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1. Introduction

A (complex) C*-algebra is a Banach *-algebra A over C, and satisfies ∥xx∗∥ = ∥x∥2,
for all x ∈ A. If H is a complex Hilbert space then B(H), the bounded linear operators on
H, is a C*-algebra in the usual operator norm ∥x∥ = sup

∥ξ∥≤1
∥xξ∥, and involution x∗ defined

by < xξ, η >=< ξ, x∗η >, for all ξ, η ∈ H. If A and B are C*-algebras, a mapping φ
from A into B is called a C*-algebra homomorphism (or, simply a *-homomorphism) if it is a
homomorphism (that is, it is linear, multiplicative, and carries the unit of A onto that of B,
if the C*-algebras have units) with the additional property that φ(x∗) = φ(x)∗ for each x in
A. If, in addition, φ is one-to-one (i.e., injective), it is described as a *-isomorphism. It is
known that *-homomorphisms between C*-algebras are continuous ([1], Theoerem 4.1.8),
([2], Proposition 1.5.2). A representation of a C*-algebra A on a Hilbert space H is a *-
homomorphism π from A into B(H). If, in addition, π is injective, it is called a faithful
representation. An algebra A with the product (x, y) 7−→ x ◦ y is called a Jordan algebra if the
product satisfies x ◦ y = y ◦ x, and (x ◦ y) ◦ x2 = x ◦ (y ◦ x2) for all x, y ∈ A. It is clear that
if A is any associative algebra, then x ◦ y = xy+yx

2 , x, y ∈ A, defines a bilinear, commutative
product on A that satisfies the Jordan product identities. A Jordan Banach algebra is a
real Jordan algebra A equipped with a complete norm that satisfies ∥a ◦ b∥ ≤ ∥a∥∥b∥,
a, b ∈ A. The self-adjoint part B(H)sa = {x ∈ B(H) : x = x∗} of B(H) is a Jordan
Banach algebra with the Jordan product x ◦ y = xy+yx

2 , x, y ∈ B(H)sa. A JB algebra is a
Jordan Banach algebra A in which the norm satisfies the two identities:

∥∥a2
∥∥ = ∥a∥2 and∥∥a2

∥∥ ≤
∥∥a2 + b2

∥∥, for all a, b ∈ A. If A has a unit element 1, then it is clear that ∥1∥ = 1.
A closed Jordan subalgebra of the self-adjoint part B(H)sa of all bounded linear operators
B(H) on a complex Hilbert space H is called a JC-algebra. Sometimes a JB algebra is called a
JC-algebra if it is isometrically isomorphic to a JC-algebra defined in this way, and hence,
any JC-algebra is a JB algebra.

A positive linear functional ρ on a C*-algebra A with norm 1 is called a state. Accord-
ingly, the set S(A) of all states of A is contained in the surface of the unit ball of the dual
space A∗ of A. It is known that S(A) is convex and weak*-closed (i.e., σ(A,A∗)-closed)

Axioms 2024, 13, 205. https://doi.org/10.3390/axioms13030205 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13030205
https://doi.org/10.3390/axioms13030205
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0001-5596-1050
https://doi.org/10.3390/axioms13030205
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13030205?type=check_update&version=2


Axioms 2024, 13, 205 2 of 11

([1], p. 257), and hence weak*-compact. By the Krein–Milman Theorem, S(A) has an ex-
teme point (a point x◦ of a convex set X in a locally convex space Y is an exteme point of X,
if whenever x◦ is expressed as a convex combination x◦ = αx1 + (1 − α)x2, with 0 < α < 1
and x1, x2 ∈ X, then x1 = x2 = x◦). The extreme points of S(A) are called pure states, and
S(A) is the weak*-closure co(P(A))

w
of the convex hull co(P(A)) of the set P(A) of its

extreme points. A state ρ on a C*-algebra A is said to be tracial if ρ(xx∗) = ρ(x∗x) for all
x ∈ A, equivalently, if ρ(xy) = ρ(yx) for all x, y ∈ A ([2], Definition 5.3.18). A state ρ on a
JC-algebra A is tracial if ρ((a ◦ b) ◦ c) = ρ(a ◦ (b ◦ c)) for all a, b, c ∈ A ([3], Defintion 5.19).

The structure of the state space of a C*-algebra can significantly influence the structure
of the algebra itself, and provides valuable insights into the algebra’s properties and behav-
ior. For example, the characteristic of an element in a C*-algebra being the zero element,
self-adjoint, positive or normal is determind by the values of the states of the C*-algebra of
this element ([1], Theorem 4.3.4). There exists a longstanding known practice of employing
the set of states of a C*-algebra as a dual object to illuminate the algebraic structure of
the algebra. The exploration of state spaces within operator algebras, along with their
geometric properties, holds significant interest due to their role in defining representations
of the algebra. The intriguing and captivating aspect lies in how the algebraic structure
of the system is intricately encoded within the geometric characteristics of its state space,
and consequently, characterizing the state space of operator algebras among all convex
sets is equivalent to characterizing the algebras (or their self-adjoint parts) among all or-
dered linear spaces. The great role of states lies in a fundamental result in the theory of
C*-algebras and operator theory, called Gelfand–Naimark–Segal construction (GNS), which
provides a powerful tool for representing abstract C*-algebras concretely as algebras of
bounded operators on Hilbert spaces, connecting the C*-algebras to the familiar setting
of operators on Hilbert spaces. The (GNS) construction asserts that if A is an involutive
Banach algebra with unit (or, with bounded approximate identity, if it is not unital), then to
each positive linear functional ρ on A, there is a complex Hilbert space Hρ, a unit vector ξρ

in Hρ, and a *-representation πρ of A on Hρ such that ρ(x) =< πρ(x)ξρ, ξρ >, for all x ∈ A.
The representation {πρ, Hρ} is usually denoted by {πρ, Hρ, ξρ}, and is called the cyclic
representation of A induced by ρ. With H a Hilbert space, and ξ a fixed element in H, the
equation ωξ(x) =< xξ, ξ >, x ∈ B(H), defines a linear functional on B(H), which is clearly
bounded by Cauchy–Schwarz inequality ([1], Proposition 2.1.1), and ωξ(x) ≥ 0 whenever
x ≥ 0, that is, ωξ is a positive linear functional on B(H) with ωξ(I) = ∥ξ∥2, where I is the
identity of B(H). If ∥ξ∥ = 1, then ωξ is a state on B(H) called a vector state. Having the
cyclic representation {πρ, Hρ, ξρ} induced by a state ρ of a C*-algebra A, the representation
Φ : A → B(HΦ), where Φ = ∑⊕

ρ∈S(A)
πρ on the Hilbert space HΦ = ∑⊕

ρ∈S(A)
Hρ is a faithful

represntation of A, and each state of the C*-algebra Φ(A) is a vector state ωξ , for some
unit vector ξ in HΦ . Hence, each state of A has the form ω

ξ
◦ Φ. Identifying A with Φ(A),

one can assume that any C*-algebra acts on some Hilbert space. Thus, states on given
C*-algebras can be reconstructed as vector states using the cyclic representation spaces
they induce. Undoubtedly, connecting C*-algebras to the familiar setting of operators on
Hilbert spaces enables concrete calculations and analyses of abstract C*-algebras. This
correspondence is crucial, and used in quantum theory, where states describe the physical
properties of quantum systems, and understanding the formulation of quantum dynamics,
and the analysis of physical observables in terms of operators is essential.

Product states of tensor product of two JC-algebras were studied by Jamjoom in [4],
and further advancements in the theory of tensor products involving infinite families
of JC-algebras were established in [5] analogous to well-known results in the context of
C*-algebras. Our study aims to generalize the results delineated in [4] to encompass the
domain of infinite tensor product of JC-algebras as established in [5]. Additionally, we
characterize the tracial product state of the tensor product of two JC-algebras, as well as the
tracial product state of infinite tensor products of JC-algebras. Before presenting our results
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in Section 3, we provide essential background information in Section 2 to assist readers in
understanding the scope and purpose of the study.

2. Preliminaries

Tensor product of vector spaces or algebras is a fundamental concept in mathematics
with broad importance and applications across various fields. It is a versatile mathematical
tool with applications across a wide range of areas, including algebra, geometry, topology,
physics, and engineering. It generalizes the concept of multilinear maps, and allows for
the construction of a new vector space or algebra that captures multilinear relationships
between vectors. In representation theory, particularly in the study of group representa-
tions and Lie algebras, tensor products provide a natural framework for combining and
decomposing representations, leading to deep insights into the symmetries and structures
of algebraic objects.

Let X and Y be vector spaces over a field K (in practice, K = R or C). The tensor
product of X and Y denoted by X ⊗

K
Y, or just X ⊗ Y, is characterized by the following

universal propery: if Z is a K-vector space and θ : X × Y → Z is a K-bilinear map, then
there exists a K-linear map θ : X ⊗ Y → Z such that the following diagram commutes.

X × Y θ→ Z

↓ γ ↗θ

X ⊗ Y

where γ((x, y)) = x ⊗ y, x ∈ X, y ∈ Y ([6], Section 4.7), ([7], Section 4.5). A typical

tensor in X ⊗ Y has the form
n
∑

i=1
xi ⊗ yi, where xi ∈ X, yi ∈ Y. Tensor products satisfy the

associative and commutative laws, that is, if X, Y and Z are vector spaces over a field K, then
X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y)⊗ Z, and X⊗Y∼=Y⊗X ([6], Proposition 4.7.2), ([7], Theorems 4.5.8
and 4.5.9).

Let H and K be (complex) Hilbert spaces. Then their algebraic tensor product H ⊗ K,
as a vector space, is a pre-Hilbert space, where the inner product on H ⊗ K is defined by

<
n

∑
i=1

hi ⊗ ki,
m

∑
j=1

h
′
j ⊗ k

′
j >=

n

∑
i=1

m

∑
j=1

< hi, h
′
j >< ki, k

′
j >,

hi, h
′
j ∈ H, ki, k

′
j ∈ K, i = 1, 2, . . . , n, j = 1, 2, . . . , m. The completion of H ⊗ K (denoted

also by H ⊗ K) is called the Hilbert tensor product of H and K. Given C*-algebras A and
B, their algebraic tensor product A ⊗ B is a complex involutary algebra in the usual
way; (x1 ⊗ y1)(x2 ⊗ y2) = x1x2 ⊗ y1y2, and (x ⊗ y)∗ = x∗ ⊗ y∗ for all x, x1, x2 ∈ A and
y, y1, y2 ∈ B. By a representation of A⊗ B, we mean a *-homomorphism π : A⊗ B →
B(H), where H is a complex Hilbert space. A pair of representations π1 : A → B(H)
and π2 : B → B(K), where H and K are complex Hilbert spaces, induces a natural
representation π1 ⊗ π2 : A⊗B → B(H)⊗ B(K) ⊂ B(H ⊗ K) via

((π1 ⊗ π2)(x ⊗ y))(h ⊗ k) = (π1(x))(h)⊗ (π2(y))(k),

for all x ∈ A, y ∈ B, h ∈ H, k ∈ K. Given C*-algebras A and B, a C*-norm on A⊗B is a

norm λ satisfying λ(x∗x) = (x)2 for all x ∈ A⊗B. The completion of A⊗B with respect to
λ is a C*-algebra, and will be denoted by A⊗

λ
B. It is known that every C*-norm λ on A⊗B

is a cross norm, that is, λ(x ⊗ y) = ∥x∥∥y∥ for all x in A and y in B ([8], Corollary 11.3.10).
The norm on A⊗B is defined by

∥x∥min = Sup{∥(π1 ⊗ π2)(x)∥ : π1, π2 representations of A,B},
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for all x ∈ A⊗ B, is the smallest (minimum) C*-norm on A⊗B, and the norm on A⊗B is
defined by

∥x∥max = Sup{∥π(x)∥ : π a representations of A⊗B},

for all x ∈ A ⊗ B, is the largest (maximum) C*-norm on A ⊗ B (see [2], Definitions 4.4.5
and 4.4.8). It is convenient sometimes to write min and max instead of ∥.∥min and ∥.∥max.
These norms are indeed C*-norms, and satisfy min ≤ λ ≤ max for every C*-norm λ
on A ⊗ B ([2], p. 216), ([8], Theorems 11.3.1 and 11.3.4). The fundamental property
of the min C*-norm lies deeper, namely, given C*-algebras Ai and Bi, i = 1, 2, and a
*-homomorphism πi : Ai → Bi, then the natural map π1 ⊗ π2 : A1 ⊗ A2 → B1 ⊗ B2
defined by (π1 ⊗ π2)(x1 ⊗ x2) = π1(x1) ⊗ π2(x2), xi ∈ Ai, i = 1, 2, extends to a (C*-
algebra) homomorphism π : A1 ⊗

min
A2 → B1 ⊗

min
B2. Further, if πi is injective, then π is

injective. Hence, if Ai,⊆ B(Hi), then A1 ⊗
min

A2 ⊆ B(H1) ⊗
min

B(H2) ⊆ B(H1 ⊗ H2) ([2],

Theorem 4.4.9 (iii) and Proposition 4.4.22). If Ai (i = 1, 2, . . . , n) is a C*-algebra, then by
taking a faithful representation {πi, Hi} of Ai for each i = 1, 2, . . . , n, and identifying Ai
with πi(Ai) in B(Hi), the minimum C*-tensor product is seen to be associative, in the sense
that there is a *-isomorphim from A1 ⊗

min
. . . ⊗

min
An onto (A1 ⊗

min
. . . ⊗

min
Ak) ⊗

min
(Ak+1 ⊗

min
. . . ⊗

min
An) taking (x1 ⊗ . . . ⊗ xn) to (x1 ⊗ ... ⊗ xk)⊗ (xk+1 ⊗ . . . ⊗ xn). As a result of this

expressive property, given states ρ1, . . . , ρn of A1, . . . ,An, respectively, a unique state ρ on
A1 ⊗

min
. . . ⊗

min
An is described in terms of the given states.

Theorem 1 ([8], Proposition 11.3.8). Let Ai be a C*-algebra, and ρi is a state of Ai (i = 1, 2, . . . , n).
Then there is a unique state ρ of A1 ⊗

min
. . . ⊗

min
An such that ρ(x1 ⊗ ... ⊗ xn) = ρ1(x1) . . . ρn(xn),

xi ∈ Ai, i = 1, 2, . . . , n.
This state ρ is called a product state of A1 ⊗

min
. . . ⊗

min
An, and is denoted by ρ = ρ1 ⊗

min
. . . ⊗

min
ρn. If Ai is acting on a Hilbert space Hi, and ωξi is the vector state on Ai, arising from a unit vector
ξi ∈ Hi, then ω

ξ1⊗...⊗ξn
= ω

ξ1
⊗

min
. . . ⊗

min
ω

ξn
is the vector state on A1 ⊗

min
. . . ⊗

min
An arising from

the unit vector ξ1 ⊗ . . . ⊗ ξn ∈ H1 ⊗ . . . ⊗ Hn, that is, for each x1 ⊗ . . . ⊗ xn ∈ A1 ⊗
min

. . . ⊗
min

An

ω
ξ1⊗...⊗ξn

(x1 ⊗ . . . ⊗ xn) = < (x1 ⊗ . . . ⊗ xn)(ξ1 ⊗ . . . ⊗ ξn), ξ1 ⊗ . . . ⊗ ξn >

= < (x1(ξ1)⊗ . . . ⊗ xn(ξn)), ξ1 ⊗ . . . ⊗ ξn >

= < x1(ξ1), ξ1 > . . . < xn(ξn), ξn >

= ωξ1(x1) . . . ωξn(xn).

The importance of product states ρ1 ⊗
min

. . . ⊗
min

ρn of A1 ⊗
min

. . . ⊗
min

An, derived from states

ρ1, . . . , ρn on A1, . . . ,An, respectively, is highlighted in the following theorem. This theorem
establishes that the norm of an element x ∈ A1 ⊗

min
. . . ⊗

min
An can be expressed in terms of product

states of A1 ⊗
min

. . . ⊗
min

An. Using the associative property of the minimum C*-tensor product

A1 ⊗
min

. . . ⊗
min

An of the C*-algebras A1, . . . ,An, we can take n = 2.

Theorem 2 (see ([2], Theorem 4.4.9 (ii)), ([8], p. 847)). Let Ai be a C*-algebra, and ρi is a state
of Ai (i = 1, 2). Then the minimum norm of each x ∈ A1 ⊗

min
A2 is given by

∥x∥min = Sup


ρ1 ⊗

min
ρ2(y∗x∗xy)

ρ1 ⊗
min

ρ2(y∗y)
: y ∈ A1 ⊗

min
A2, ρi ∈ S(Ai), i = 1, 2

,

Let A and B be JC-algebras, and let φ : A → B be a linear map. Then φ is called a Jordan
homomorphism if it preserves the Jordan product, that is, φ(a ◦ b) = φ(a) ◦ φ(b) for all a, b ∈ A.
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It is called faithful, if it is injective. It is known that any Jordan homomorphism between JC-algebras
is continuous; further, if it is injective, then it is an isometry ([9], 3.4.2 and 3.4.3).

Let A be a JC-algebra, a C*-algebra A is called the universal enveloping C∗-algebra of A if there
is a faithful Jordan homomorphism ψ : A → Asa such that ψ(A) generates A as a C∗-algebra, and
if B is a C∗-algebra and π : A → Bsa is a Jordan homomorphism, then there is a *-homomorphism
∧
π : A → B such that π =

∧
πψ ([3], Proposition 4.36), ([9], Theorem 7.1.8). Such C*-algebra has

a unique *-antiautomorphism Φ of period two leaving all points of ψ(A) fixed ([3], Proposition
4.40). The universal enveloping C∗-algebra of A will be denoted by C∗(A), and A will be identified
with ψ(A), so that A is assumed to generate C∗(A) as a C*-algebra.

The reader is referred to [1–3,8,10] for the relevant material of C*-algebras, and to [4,5,11,12]
for the properties of tensor products of JC-algebras and their universal enveloping C*-algebras.

Definition 1. Let A and B be JC-algebras canonically embedded in the self-adjoint parts C∗(A)sa,
C∗(B)sa of their respective universal enveloping C*-algebras C∗(A), C∗(B), so that, A ⊗ B ⊂
C∗(A)sa ⊗ C∗(B)sa. Let J(A ⊗ B) be the Jordan algebra generated by A ⊗ B in C∗(A)sa ⊗
C∗(B)sa = (C∗(A)⊗C∗(B))sa (see [2], Lemma 4.4.4 (i)). If λ is any C*-norm on C∗(A)⊗C∗(B),
the completion JC(A ⊗

λ
B) of J(A ⊗ B) in C∗(A)⊗

λ
C∗(B) is called the JC-tensor product of A

and B with respect to λ.
Note that given JC-algebras A and B, and a C*-norm λ on C∗(A)⊗ C∗(B), it is not always

true that C∗(JC(A ⊗
λ

B)) = C∗(A)⊗
λ

C∗(B) ([12], Theorem 3.4). The necessary and sufficient

conditions for this equality to hold are described in ([12], Proposition 2.2).

Theorem 3 ([12], Proposition 2.2 and Corollary 2.3). Let A and B be JC-algebras, and let λ =
min or λ = max C*-cross-norm on C∗(A)⊗ C∗(B). Then C∗(JC(A ⊗

λ
B)) = C∗(A)⊗

λ
C∗(B).

To pass from finite to infinite tensor products of JC-algebras, we need the concept of a direct
limit of a directed system of JC-algebras.

Definition 2. (i). A directed system of JC-algebras {Ai, φji}i,j∈I is a family {Ai : i ∈ I} of
JC-algebras in which the index set I is directed by a binary relation ≤, together with a family
{φji : i, j ∈ I} of Jordan homomorphisms between the JC-algebras, with the property that whenever
i, j ∈ I, i ≤ j, there is a Jordan homomorphism φji from Ai into Aj, and if i, j, k ∈ I such that
i ≤ j ≤ k, then φkj ◦ φji = φki.

(ii). The direct limit of a directed system {Ai, φji}i,j∈I of JC- algebras, denoted by lim
→

Ai, is a

JC-algebra A with a family {αi : i ∈ I} of Jordan homomorphisms that satisfies the following properties:

1. ∪
i∈I

αi(Ai) is everywhere dense in A.

2. For each i ∈ I, there is a Jordan homomorphism αi : Ai → A such that αi = αj ◦ φji, whenever
i ≤ j.

3. If B is a JC-algebra, and {ψi}i∈I is a family of Jordan homomorphisms satisfying (1) and (2)
above, then there is a unique Jordan homorphism ϕ : A → B such that ψi = ϕ ◦ αi.

Theorem 4 ([5], Theorem 2.2 and Corollary 2.3). Direct limits exist in the category of JC-
algebras and Jordan homomorphisms for every directed system {Ai, φji}i,j∈I of JC- algebras, and
C∗(lim

→
Ai) = lim

→
C∗(Ai).

Recall that if Ai, i = 1, 2, 3, is a JC-algebra canonically embedded in its universal enveloping
C*-algebra C∗(Ai), then by the associativity of the tensor product, we have A1 ⊗ A2 ⊗ A3 ↪→
C∗(A1)⊗ C∗(A2)⊗ C∗(A3). Since

C∗(JC(JC(A1 ⊗
min

A2) ⊗
min

A3) = C∗(JC(A1 ⊗
min

A2)) ⊗
min

C∗(A3)

= C∗(A1) ⊗
min

C∗(A2) ⊗
min

C∗(A3),
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we have JC(JC(A1 ⊗
min

A2) ⊗
min

A3) as the JC-alebra JC(A1 ⊗
min

A2 ⊗
min

A3) generated by A1 ⊗
A2 ⊗ A3 in C∗(A1) ⊗

min
C∗(A2) ⊗

min
C∗(A3). Hence, if F is a finite set, and {Ai : i ∈ F} is a family

of JC-algebras, then JC( ⊗
min

Ai)i∈F is the JC-algebra generated by (⊗Ai)i∈F in ( ⊗
min

C∗(Ai))i∈F.

Definition 3 ([5]). Let {Ai : i ∈ I} be a family of JC-algebras (not necessarily unitals), and let F
be the family of all finite subsets F of I. Define ≤ on F by F ≤ G, if F ⊆ G, F, G ∈ F. For each
F ∈ F, let AF = JC( ⊗

min
Ai)i∈F be the JC-tensor product of {Ai}i∈F, and note that:

1. Whenever F ⊆ G, F, G ∈ F, there is a natural isomorphism σGF from JC(AF ⊗
min

AG∖F) onto

AG, by Theorem 1.4 and the associativity of the tensor product.
2. The map αGF : AF → AG defined by

αGF(x) = strong limit σGF(x ⊗ νβ),

is a Jordan homomorphism, by Theorem 3 and ([12], Proposition 1.2), where (νβ) is an
approximate identity of AG∖F.

3. If F, G, H ∈ F, and F ⊆ G ⊆ H, then αHF = αHG ◦ αGF.

Hence, the family {AF : F ∈ F} with the Jordan homomorphisms {αGF : F, G ∈ F}
constitutes a directed system of JC-algebras. The JC-direct limit, lim

→
AF, of the system exists (cf.

Theorem 4), and is a JC-algebra, called the tensor product of the infinite family of JC-algebras, and is
denoted by JC( ⊗

min
Ai)i∈I ([5], Definition 2.6).

The universal enveloping C*-algebra of the tensor product of an infinite family of
JC-algebras is characterized in the following:

Theorem 5 ([5], Theorem 2.7). Let {Ai : i ∈ I} be a family of JC-algebras. Then

C∗(JC( ⊗
min

Ai)i∈I) = ( ⊗
min

C∗(Ai))i∈I

3. The Main Results

Within this section, our aim is to extend the scope of Theorems 4 and 5 as outlined in [5]
(cf. Theorem 6) to encompass the realm of an infinite family of JC-algebras. Subsequently,
we delve into providing the Jordan counterpart to Propositions 11.4.6, 11.3.2, and 11.4.7
elucidated in [8]. This endeavor seeks to offer a comprehensive understanding of the appli-
cability and implications of these propositions within the context of JC-algebras, thereby
enriching the discourse and expanding the theoretical framework within this domain.

Theorem 6 ([4], Theorems 4 and 6). Let A and B be JC-algebras, and let ν, σ be states of A and B,
respectively. Then there is a state ρ of JC(A ⊗

min
B) such that ρ(x ⊗ y) = ν(x)σ(y), for all x ∈ A

and y ∈ B.

It should be noted that Theorem 6 can be applied to any finite family {Ak : k = 1, ..., n}
of JC-algebras. The state occuring in this theorem, denoted by ν ⊗

min
σ, is called a product

state of JC(A ⊗
min

B).

The characterization of the product state in the tensor product of an infinite family of
C*-algebras is presented below.

Theorem 7 ([8], Proposition 11.4.6). Let {Ai : i ∈ I} be a family of C*-algebras, ρi a state of Ai.
Then there is a state ρ of the tensor product ( ⊗

min
Ai)i∈I of the family {Ai : i ∈ I} such that

ρ(x1 ⊗ x2 ⊗ . . . ⊗ xn) = ρα1(x1)ρα2(x2) . . . ραn(xn),
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whenever α1, α2, . . . , αn are distict elements of I, and xi ∈ Ai, i = 1, 2, . . . , n.

The state ρ occurring in Theorem 7, denoted by ( ⊗
min

ρi)i∈I , is described as a product

state of ( ⊗
min

Ai)i∈I .

The Jordan analogue of Theorem 7 for JC-algebras is given in the following result:

Theorem 8. Let {Ai : i ∈ I} be a family of JC-algebras, and let ρi be a state of Ai, for each i ∈ I.
Then there is a state ρ of JC( ⊗

min
Ai)i∈I such that

ρ(a1 ⊗ a2 ⊗ . . . ⊗ an) = ρα1(a1)ρα2(a2)...ραn(an),

whenever α1, α2, . . . , αn are distinct elements of I, and ai ∈ Ai, i = 1, 2, . . . , n.

Proof. Let F be the family of all finite subsets F of I, and consider the directed system of
JC-algebras {AF : αGF}F,G∈F , where AF = JC( ⊗

min
Ai)i∈F is the JC-tensor product of {Ai}i∈F,

and αGF : AF → AG, F ⊆ G, is the Jordan homomorphism defined by αGF(x) = strong limit
σGF(x ⊗ νβ), x ∈ AF and (νβ) is an approximate identity of AG∖F. By ([9], Theorem 7.1.8)

and ([1], Theorem 4.3.13(i)), ρi extends to a state
∧
ρi of C∗(Ai). Hence, by Theorem 7, there

is a state
∧
ρ of the tensor product ( ⊗

min
C∗(Ai))i∈I of the family {C∗(Ai) : i ∈ I} such that for

each F ∈ F, F = {αi : i = 1, . . . , n}, and xi ∈ C∗(Ai), i = 1, 2, . . . , n, we have

∧
ρ(x1 ⊗ x2 ⊗ ... ⊗ xn) =

∧
ρα1

(x1)
∧
ρα2

(x2) . . .
∧
ραn

(xn).

Since JC( ⊗
min

Ai)i∈I ⊆ C∗(JC( ⊗
min

Ai)i∈I) = ( ⊗
min

C∗(Ai))i∈I (cf. Theorem 5), the restriction

ρ =
∧
ρ |JC( ⊗

min
Ai)i∈I

is a state of JC( ⊗
min

Ai)i∈I satisfying

∧
ρ(a1 ⊗ a2 ⊗ ... ⊗ an) =

∧
ρα1

(a1)
∧
ρα2

(a2) . . .
∧
ραn

(an)

= ρα1
(a1)ρα2

(a2) . . . ραn
(an),

for each F = {α1 , α2 , . . . , αn} in F, and ai ∈ Ai, i = 1, 2, . . . , n. That is, ρ |AF
is the product

state ρF = ( ⊗
min

ραi )i∈F on the JC-subalgebra AF = JC( ⊗
min

Ai)i∈F of JC( ⊗
min

Ai)i∈I . Note that

if G = {α1 , α2 , . . . , αm} ∈ F, G ⊇ F, and if ai ∈ Ai, i = 1, 2, . . . , m, then we have

ρG (a1 ⊗ a2 ⊗ . . . ⊗ am) = ρα1(a1)ρα2(a2) . . . ραn(an) . . . ραm (am)

= ρF (a1 ⊗ a2 ⊗ . . . ⊗ an)ραn+1(an+1) . . . ραm(am)

= ρF (a1 ⊗ a2 ⊗ . . . ⊗ an)ρG\F (an+1 ⊗ . . . ⊗ am)

= (ρF ⊗
min

ρG\F )(a1 ⊗ a2 ⊗ . . . ⊗ an ⊗ am).

That is, ρF = ρG |AF
. Consequently, the map ρ◦ : ∪AF → R, defined by

ρ◦(a1 ⊗ a2 ⊗ . . . ⊗ an) = ρF (a1 ⊗ a2 ⊗ . . . ⊗ an)

= ( ⊗
min

ραi )i∈F (a1 ⊗ a2 ⊗ . . . ⊗ an)

= ρα1
(a1)ρα2

(a2) . . . ραn
(an),

ai ∈ Ai, i = 1, 2, . . . , n, is a linear bounded functional. Since ∥ρF∥ = 1, for each F ∈ F,
we can easily see that ∥ρ◦∥ = 1. So, ρ◦ extends uniquely, by contiuity, to a state σ on
JC( ⊗

min
Ai)i∈I , since ∪AF is everywhere dense in JC( ⊗

min
Ai)i∈I , and hence, we have σ = ρ.
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The state ρ occurring in Theorem 8, denoted by ( ⊗
min

ρi)i∈I , is called a product state of

JC( ⊗
min

Ai)i∈I . From the above argument, we note that given a product state on JC( ⊗
min

Ai)i∈I ,

the component states ραi are uniquely determined, since ραi = ρ |A{αi}
=Ai .

Theorem 9 ([8], Propositions 11.3.2 and 11.4.7). (i) Let A and B be C*- algebras, and let ν and
σ be states of A and B, respectively. Then the product state ν ⊗

min
σ of A ⊗

min
B is tracial if and only

if ν and σ are tracial.
(ii) Let {Ai : i ∈ I} be a family of C*-algebras, ρi a state of Ai. Then the product state

( ⊗
min

ρi)i∈I of ( ⊗
min

Ai)i∈I is pure if and only if each ρi is pure.

The Jordan analogue of Theorem 9(i) for JC-algebras is given in the following result:

Theorem 10. Let ρ and ν be states on JC-algebras A and B, respectively. Then the product state
ρ ⊗

min
ν of JC(A ⊗

min
B) is tracial if and only if ρ and ν are tracial.

Proof. Suppose that ρ and ν are tracial states. By ([4], Theorems 4 and 6), σ = ρ ⊗
min

ν is a

state of JC(A ⊗
min

B), where σ(a⊗ b) = ρ(a)ν(b), for all a ∈ A, and b ∈ B. Now, for i = 1, 2, 3,

let xi ∈ A ⊗ B be a simple tensor, say xi = ai ⊗ bi , ai ∈ A, bi ∈ B. Since ρ and ν are tracial
states, we have ρ((a1 ◦ a2) ◦ a3) = ρ(a1 ◦ (a2 ◦ a3)), and ν((b1 ◦ b2) ◦ b3) = ν(b1 ◦ (b2 ◦ b3)).
Hence, by definition of the multiplication on A ⊗ B, we have

σ((x1 ◦ x2) ◦ x3) = σ((a1 ⊗ b1 ◦ a2 ⊗ b2) ◦ a3 ⊗ b3)

= σ((a1 ◦ a2 ⊗ b1 ◦ b2) ◦ a3 ⊗ b3)

= σ((a1 ◦ a2) ◦ a3 ⊗ (b1 ◦ b2) ◦ b3)

= (ρ ⊗
min

ν)((a1 ◦ a2) ◦ a3 ⊗ (b1 ◦ b2) ◦ b3))

= ρ((a1 ◦ a2) ◦ a3)ν((b1 ◦ b2) ◦ b3))

= ρ(a1 ◦ (a2 ◦ a3))ν(b1 ◦ (b2 ◦ b3))

= (ρ ⊗
min

ν)(a1 ◦ (a2 ◦ a3)⊗ b1 ◦ (b2 ◦ b3))

= σ(x1 ◦ (x2 ◦ x3)).

Now, let x, y, z ∈ A ⊗ B, such that x =
n
∑

i=1
ai ⊗ bi , y =

m
∑

j=1
a′

j
⊗ b′

j
, and z =

r
∑

k=1
a′′k ⊗ b′′k , where

ai , a′
j
, a′′k ∈ A and bi , b′

j
, b′′k ∈ B. Then it is easy to see that

(x ◦ y) ◦ z =
n

∑
i=1

m

∑
j=1

r

∑
k=1

(ai ◦ a′
j
) ◦ a′′k ⊗ (bi ◦ b′

j
) ◦ b′′k ,

and

x ◦ (y ◦ z) =
n

∑
i=1

m

∑
j=1

r

∑
k=1

ai ◦ (a′
j
◦ a′′k )⊗ bi ◦ (b

′
j
◦ b′′k ).

The linearity of ρ and ν implies that
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σ((x ◦ y) ◦ z) = σ(
n

∑
i=1

m

∑
j=1

r

∑
k=1

(ai ◦ a′
j
) ◦ a′′k ⊗ (bi ◦ b′

j
) ◦ b′′k

=
n

∑
i=1

m

∑
j=1

r

∑
k=1

σ((ai ◦ a′
j
) ◦ a′′k ⊗ (bi ◦ b′

j
) ◦ b′′k )

=
n

∑
i=1

m

∑
j=1

r

∑
k=1

(ρ ⊗
min

ν)((ai ◦ a′
j
) ◦ a′′k ⊗ (bi ◦ b′

j
) ◦ b′′k )

=
n

∑
i=1

m

∑
j=1

r

∑
k=1

ρ((ai ◦ a′
j
) ◦ a′′k )ν((bi ◦ b′

j
) ◦ b′′k )

=
n

∑
i=1

m

∑
j=1

r

∑
k=1

ρ(ai ◦ (a′
j
◦ a′′k ))ν(bi ◦ (b

′
j
◦ b′′k ))

=
n

∑
i=1

m

∑
j=1

r

∑
k=1

σ(ai ◦ (a′
j
◦ a′′k )⊗ bi ◦ (b

′
j
◦ b′′k ))

= σ(
n

∑
i=1

m

∑
j=1

r

∑
k=1

ai ◦ (a′
j
◦ a′′k )⊗ bi ◦ (b

′
j
◦ b′′k )

= σ(x ◦ (y ◦ z))

By the contiuity of σ = ρ ⊗
min

ν, we have σ((x ◦ y) ◦ z) = σ(x ◦ (y ◦ z)) for all x, y, z ∈
JC(A ⊗

min
B), and hence the product state ρ ⊗

min
ν is tracial.

Conversely, suppose that the product state ρ ⊗
min

ν is tracial, and let (uλ) and (wβ) be

increasing approximate identities of A and B, respectively ([9], Proposition 3.5.4). Then
(uλ ⊗ wβ) is an increasing approximate identity of JC(A ⊗

min
B), and (a ◦ uλ ⊗ b) → a ⊗ b,

and (a ⊗ b ◦ wβ) → a ⊗ b in norm, for all a ∈ A, b ∈ B ([12], Lemma 1.1). Let ai ∈ A, bi ∈
B, i = 1, 2, 3. Since ν is a state of B, lim ν(wβ) = ∥ν∥ = 1 (see ([9], Lemma 3.6.3)), and since
ρ ⊗

min
ν is a product state, we have

ρ((a1 ◦ a2) ◦ a3) = ρ((a1 ◦ a2) ◦ a3).1

= ρ((a1 ◦ a2) ◦ a3). lim ν(wβ)

= lim(ρ ⊗
min

ν)((a1 ◦ a2) ◦ a3)⊗ wβ)

= lim(ρ ⊗
min

ν)((a1 ⊗ wβ ◦ a2 ⊗ wβ) ◦ a3 ⊗ wβ)

= lim(ρ ⊗
min

ν)(a1 ⊗ wβ ◦ (a2 ⊗ wβ ◦ a3 ⊗ wβ))

= ρ(a1 ◦ (a2 ◦ a3). lim ν(wβ)

= ρ(a1 ◦ (a2 ◦ a3) .

Hence, ρ is a tracial state on A. A similar argument shows that ν is a tracial state on B. Note
that the above steps are straightforward if A and B are unital JC-algebras.

Theorem 11. Let {Ai : i ∈ I} be a family of JC-algebras, and let ρi be a state of Ai, for each i ∈ I.
Then the product state ρ = ( ⊗

min
ρi)i∈I of JC( ⊗

min
Ai)i∈I is tracial if and only if ρi is tracial for each

i ∈ I.

Proof. Consider the directed system of JC-algebras {AF : αGF}F,G∈F , where F is the family
of all finite subsets F of I, AF = JC( ⊗

min
Ai)i∈F is the JC-tensor product of {Ai}i∈F, and αGF

is a Jordan homomorphism of AF into AG, whenever F ⊆ G, F, G ∈ F (cf. begining of the
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proof of Theorem 8). Suppose that ρi is tracial for each i ∈ I. Then, by Theorem 10, the
product state ρF = ( ⊗

min
ρi)i∈F is a tracial state on AF, for each F ∈ F. Note that ρF = ρ |AF ,

where ρ = ( ⊗
min

ρi)i∈I is the product state of JC( ⊗
min

Ai)i∈I occurring in Theorem 8. If x, y, z ∈
∪

F∈F
AF, then x ∈ AF, y ∈ AG, z ∈ AH , for some F, G, H ∈ F, which implies that x, y, z ∈

F ∪ G ∪ H ∈ F. Since the product state ρF∪G∪H = ( ⊗
min

ρi)i∈F∪G∪H is tracial, by Theorem 10,

we have
ρF∪G∪H ((x ◦ y) ◦ z) = ρF∪G∪H (x ◦ (y ◦ z)).

This implies that ρ is tricial on ∪
F∈F

AF, and hence, by contiuity, ρ is tracial on the norm

closure ∪
F∈F

AF
n
= JC( ⊗

min
Ai)i∈I of ∪

F∈F
AF.

The converse is immidiate, since ρi = ρ{i} = ρ |A{i}=Ai , for each i ∈ I.
The Jordan analogue of Theorem 9(ii) is given in the the following theorem, but

first recall that if A is JB-algebra, and r : S(C∗(A)) → S(A) is the restriction map of
the state space S(C∗(A)) of C∗(A) onto the state space S(A) of A, then by the Krein–
Milman theorem, P(A) ⊆ r(P(C∗(A))), where P(A),P(C∗(A)) are the set of pure states

of A, C∗(A), respectively. The inverse image r−1(r(
∧
ρ)) of any

∧
ρ ∈ P(C∗(A)) equals the line

segment [
∧
ρ, Φ∗(

∧
ρ)], which degenerates to a single point if Φ∗(

∧
ρ) =

∧
ρ, where Φ∗ : C∗(A)∗ →

C∗(A)∗ is the adjoint map of the *-antiautomorphism Φ of C∗(A) ([10], Proposition 5.5).

Consequently, if ρ is a pure state of JC-algebra A, then there is a pure state
∧
ρ of C∗(A) such

that r(
∧
ρ) = ρ (see also ([8], Theorem 11.3.13), ([13], Proposition 5.3.3)).

Theorem 12. Let {Ai : i ∈ I} be a family of JC-algebras, and let ρi be a state of Ai, for each i ∈ I.
Then the product state ρ = ( ⊗

min
ρi)i∈I of JC( ⊗

min
Ai)i∈I is pure if and only if ρi is pure for each

i ∈ I.

Proof. We start (as in the begining of the proof of Theorem 8) by considering the di-
rected system of JC-algebras {AF : αGF}F,G∈F , where F is the family of all finite sub-
sets F of I, and AF = JC( ⊗

min
Ai)i∈F. Suppose that the product state ρ = ( ⊗

min
ρi)i∈I of

JC( ⊗
min

Ai)i∈I is pure. If ρi◦ is not pure for some i◦ ∈ I, then ρi◦ = tρ(i◦)
1 + (1 − t)ρ(i◦)

2 , for

some states ρ(i◦)
1 , ρ(i◦)

2 of Ai◦ , 0 < t < 1, which implies that ρ is not pure, since in this case
ρ = (tρ(i◦)

1 ⊗
min

ρi + (1 − t)ρ(i◦)
2 ⊗

min
ρi)i∈I,i ̸=i◦

. Hence, ρi is pure for each i ∈ I.

Conversely, suppose that ρi is a pure state of Ai, for each i ∈ I, and let
∧
ρi be a

pure state of C∗(Ai) such that r(
∧
ρi ) =

∧
ρi |Ai

= ρi . Then
∧
ρ = ( ⊗

min

∧
ρi )i∈I is a pure state of

( ⊗
min

C∗(Ai))i∈I , by Theorem 9(i). Since C∗(JC( ⊗
min

Ai )i∈I) = ( ⊗
min

C∗(Ai ))i∈I (cf. Theorem 5),

we have ρ = r(
∧
ρ) as a pure state of JC( ⊗

min
Ai )i∈I . Note that

∧
ρF = ( ⊗

min

∧
ραi

)i∈F =
∧
ρ |F is a

pure state of ( ⊗
min

C∗(Ai))i∈F, for each F = {α1 , α2 , . . . , αn} ∈ F, by ([8], Proposition 11.3.2),

where
∧
ρF (xα1

⊗ xα2
⊗ . . . ⊗ xαn

) =
∧
ρα1

(xα1
)
∧
ρα2

(xα2
) . . .

∧
ραn (xαn ),

and xαi
∈ C∗(Aαi

), i = 1, 2, . . . , n. Since C∗(JC( ⊗
min

Aαi
)i∈F) = ( ⊗

min
C∗(Aαi

))i∈F, we have

ρF = r(
∧
ρF ) as a pure state of JC( ⊗

min
Aαi

)i∈F, which satisfies

ρF (aα1
⊗ aα2

⊗ ... ⊗ aαn
) =

∧
ρα1

(aα1
)
∧
ρα2

(aα2
) . . .

∧
ραn (aαn )

= ρα1
(aα1

)ρα2
(aα2

) . . . ραn (a
αn
).
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That is, for each F = {α1 , α2 , . . . , αn} ∈ F, the pure state ρF is the product state ( ⊗
min

ραi
)i∈F

of the pure states ρα1
, ρα2

, . . . , ραn of Aα1
, Aα2

, . . . , A
αn

. It follows that

ρ = r(
∧
ρ) = r(( ⊗

min

∧
ρ

i
)i∈I ) = (⊗r(

min

∧
ρ

i
))i∈I = ( ⊗

min
ρi )i∈I ,

and the proof is complete.

4. Conclusions

It is evident that product states in the infinite tensor product of JC-algebras are deeply
related to representation theory and operator algebras, as each JC-algebra resides within the
self-adjoint part of a C*-algebra. Consequently, studying and understanding the structure
of product states in the infinite tensor product of JC-algebras can provide insights into the
algebraic properties of operators acting on infinite tensor product spaces. Currently, in
practice, the investigation of product states within the infinite tensor product of C*-algebras
is recognized as significant across diverse domains of mathematics and theoretical physics.
In addition to representation theory and operator algebras, it serves as a valuable tool
for establishing a mathematical framework to comprehend the entanglement structure,
thermodynamic behavior, and algebraic properties of quantum systems with infinitely
many degrees of freedom. Since each JC-algebra generates a C*-algebra and JC-algebras
exhibit a distinct and robust relationship with the C*-algebras they generate in many
aspects, we anticipate that this study will have significant applications in mathematics and
theoretical physics.
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