U ,𝓍) = {M ∈ NWGO(U ) such that 𝓍 ∈ M}. Similarly, the family of all nano
weakly generalized closed sets is denoted by NWGC(U ). We set
NWGC(U ,𝓍) = {M ∈ NWGC(U ) such that 𝓍 ∈ M}. The N𝓌ℊ closure of a subset A of U
is denoted by N𝓌ℊ-Cl(A). Similarly, the N𝓌ℊ interior of subset A of U is denoted by
N𝓌ℊ-Int(A).

Definition 3. ([7]). The function f : (U , τR1(X ) ) → (V , σR2(Y)) is termed as follows:

(i) N𝓌ℊ is continuous on U if the inverse image of every nano closed set in V is nano weakly
generalized closed in U .

(ii) N𝓌ℊ is irresolute on U if the inverse image of every N𝓌ℊ-closed set in V is nano weakly
generalized closed in U .

(iii) N𝓌ℊ is closed (open) on U if the image of every nano closed (open) set in U is an Nwg closed
(open) set in V .

Definition 4. ([5]). Let f : (X, τ) → (Y, σ) be a function between two topological spaces, (X, τ)
and (Y, σ). Then, the subset {(x, f (x))/x ∈ X} of the product space (X × Y, τ × σ) is known
as the graph of f and is written by G( f ).

Definition 5. ([2]). A function f : (X, τ) → (Y, σ) is said to have a closed graph (resp. strongly
closed graphs) if for each (x, y) ∈ X × Y − G( f ) there exist open sets U and V containing
x and y, respectively, such that (U × V) ∩ G( f ) = ∅ (resp. U × Cl(V)) ∩ G( f ) = ∅.

Lemma 1. ([2]). Let f : (X, τ) → (Y, σ) be a function, and then the graph G( f ) is closed
(resp. strongly closed) for graphs in X × Y i f and only i f f or each (x, y) ∈ X × Y −
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G( f ) there exist open sets U and V containing x and y, respectively, such that f (U) ∩ V =
∅ (resp. f (U) ∩ Cl(V) = ∅).

Definition 6. ([11]). Let a graph G = (V, E) and v ∈ V(G); then N(v) = {v} ∪
{u ∈ V(G) :

→
uv ∈ E(G)} the neighbourhood of v.

Definition 7. ([11]). Let G be a graph with vertices (V, E), S be a subgraph of G and the
neighbourhood of v is represented by N(V(G)) and ∈ V. Then

LN(V(S)) =
{
{vi} ∪

{
vj
}

: eij ∈ E(S); vi, vj ∈ E(S)
}

,
HN(V(S)) =

{{
vi, vj

}
: eij ∈ E(S); vi, vj ∈ E(S)

}
∪ {vk : vk ∈ V(G − S) and eik ∈ E(G)}

BN(V(S)) = HN(V(S))\LN(V(S))

Definition 8. ([11]). Let a graph G = (V, E) and v ∈ V(G), N(v) be a neighbourhood
of v in V and a subgraph S of G, and then τN(V(S)) = {V(G), ∅, LN(V(S)), HN(V(S)) ,
BN(V(S))} forms a topology called NTS on V(G) with respect to V(S). We call {V(G), τN(V(S))}
as the NTS induced by a graph.

Definition 9. ([15]). According to graph theory, the graph that has two vertices (u, u′) and
(v, v′) adjacent in G □ H is a graph such that u = v and u′ is adjacent to v′ in H, or u′ = v′ and u is
adjacent to v in G. Furthermore, the vertex set of G □ H is the Cartesian product V(G) × V(H).

3. Separation Axioms via Nano Weakly Generalized Closed Set

In this section, we explore the characterization of separation axioms with the aid of an
N𝓌ℊ-open set in an NTS.

Definition 10. The space(U , τR(X )) is defined as follows:

1. N𝓌ℊ-T0 space (N𝓌ℊ-Kolmogorov space) if for 𝓍,𝓎ϵ U and 𝓍 ̸= 𝓎 ∃ N𝓌ℊ-OSs M such
that 𝓍 ∈ M and 𝓎 /∈ M.

2. N𝓌ℊ-T1 space (N𝓌ℊ-Fréchet space) if for 𝓍,𝓎ϵ U and 𝓍 ̸= 𝓎. ∃ N𝓌ℊ-OSs M and N such
that 𝓍 ∈ M and 𝓎 /∈ M and 𝓎 ∈ N and 𝓍 /∈ N.

3. N𝓌ℊ-T2 space (N𝓌ℊ-Harsdorf space) if for 𝓍,𝓎ϵ U and 𝓍 ̸= 𝓎. ∃ disjoint N𝓌ℊ-OSs,
M and N such that 𝓍 ∈ M and 𝓎 ∈ N.

4. N𝓌ℊ-T2′ space (N𝓌ℊ-Urysohn space) if for 𝓍,𝓎ϵ U and 𝓍 ̸= 𝓎. ∃ disjoint N𝓌ℊ-OSs
M and N, 𝓍 ∈ M and 𝓎 ∈ N, such that N𝓌ℊ-Cl(M) ∩N𝓌ℊ- Cl(N) = ∅.

Theorem 1. Every N𝓌ℊ-T2′ space is an N𝓌ℊ-T2 space.

Proof. Let 𝓍,𝓎ϵ U and 𝓍 ̸= 𝓎. Since U is the N𝓌ℊ-T2′ space, there exists disjoint N𝓌ℊ-
OSs M ⊂ U and N ⊂ U , 𝓍 ∈ M and 𝓎 ∈ N, such that N𝓌ℊ-Cl(M) ∩N𝓌ℊ-Cl(N) = ∅.
Hence, M ∩ N = ∅. Therefore, (U , τR(X )) is an N𝓌ℊ-T2 space. □

Theorem 2. Every N𝓌ℊ-T2′ space is an N𝓌ℊ-T1 space.

Proof. Let 𝓍,𝓎ϵ U and 𝓍 ̸= 𝓎. The U is N𝓌ℊ-T2′ space, and there exists disjoint N𝓌ℊ-OSs
M ⊂ U and N ⊂ U , 𝓍 ∈ M and 𝓎 ∈ N, such that N𝓌ℊ-Cl(M) ∩N𝓌ℊ-Cl(N) = ∅. This
indicates that x /∈ N𝓌ℊ-Cl(N) and y /∈ N𝓌ℊ-Cl(M). Now N𝓌ℊ-Cl(M),N𝓌ℊ-Cl(N) ∈
NWGC(M). Therefore, U − N𝓌ℊ-Cl(M) and U − N𝓌ℊ-Cl(N) ∈ NWGO(M) such that
𝓍 ∈ N𝓌ℊ-Cl(M) and 𝓎 ∈ N𝓌ℊ-Cl(N). Thus, (U , τR(X )) is an N𝓌ℊ- T1 space. □

Example 1. If U = {ζa1, ζb1, ζc1, ζd1, ζe1}, X = {ζb1, ζc1}, U/R = {{ζa1, ζc1}, {ζb1}, {ζd1},
{ζe1}}, τR(X ) = {U, φ, {ζb1}, {ζa1, ζc1},{ζa1, ζb1, ζc1}}, then N𝓌ℊ -OSs are {U, φ, {ζa1},
{ζb1}, {ζc1}, {ζd1}, {ζe1}, {ζa1, ζb1}, {ζa1, ζc1}, {ζa1, ζd1}, {ζa1, ζe1}, {ζb1, ζc1}, {ζb1, ζd1},
{ζb1, ζe1}, {ζc1, ζd1}, {ζc1, ζe1}, {ζa1, ζb1, ζc1}, {ζa, ζb, ζd}, {ζa, ζb, ζe}, {ζa1, ζc1, ζd1}, {ζa1,
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ζc1, ζd1}, {ζa1, ζc1, ζd1}, {ζa1, ζc1, ζd1}, {ζa1, ζc1, ζe1}, {ζb1, ζc1, ζe1}, {ζb1, ζc1, ζe1}, {ζ𝒶1, ζ𝒷1,
ζ𝒸1, ζ𝒹1}, {ζa1, ζb1, ζc1, ζe1}, {{ζa1, ζb1, ζd1, ζe1}, }, {ζb1, ζc1, ζd1, ζe1}}. Thus, 𝓍,𝓎 in U , 𝓍
̸= 𝓎, there exists disjoint N𝓌ℊ-OSs M ⊂ U , N ⊂ U and 𝓍 ∈ M,𝓎 ∈ N, such that N𝓌ℊ-
Cl(M) ∩ N𝓌ℊ- Cl(N) = ∅. Therefore, (U , τR(X )) is an N𝓌ℊ-T2′ space, and N𝓌ℊ-T2,
N𝓌ℊ-T1 and N𝓌ℊ-T0 space.

Theorem 3. Every open subspace of the N𝓌ℊ-T2space is N𝓌ℊ -T2space.

Proof. Let (U , τR(X )) be an NTS. Suppose (S , τR(X )) is the subspace of U . Let 𝓍,𝓎
be two distinct points in S. Since 𝓍 and 𝓎 are also points of U , which is given to be the
N𝓌ℊ-T2 space, ∃ two disjoint N𝓌ℊ-OSs G and H, such that G contains 𝓍 and H contains
𝓎. Then, the sets G S = S1, H S = S2 are disjoint N𝓌ℊ- OSs in S contains 𝓍 S1 and 𝓎 S2,
such that S1 ∩ S2 = ∅. Hence, S is the N𝓌ℊ-T2 space. □

Theorem 4. If f : (U , τR1(X )) → (V ,σR2(Y)) is the N𝓌ℊ-irresolute mapping and V is the
N𝓌ℊ-T0 space, then U is N𝓌ℊ-T0.

Proof. Let 𝓍,𝓎 ∈ U with 𝓍 ̸= 𝓎 and V be an N𝓌ℊ-T0 space. Then, ∃N𝓌ℊ-OS P of
Y , such that either f (𝓍) ∈ P and f (𝓎) ∈ P with f (𝓍) ̸= f (𝓎). By using the injective
N𝓌ℊ-irresoluteness of f , f−1(P) is an N𝓌ℊ-OS of U such that either x ∈ f−1(P) or y ∈
f−1(P). Therefore, U is an N𝓌ℊ-T0 Space. □

Lemma 2. If the bijection function f : (U , τR1(X ) ) → (V , σR2(Y)) is the N𝓌ℊ-open, then for
any M ∈ NWGC(U ), f (M) ∈ NWGC(V).

Proof. The proof is obvious. □

Lemma 3. Let 𝓍 ∈ U and A ⊂ U . The point 𝓍 ∈ N𝓌ℊ-Cl(A) if and only if A ∩ S ̸= ∅, for all S
∈ NWGO(U ,𝓍).

Proof. The proof is obvious. □

Theorem 5. If f : (U , τR1(X ) ) → (V , σR2(Y)) is the bijective N𝓌ℊ-open mapping and
(U , τR1(X ) ) is the N𝓌ℊ-T2′ space, then (V , σR2(Y)) is N𝓌ℊ -T2′ space.

Proof. Let 𝓎1, 𝓎2 ∈ V and 𝓎1 ̸= 𝓎2. Since f is the bijection, f−1(𝓎1), f−1(𝓎2) ∈ U and
f−1(𝓎1) ̸= f−1(𝓎2). The N𝓌ℊ− T2’ space property of U provides the existence of sets
M ∈ NWGO

(
U , f−1(𝓎1)

)
, N ∈ NWGO

(
U , f−1(𝓎2)

)
with the fact that N𝓌ℊ-Cl(M) ∩

N𝓌ℊ- Cl(N) = ∅. By the Lemma 3, N𝓌ℊ-Cl(M) is the N𝓌ℊ-CS in U . By the Lemma
2, bijectivity and N𝓌ℊ-openness reveals that f (N𝓌ℊ-ClU (M)) ∈ NWGC(V). Again,
from M ⊂ N𝓌ℊ-ClU (M), it follows that f (M) ⊂ f (N𝓌ℊ-ClU (M)). Since N𝓌ℊ-clousure
respects inclusion, N𝓌ℊ-ClV ( f (M)) ⊂N𝓌ℊ-ClV ( f (N𝓌ℊ-ClV (M)) = f (N𝓌ℊ-ClV (M)). In
like manner, N𝓌ℊ-ClV (f(N)) ⊂ f (N𝓌ℊ-ClU (N)). Therefore, by the injectivity of f , N𝓌ℊ-
ClV ( f (M))

⋂N𝓌ℊ- ClV ( f (N)) ⊂ f (N𝓌ℊ-ClU (M))
⋂

f (N𝓌ℊ -ClU (N)) = f [(N𝓌ℊ-ClU (M))⋂
(N𝓌ℊ-ClU (N))] = f (∅) = ∅. Thus, the N𝓌ℊ-openness of f gives the existence of two sets,

f (M) ∈ NWGO(V , 𝓎1), f (N) ∈ NWGO(V , 𝓎2) with N𝓌ℊ-ClV ( f (M))
⋂ N𝓌ℊ-ClV ( f (N))

= ∅. Hence, V is N𝓌ℊ-T2’ space. □

4. Discussion on Nano Weakly Generalized Closed Graphs

In this section, we introduce a weaker form of the closed graph, such as N𝓌ℊ-
closed graphs, with the aid of N𝓌ℊ-OS in an NTS and investigate the functions and
characterization of separation axioms along with N𝓌ℊ-closed graphs. The example of the
N𝓌ℊ-closed graph via a simple graph with vertices is discussed.
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Definition 11. The function f : (U , τR1(X ) ) → (V , σR2(Y)) is told to have a nano weakly
generalized closed graph (briefly N𝓌ℊ-CG) if for each (𝓍,𝓎) ∈ U × V − G( f ), ∃N𝓌ℊ-open
sets M and N, 𝓍 ∈ M and 𝓎 ∈ N, (M × N) ∩ G( f ) = ∅.

Lemma 4. If f : (U , τR1(X ) ) → (V , σR2(Y)) is the function, then the graph G( f ) is N𝓌ℊ-
CG in U × V i f and only i f f or each (𝓍,𝓎) ∈ U × V − G( f ), ∃ a N𝓌ℊ-open set M and N,
𝓍 ∈ M and 𝓎 ∈ N, such that f (M) ∩ N = ∅.

Proof. Necessity: Since f has a nano weakly generalized closed graph, for each 𝓍 ∈
U and 𝓎 ∈ V such that 𝓎 ̸= f (𝓍) ∃ a N𝓌ℊ-OSs M and N, 𝓍 ∈ M and 𝓎 ∈ N, in such a
way that (M × N) ∩ G( f ) = ∅. This implies that f (M) ∩ N = ∅.

Sufficiency: Consider (𝓍,𝓎) /∈ G( f ), and then there are two N𝓌ℊ-OSs M and N,
𝓍 ∈ M and 𝓎 ∈ N, such that f (M) ∩ N = ∅. This indicates that (M × N) ∩ G( f ) = ∅. As
a result, f has an N𝓌ℊ-CG. □

Example 2. If U = {ζa1, ζb1, ζc1, ζd1},X = {ζa1},U/R1 = {{ζa1}, {ζb1, ζc1}, {ζd1}},
(U , τR1(X )) = {U, ∅, {ζa1}}, then the N𝓌ℊ-open sets are {U ,∅, {ζa1}, {ζb1}, {ζc1}, {ζd1},
{ζa1, ζb1}, {ζb1, ζc1}, {ζa1, ζc1}, {ζa1, ζd1} {ζb1, ζd1}}, {ζc1, ζd1}, {ζa1, ζb1, ζc1}, {ζa1, ζb1, ζd1},
{ζa1, ζc1, ζd1}}. If V = {ηa2, ηb2, ηc2, ηd2},Y = {ηa2, ηa2},V/R2 = {{ηa2, ηb2}, {ηc2}, {ηd2}},
(V, σR2(Y)) = {V, ∅,{ηd2}, {ηa2, ηb2}, {ηa2, ηb2, ηd2}}, then the N𝓌ℊ-open sets are {V, ∅,
{ηa2}, {ηb2}, ηd2, {ηa2, ηb2}, {ηb2, ηd2}, {ηa2, ηd2}, {ηa2, ηb2, ηd2}, {ηa, ηc, ηd}, {ηa, ηc, ηd}}.
Let f : (U , τR1(X ) ) → (V , σR2(Y)) be a mapping defined by f (ζa1) = ηa2, f (ζb1) = ηb2,
f (ζc1) = ηc2 and f (ζd1) = ηd2. Therefore, f has N𝓌ℊ-CG. □

Example 3. In this example, we observed that anN𝓌ℊ-closed graph will be induced by a general
graph with vertices. The two distinct graphs are G and H, their vertices of G and H are V(G) =
{ζa1, ζa2, ζa3, ζa4}and V(H) =

{
ηb1, ηb2, ηb3

}
and the vertices of the Cartesian product of two

graphs are V(G × H) = {(ζa1 , ηb1), (ζa1 , ηb2), (ζa1 , ηb3), (ζa2 , ηb1), (ζa2 , ηb2), (ζa2 , ηb3),
(ζa3 , ηb1), (ζa3 , ηb2), (ζa3 , ηb3), (ζa4 , ηb1), (ζa4 , ηb2), (ζa4 , ηb3)}; this is shown in Figure 1.
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Lemma 4. If 𝑓: (𝒰, 𝜏ℛ (𝒳) ) → (𝒱, 𝜎ℛ (𝒴)) is the function, then the graph G(𝑓) is 𝒩𝓌ℊ-𝐶𝐺  in 𝒰 × 𝒱  if and only if for each (𝓍, 𝓎) ∈  𝒰 × 𝒱 − G(𝑓), ∃ a 𝒩𝓌ℊ-open set 𝑀  and 𝑁 , 𝓍 ∈ 𝑀 and 𝓎 ∈ 𝑁, such that 𝑓(𝑀) ∩ 𝑁 =  ∅. 
Proof. Necessity: Since 𝑓  has a nano weakly generalized closed graph, for each 𝓍 ∈𝒰 and 𝓎 ∈ 𝒱  such that 𝓎 ≠ 𝑓(𝓍) ∃ a 𝒩𝓌ℊ-𝑂𝑆𝑠  𝑀  and 𝑁 , 𝓍 ∈ 𝑀 and 𝓎 ∈ 𝑁 , in such a 
way that (𝑀 ×  𝑁)  ∩ G(𝑓) =  ∅. This implies that 𝑓(𝑀) ∩ 𝑁 = ∅. 

Sufficiency: Consider (𝓍, 𝓎) ∉ G(𝑓), and then there are two 𝒩𝓌ℊ-𝑂𝑆𝑠 𝑀 and 𝑁, 𝓍 ∈𝑀 and 𝓎 ∈ 𝑁, such that 𝑓(𝑀) ∩ 𝑁 = ∅. This indicates that (𝑀 × 𝑁)  ∩ G(𝑓) =  ∅. As a re-
sult, 𝑓 has an 𝒩𝓌ℊ-𝐶𝐺. □ 
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Example 3. In this example, we observed that an  𝒩𝓌ℊ-closed graph will be induced by 
a general graph with vertices. The two distinct graphs are 𝐺 and 𝐻, their vertices of 𝐺 and 𝐻  are 𝑉(𝐺) = {𝜁 ,  𝜁 ,  𝜁 , 𝜁 } and 𝑉(𝐻) = {𝜂 , 𝜂 , 𝜂𝑏 } and the vertices of the 
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this is shown in Figure 1. 
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Figure 1. Graph representation of Cartesian product of two graphs forms a topology.

The neighbourhoods of the vertices of G are N(ζa1) = { ζa1, ζa2}, N(ζa2) = { ζa1, ζa2, ζa3},
N(ζa3) = { ζa2, ζa3, ζa4}, N(ζa4) = { ζa3, ζa4}. If the subgraph X of G such that V(X ) =
{ζa1, ζa2, ζa3}, then LN(V(X )) = {ζa1, ζa2}, UN(V(X )) = {ζa1, ζa2, ζa3, ζa4}, BN(V(X )) =
{ζa3, ζa4} and an NTS (G, τN(X )) = {G, ∅, {ζa1, ζa2}, {ζ a3, ζa4}}.N𝓌ℊ-open sets are G, ∅,
{ζa1}, {ζa2}, {ζa3}, {ζa4}, {ζa1, ζa2}, {ζa2, ζa3}, {ζa1, ζa3}, {ζa1, ζa4}, {ζa2, ζa4}}, {ζa3, ζa4}
{ζa1, ζa2, ζa3}, {ζa1, ζa2, ζa4}, {ζa1, ζa3, ζa4}, {ζa2, ζa3, ζa4}.

Similarly, the neighbourhoods of the vertices of H are N(ηb1) = {ηb1, ηb2}, N(ηb2) =
{ηb1, ηb2, ηb3}, N(ηb3) = {ηb2, ηb3}. Assume that Y is a subgraph of H such that V(Y) =
{ηb1, ηb2}. So, LN(V(Y)) = {η1}, UN(V(Y)) = {ηb1, ηb2, ηb3}, BN(V(Y) ) = {ηb2, ηb3} and
the NTS (H, σN(Y)) = {H,∅, {ηb1} ,{ηb2, ηb3}}. TheN𝓌ℊ-open sets are {H,∅, {ηb1}, {ηb2},
{ηb3}, {ηb1, ηb2}, {ηb1, ηb3}, {ηb2, ηb3}}. The neighbourhoods of the vertices of G × H are
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N((ζa1 , ηb1)) = {(ζa1 , ηb1), (ζa1 , ηb2), (ζa2 , ηb1)}, N((ζa1 , ηb2)) = {(ζa1 , ηb1), (ζa1 , ηb2),
(ζa1 , ηb3), (ζa2 , ηb2)}, N((ζa1 , ηb3)) = {(ζa1 , ηb2), (ζa1 , ηb3), (ζa2 , ηb3)}, N((ζa2 , ηb1)) =
{(ζa1, ηb1), (ζa2, ηb1), (ζa2, ηb2), (ζ3, η1)}, N((ζa2, ηb2)) = {(ζa1, ηb2), (ζa2, ηb1), (ζa2, ηb2),
(ζa2, ηb3), (ζa3, ηb2)}, N((ζa2, ηb3)) = {(ζa1, ηb3), (ζa2, ηb2), (ζa2, ηb3), (ζa3, ηb3)}, N((ζa3, ηb1))
= {(ζa2, ηb1), (ζa3, ηb1), (ζ3, ηb2), (ζa4, ηb1)}, N((ζa3, ηb2)) = {(ζ2, η2), (ζ3, η1), (ζ3, η2), (ζ3, η3),
(ζa4, ηb2)}, N((ζa3, ηb3)) = {(ζaa2, ηb3), (ζa3, ηb2), (ζa3, ηb3), (ζa4, ηb3)}, N((ζa4, ηb1)) = {(ζa3, ηb1),
(ζa4, ηb1), (ζa4, ηb2)}, N((ζa4, ηb2)) = {(ζa3, ηb2), (ζa4, ηb1), (ζa4, ηb2), (ζa4, ηb3)}, N((ζa4, ηb3))
= {(ζa3, ηb3), (ζa4, ηb2), (ζa4, ηb3)}.
Consider the subgraphX ×Y of G×H such that V(X ×Y) = {(ζa1, ηb1), (ζa2, ηb1), (ζa3, ηb1),
(ζa1, ηb2)(ζa2, ηb2), (ζa3, ηb2)}, LN(V(X ×Y)) = { (ζa1, ηb1), (ζa2, ηb1)}, UN(V(X ×Y)) =
{(ζa1, ηb1), (ζa1, ηb2), (ζa1, ηb3)(ζa2, ηb1), (ζa2, ηb2), (ζa2, ηa3), (ζa3, ηb1), (ζa3, ηb2), (ζa3, ηb3),
(ζa4, ηb1), (ζa4, η2)} and BN(V(X ×Y) ) = {(ζa1, η2), (ζa1, η3), (ζa2, η2), (ζa2, η3), (ζa3, η1),
(ζa3, ηa2), (ζa3, ηa3),(ζa4, ηb1), (ζ4, ηb2)} and a NTS (G × H, δN(X ×Y)) = {G × H,∅,
{ (ζa1, ηb1), (ζa2, ηb1)}, {(ζa1, ηb1), (ζa1, ηb2), (ζa1, ηb3)(ζa2, ηb1), (ζa2, ηb2), (ζa2, ηb3), (ζa3, η1),
(ζa3, ηb2), (ζa3, ηb3), (ζa4, ηb1), (ζa4, ηb2)}, {(ζa1, ηb2), (ζa1, ηb3), (ζa2, ηb2), (ζa2, ηb3), (ζa3, ηb1),
(ζa3, ηb2), (ζa3, ηb3),(ζ4, ηb1), (ζa4, ηb2)}}.
If the function f : (G, τN(X )) → (H, σN(Y)) is defined by f (ζa1) = ηb1, f (ζa2) = ηb1,
f (ζa3) = ηb1 and f (ζa4) = ηb1, then f has N𝓌ℊ-CG. □

Theorem 6. If the function f : (U , τR1(X ) ) → (V , σR2(Y)) is an injective with the N𝓌ℊ-CG,
G( f ), then U is N𝓌ℊ-T1 space.

Proof. Let 𝓍,𝓎ϵ U and 𝓍 ̸= 𝓎. Since f is an injection, f (𝓍) ̸= f (𝓎) in V .(𝓍, f(𝓎)) ∈
(U × V)− G( f ). But G( f ) is the N𝓌ℊ-CG, so that using the Lemma 4, ∃ a N𝓌ℊ-OSs M
and N, 𝓍 ∈ M and f(𝓎) ∈ N, such that f (M) ∩ N = ∅. Thus, 𝓎 /∈ M. Likewise, ∃N𝓌ℊ-
OSs P and Q containing 𝓎 and f (𝓍), in such a way that f (P) ∩ Q = ∅. As a result, 𝓍 /∈ P.
U is N𝓌ℊ-T1 space. □

Theorem 7. If the function f : (U , τR1(X ) ) → (V , σR2(Y)) is surjective with respect to the
N𝓌ℊ-CG G( f ), then V is N𝓌ℊ-T1 space.

Proof. Consider 𝓎,𝓏ϵ V and 𝓎 ̸= 𝓏. Given the function f is onto, ∃ a point 𝓍 in U such
that f(𝓍) = 𝓏. Hence, (𝓍,𝓎) /∈ G( f ), using the Lemma 4, there is N𝓌ℊ -OSs M and N,
𝓍 ∈ M and 𝓎 ∈ N, because of which f (M) ∩ N = ∅. Further, it implies 𝓏 /∈ N. Likewise,
there exist 𝓌 ∈ U such that f (𝓌) = 𝓎. Thus, (𝓌,𝓏) /∈ G( f ). Similarly, there exist N𝓌ℊ-
OSs P & Q, 𝓌 ∈ P and 𝓏 ∈ Q, such that f (P) ∩ Q = ∅. Hence, 𝓎 /∈ Q, and thus the space
V is N𝓌ℊ-T1 space. □

Corollary 1. If the bijective function f : (U , τR1(X ) ) → (V , σR2(Y)) has the N𝓌ℊ-CG G( f ),
then both Uand V are N𝓌ℊ -T1 space.

Proof. That is obvious from Theorems 6 and 7. □

Theorem 8. If f : (U , τR1(X ) ) → (V , σR2(Y)) is the N𝓌ℊ-open and onto function with the
N𝓌ℊ-CG G( f ), then V is N𝓌ℊ-T2 space.

Proof. Let 𝓎,𝓌ϵ V and 𝓎 ̸= 𝓌. The points 𝓍,𝓏ϵ U , 𝓍 ̸= 𝓏 and f (𝓍) = 𝓎, f (𝓏) = 𝓌.
Since (x, w) /∈ G( f ) and G( f ) is N𝓌ℊ-CG, there exist N𝓌ℊ-OSs M & N, 𝓍 ∈ M and
𝓌 ∈ N, as a result of which f (M) ∩ N = ∅. However, f (M) is N𝓌ℊ-open and contains 𝓎.
Therefore, V is N𝓌ℊ-T2 space. □

Theorem 9. If f : (U , τR1(X ) ) → (V , σR2(Y))is injective and N𝓌ℊ-continuous with N𝓌ℊ-
CG G( f ), and also V is N𝓌ℊ-T2 space, then U is N𝓌ℊ-T2 space.
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Proof. Let 𝓍,𝓎ϵ U be any two of points, Then, ∃ M , N ⊆ Vand M ̸= N such that f (𝓍) ∈
M, f (𝓎) ∈ N. Since the function f is N𝓌ℊ-continuous, f−1(M), f−1(N) are N𝓌ℊ-open
in U , 𝓍 ∈ f−1(M),𝓎 ∈ f−1(N). By the N𝓌ℊ-T2 space, we obtain f−1(M) ∩ f−1(N) = ∅.
Thus, U is N𝓌ℊ-T2 space. □

Theorem 10. If the function f : (U , τR1(X ) ) → (V , σR2(Y)) is the N𝓌ℊ-homeomorphism
with N𝓌ℊ-CG G( f ), then U and V are N𝓌ℊ-T2 space.

Proof. It is implied by Theorems 8 and 9. □

5. Stronger Form of Nano Weakly Generalized Closed Graphs

We present a stronger form of the closed graph, such as strongly N𝓌ℊ-closed graphs
with the aid of N𝓌ℊ-closed sets in an NTS examined with strongly N𝓌ℊ-closed graphs
with N𝓌ℊ-irresolute, nano quasi 𝓌ℊ-irresolute, nano θ-𝓌ℊ -irresolute, etc.

Definition 12. The function f : (U , τR1(X ) ) → (V , σR2(Y)) is called strongly N𝓌ℊ-CG if
for each (𝓍,𝓎) ∈ U × V − G( f ), ∃ an N𝓌ℊ-OSs M and N, 𝓍 ∈ M and 𝓎 ∈ N, (M ×N𝓌ℊ -
Cl(N)) ∩ G( f ) = ∅.

Lemma 5. Let f : (U , τR1(X ) ) → (V , σR2(Y)) be the function. The graph G( f ) is strongly N𝓌ℊ-
closed inU × V i f f f or each (𝓍,𝓎) ∈ U × V − G( f ), ∃ a N𝓌ℊ-OSs M and N, 𝓍 ∈ M and
𝓎 ∈ N such that f (M) ∩N𝓌ℊ-Cl(N) = ∅.

Proof. The proof is evident from Definition 12. □

Example 4. LetU = {ζa1, ζa2, ζa3},X = {ζa1, ζa2},U/R1 = {{ζa1},{ζa2, ζa3}}, (U , τR1(X )) =
{U, ∅, {ζa1}, {ζa2, ζa3}}. N𝓌ℊ-OSs are {U ,∅, {ζa1}, {ζa2}, {ζa3}, {ζa1, ζa2}, {ζa2, ζa3},
{ζa1, ζa3}}. Let V = {ηb1, ηb2, ηb3}, Y = {ηb3},V/R2 = {{ζb1, ζb2}, {ηb3}}, (V , σR2(Y)) =
{V, ∅, {ηb3}} and N𝓌ℊ-OSs be {V , ∅, {ηb1}, {ηb2}, {ηb3}, {ηb2, ηb3}, {ηb1, ηb3}}. Let
f : (U , τR1(X )) → (V , σR2(Y)) be a mapping defined by f (ζa1) = ηb1, f (ζa2) = ηb2 and
f (ζ3) = ηb3. Then, f has strongly N𝓌ℊ-closed graph. □

Remark 1. The previous example is N𝓌ℊ-CG. But Example 2 is not strongly N𝓌ℊ-CG. Thus,
strongly N𝓌ℊ-CG is N𝓌ℊ-CG. The converse, however, is not necessarily true. □

Theorem 11. If f : (U , τR1(X ) ) → (V , σR2(Y)) is N𝓌ℊ-irresolute and V is N𝓌ℊ-T2, then
G( f ) is strongly N𝓌ℊ-CG.

Proof. Let (𝓍,𝓎) ∈ U × V − G( f ). Since V is N𝓌ℊ-T2 space, there exist N ∈ NWGO(V ,
𝓎) such that f (𝓍 ) /∈ N𝓌ℊ-Cl(N). Then, V− N𝓌ℊ-Cl(N) ∈ NWGO(V , f (𝓍 )). Since f is
N𝓌ℊ-irresolute, there exist M ∈ NWGO(U , 𝓍) such that f (M) ⊆ V− N𝓌ℊ-Cl(N). Then,
f (M) ∩N𝓌ℊ-Cl(N) = ∅. Hence, G( f ) is strongly N𝓌ℊ-CG. □

Theorem 12. If f : (U , τR1(X ) ) → (V , σR2(Y)) is one to one and G( f ) is strongly N𝓌ℊ-CG,
then U is N𝓌ℊ-T1 space.

Proof. Given that f is one to one, 𝓍,𝓎 ∈ U and 𝓍 ̸= 𝓎, f (𝓍) ̸= f (𝓎). Since G( f ) is strongly
N𝓌ℊ-closed, as per Definition 12, (𝓍, f (𝓎)) ∈ U × V − G( f ), ∃ a N𝓌ℊ -OSs M and N,
𝓍 ∈ M and 𝓎 ∈ N, and thus f (M) ∩ N𝓌ℊ-Cl(N) = ∅. Therefore, 𝓎 /∈ M. Consequently, ∃
a N𝓌ℊ -OS W contains f (𝓎), 𝓍 /∈ W. As a result, U is N𝓌ℊ-T1. □

Theorem 13. If f : (U , τR1(X ) ) → (V , σR2(Y)) is surjection along with strongly N𝓌ℊ-CG,
then V is both N𝓌ℊ-T2 and N𝓌ℊ-T1 space.
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Proof. Let 𝓎1, 𝓎2 ∈ V . Since f is surjective, there exist 𝓍1 ∈ U such that f (𝓍1) = 𝓎1.
Since G( f ) is strongly N𝓌ℊ-CG, by the Lemma 5 (𝓍1, 𝓎2) ∈ U × V − G( f ), there is an
N𝓌ℊ-OS M, N and 𝓍1 ∈ M, 𝓎2 ∈ N, and hence f (M) ∩ N𝓌ℊ-Cl(N) = ∅. As a result, 𝓎1
/∈ N𝓌ℊ-Cl(N). This implies that ∃ W ∈ NWGO(V , 𝓎1), W

⋂
N = ∅. Thus, V is N𝓌ℊ-T2.

Thus, V is N𝓌ℊ-T1 space. □

Theorem 14. If f : (U , τR1(X ) ) → (V , σR2(Y)) is one to one and onto with strongly N𝓌ℊ-
CG, then U and V are N𝓌ℊ-T1 spaces.

Proof. Theorems 12 and 13 directly lead to the proof. □

Theorem 15. The space U is N𝓌ℊ-T2 space if and only if the identity function has stronglyN𝓌ℊ-CG.

Proof. Necessary: Consider U to be N𝓌ℊ-T2. According to Theorem 11, the identity function is
N𝓌ℊ-irresolute, and G( f ) is strongly N𝓌ℊ-CG.

Sufficiency: Let G ( f ) be strongly N𝓌ℊ-CG. Since the function f is onto using Theorem 13,
U is N𝓌ℊ-T2 space. □

Definition 13. A function f : (U , τR1(X ) ) → (V , σR2(Y)) is called nano quasi 𝓌ℊ-irresolute
if ∀𝓍 ∈ U and for each N𝓌ℊ-OS f (𝓍) is a subset of N, ∃ a N𝓌ℊ-OS 𝓍 ∈ M, in such a way
that f (M) ⊂ N𝓌ℊ-Cl(N). □

Remark 2. Every N𝓌ℊ-irresolute is nano quasi 𝓌ℊ-irresolute. However, the contrary is not
always true, as demonstrated by the given example. □

Example 5. Let U = {ζa1, ζa2, ζa3},X = {ζa3},U/R1 = {{ζa1, ζa2}, {ζa3}}, (U , τR1(X )) =
{U, ∅, {ζa3}}and N𝓌ℊ-open sets are {U ,∅, {ζa1}, {ζa2}, {ζa3}, {ζa2, ζa3}, {ζa1, ζa3}}. Let
V = {ηb1, ηb2, ηb3},Y = {ηb1, ηb2},V/R2 = {{ηb1}, {ηb2, ηb3}}, (V , σR2(Y)) = {V, ∅,
{ηb1}, {ηb2, ηb3}} and N𝓌ℊ-open sets are {V , ∅, {ηb1}, {ηb2}, {ηb3}, {ηb1, ηb2}, {ηb1, ηb3},
{ηb2, ηb3}}. Let f : (U , τR1(X )) → (V , σR2(Y)) be a mapping defined by f (ζa1) = ηb1,
f (ζa2) = ηb2 and f (ζa3) = ηb3. Then f is nano quasi 𝓌ℊ-irresolute. However, in U , f−1({ζa3}) =
{ηb3} is not N𝓌ℊ-CS in U . As a result, f is not N𝓌ℊ-irresolute function. □

Theorem 16. If f : (U , τR1(X ) ) → (V , σR2(Y)) is nano quasi 𝓌ℊ-irresolute, a one-to-one
function along with strongly N𝓌ℊ-CG G( f ), then U is N𝓌ℊ-T2 space.

Proof. Since f is one to one, for any two separate points 𝓍1,𝓍2 ∈ U , f (𝓍1) ̸= f (𝓍2).
Therefore (𝓍1, f (𝓍2)) ∈ U ×V −G( f ). The N𝓌ℊ- closedness of G( f ) gives M ∈NWGO(U ,
𝓍1) and N ∈ NWGO(V , f (𝓍2)) such that f (M)

⋂ N𝓌ℊ-ClV (N) = ∅. Therefore, we obtain
M

⋂
f−1(N𝓌ℊ-ClV (N)) = ∅. Consequently, f−1(N𝓌ℊ-ClV (N)) ⊂ U− M. Since f is nano

quasi 𝓌ℊ- irresolute, this is applicable at 𝓍2. Then there exists W ∈ NWGO(U , 𝓍2) in such
a way that f (W) ⊂ N𝓌ℊ-ClV (N). It follows that W ⊂ f−1(N𝓌ℊ-ClV (N)) ⊂ U− M. Thus,
it may be shown that W

⋂
M = ∅. As a result of this, U is a N𝓌ℊ-T2 space. □

Theorem 17. If V is a nano weakly generalized Urysohn space and f : (U , τR1(X ) ) → (V, σR2(Y))
is nano quasi 𝓌ℊ-irresolute, then U is N𝓌ℊ-T2 space.

Proof. As the function f is one to one, 𝓍1,𝓍2 ∈ U ,𝓍1 ̸= 𝓍2, f (𝓍1) ̸= f (𝓍2). The nano
weakly generalized Urysohn property implies that there exist Hi∈ NWGO(V , f (𝓍i)), i
= 1, 2 such that N𝓌ℊ-ClV (H1)

⋂ N𝓌ℊ-ClV (H2) = ∅. Hence, f−1(N𝓌ℊ-ClV (H1))
⋂

f−1(N𝓌ℊ-ClV (H2)) = ∅. Since f is nano quasi 𝓌ℊ-irresolute, there exists Gi ∈ NWGO(U ,
𝓍i), i = 1, 2 such that f (Gi) ⊂N𝓌ℊ-ClV (Hi), i = 1, 2. Then, it follows that Gi ⊂ f−1(N𝓌ℊ-
ClV (Hi)), i = 1, 2. Hence, G1

⋂ G2 ⊂ f−1(N𝓌ℊ-ClV (H1)
⋂

f−1(N𝓌ℊ-ClV (H2)) = ∅. This
implies that U is N𝓌ℊ-T2 space. □
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Definition 14. A function f : (U , τR1(X ) ) → (V , σR2(Y)) is called nano θ-𝓌ℊ-irresolute if for
each N𝓌ℊ-neighbourhood N of f (𝓍) there is a N𝓌ℊ-neighbourhood M of 𝓍 such that f (N𝓌ℊ-
ClV (M)) ⊆ N𝓌ℊ-ClV (N).

Remark 3. Every N𝓌ℊ-irresolute function is nano θ-𝓌ℊ-irresolute. However, as the following
example demonstrates, the contrary need not be true.

Example 6. Let U = {ζa1, ζa2, ζa3, ζa4},X = {ζa1},U/R1 = {{ζa1}, {ζa2, ζa3}, {ζa4}},
(U , τR1(X )) = {U, ∅, {ζa1}} N𝓌ℊ -open sets be{

U,∅, {ζa1}, {ζa2}, {ζa3}, {ζa4}, {ζa1, ζa2}, {ζa2, ζa3}, {ζa1, ζa3}, {ζa1, ζa4},
{ζa2, ζa4} }, {ζa3, ζa4}, {ζa1, ζa2, ζa3}, {ζa1, ζa2, ζa4}, {ζa1, ζa3, ζa4}

}
. Let V =

{ηb1, ηb2, ηb3, ηb4},Y = {ηb2, ηb4},V/R2 = {{ηb1, ηb2}, {ηb3}, {ηb4}}, (V , σR2(Y)) =
{V, ∅, {ηb4}, {ηb1, ηb2}, {ηb1, η b2, ηb4}}. N𝓌ℊ-open sets are {V , ∅, {ηb1}, {ηb2}, {ηb4},
{ηb1, ηb2}, {ηb2, ηb4}, {ηb1, ηb4}, {ηb1, ηb2, ηb4}, {ηb1, ηb3, ηb4}, {ηb2, ηb3, ηb4}}. Let
f : (U , τR1(X )) → (V , σR2(Y)) be a mapping defined by f (ζ1) = η1, f (ζ2) = η2, f (ζ3) = η3

and f (ζa4) = ηb4. Then, f is nano θ-𝓌ℊ-irresolute. Nonetheless, in U , f−1( {ηa1}) = {ζb1} is
not N𝓌ℊ-CS. Thus, f is not an N𝓌ℊ-irresolute function.

Corollary 2. If f : (U , τR1(X ) ) → (V , σR2(Y)) is nano θ-𝓌ℊ-irresolute, a one-to-one function
with strongly N𝓌ℊ-CG G( f ), then U is N𝓌ℊ-T2 space.

Proof. Given that nano θ-𝓌ℊ-irresoluteness is nano quasi 𝓌ℊ-irresoluteness, Theorem 16
provides the basis for the proof. □

Theorem 18. If the bijective function f : (U , τR1(X ) ) → (V , σR2(Y)) is nano quasi 𝓌ℊ-
irresolute (resp. nano θ-𝓌ℊ-irresolute) with strongly N𝓌ℊ-CG G( f ), then U and V are N𝓌ℊ-T2
space.

Proof. The proof is a direct result of Theorem 16 and Theorem 13 (resp. Corollary 2 and
Theorem 13). □

Corollary 3. If f : (U , τR1(X ) ) → (V , σR2(Y)) is N𝓌ℊ-irresolute, a one-to-one function with
N𝓌ℊ-CG G( f ), then U is N𝓌ℊ-T2 space.

Proof. Theorem 16 as well as the fact that every N𝓌ℊ-irresoluteness is nano quasi 𝓌ℊ-
irresoluteness provide the proof. □

Definition 15. A function f : (U , τR1(X ) ) → (V , σR2(Y)) is almost N𝓌ℊ-irresolute if for each
𝓍 ∈ U and each N𝓌ℊ-neighbourhood Vof f (𝓍 ), N𝓌ℊ-Cl( f−1(V)) is the N𝓌ℊ-neighbourhood of
𝓍.

Theorem 19. If f : (U , τR1(X ) ) → (V , σR2(Y)) is nano almost 𝓌ℊ-irresolute, a one-to-one
function with N𝓌ℊ-CG G ( f ), then U is N𝓌ℊ-T2 space.

Proof. By using Theorem 16, we get f (M) ∩ N𝓌ℊ-Cl (N) = ∅. Therefore, f−1(N𝓌ℊ-
Cl(N)) ⊆ U – M. Since U− M is a nano 𝓌ℊ-closed set containing f−1(N𝓌ℊ-Cl(N)), any
N𝓌ℊ-Cl( f−1(N𝓌ℊ-Cl(N))) is the smallest N𝓌ℊ-closed that contains f−1(N𝓌ℊ-Cl(N))
as the result of N𝓌ℊ-Cl ( f−1(N𝓌ℊ-Cl(N))) ⊆ U− M. The nano almost 𝓌ℊ-irresoluteness
of f confirms that f−1(N𝓌ℊ -Cl(N)) and hence N𝓌ℊ-Cl( f−1(N𝓌ℊ-Cl(N))) is a N𝓌ℊ-
neighbourhood of 𝓍2. This implies that there exist H ∈ NWGO (U , 𝓍2) such that H ⊆
N𝓌ℊ-Cl ( f−1(N𝓌ℊ -Cl(N))) ⊆ U− M. From this we can obtain M

⋂
H = ∅. Therefore, U

is N𝓌ℊ-T2 space. □
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6. Conclusions

In this paper, we explored the characterization of separation axioms with the aid of
N𝓌ℊ-OS in an NTS. We presented a weaker form of a closed graph, such as N𝓌ℊ-closed
graphs, and a stronger form of a closed graph, such as strongly N𝓌ℊ-closed graphs, with
the aid of N𝓌ℊ-closed sets in an NTS and examined the characterization of strongly N𝓌ℊ-
closed graphs with N𝓌ℊ-irresolute, nano quasi 𝓌ℊ-irresolute, nano θ-𝓌ℊ-irresolute, etc.
The example of an N𝓌ℊ-closed graph via a simple graph with vertices was discussed.
We investigated some separation properties, especially N𝓌ℊ-Harsdorf space and N𝓌ℊ-
Urysohn space, induced by both closed graph functions such as N𝓌ℊ-closed graphs and
strongly N𝓌ℊ-closed graphs either on its domain, range, or on both spaces.
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