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1. Introduction

In the theory of submanifolds, one fundamental problem is to find relationships
involving intrinsic invariants and extrinsic invariants of a Riemannian submanifold. B.-Y.
Chen ([1,2]) introduced the Chen invariants, which are consistently important in differential
geometry, a particularly intriguing research area within the study of submanifolds. He
established optimal inequalities, which are known as Chen inequalities, for submanifolds
of a Riemannian space form, involving basic intrinsic invariants, as the sectional curvature,
scalar curvature, Ricci curvature, and the main extrinsic invariant, the mean curvature.

Subsequently, various authors have investigated Chen’s theory in different ambient
spaces, focusing on specific types of submanifolds. For further information, see [3–6].

The notion of semi-symmetric linear connections and metric connections on differen-
tiable manifolds was first considered by Friedmann and Schouten [7] and H. A. Hayden [8],
respectively. K. Yano further studied the properties of Riemannian manifolds admitting a
semi-symmetric metric connection [9]. The concept of a semi-symmetric non-metric con-
nection on a Riemannian manifold is due to Agashe [10]. Agashe and Chafle [11] studied
submanifolds in a Riemannian manifold with a semi-symmetric non-metric connection.

In particular, the Chen δ-invariants for submanifolds of an ambient space admitting a
semi-symmetric metric connection or a semi-symmetric non-metric connection have been
discussed in [12–18].
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2. Preliminaries

Let (M, g) be an m-dimensional Riemannian manifold and ∇ a linear connection on
M. The torsion T of ∇ is defined by

T(X, Y) = ∇XY −∇YX − [X, Y], (1)

for all vector fields X, Y in TM.
If the torsion tensor T̃ satisfies

T(X, Y) = ω(Y)X − ω(X)Y, (2)

for a 1-form ω associated with a vector field P on M, i.e., ω(X) = g(X, P), then ∇ is called
a semi-symmetric connection.

The semi-symmetric connection ∇ is said to be a semi-symmetric metric connection if
the Riemannian metric g is parallel with respect to ∇, i.e., ∇g = 0. Otherwise, i.e., ∇g ̸= 0,
∇ is said to be a semi-symmetric non-metric connection.

It is known (see [10]) that a semi-symmetric non-metric connection ∇ on M is related
to the Levi-Civita connection ∇0

of the Riemannian metric g by

∇XY = ∇0
XY + ω(Y)X,

for all vector fields X, Y on M.
We denote by R and R0 the curvature tensors of the Riemannian manifold M corre-

sponding to ∇ and ∇0
, respectively. We know from [10] that R is given by

R(X, Y, Z, W) = R0
(X, Y, Z, W) + s(X, Z)g(Y, W)− s(Y, Z)g(X, W), (3)

for all vector fields X, Y, Z, W on M, where s is the (0, 2)-tensor given by

s(X, Y) = (∇0
Xω)Y − ω(X)ω(Y).

Let M be an n-dimensional submanifold of (M, g).
The Gauss formula with respect to the semi-symmetric connection ∇ and the Gauss

formula with respect to the Levi-Civita connection ∇0
, respectively, are written as

∇XY = ∇XY + h(X, Y), ∇0
XY = ∇0

XY + h0(X, Y),

for all vector fields X, Y on the submanifold M.
In the above equations, h0 is the second fundamental form of M and h is a (0, 2)-tensor

on M. In [11], it is proven that h0 = h.
An odd-dimensional Riemannian manifold (M, g) is called an almost-contact metric

manifold if there exist a (1, 1)-tensor field ϕ, a unit vector field ξ and a 1-form η on
M satisfying

ϕ2(X) = −X + η(X)ξ, η(ξ) = 1, g(ϕX, ϕY) = g(X, Y)− η(X)η(Y),

for all vector fields X, Y on M.
In addition, one has

ϕξ = 0, η(ϕX) = 0, η(X) = g(X, ξ).

An almost-contact metric manifold is called a trans-Sasakian manifold if there are two
real differentiable functions α and β such that
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(∇0
Xϕ)Y = α[g(X, Y)ξ − η(Y)X] + β[g(ϕX, Y)ξ − η(Y)ϕX];

it implies
∇0

Xξ = −αϕX + β[X − η(X)ξ]. (4)

A trans-Sasakian manifold becomes a Sasakian manifold when α = 1 and β = 0,
a Kenmotsu manifold when α = 0 and β = 1, and a cosymplectic manifold if α = β = 0,
respectively.

See also the papers [19,20].
The notion of a generalized Sasakian space form was introduced by P. Alegre, D.E.

Blair and A. Carriazo [21]. It is an almost-contact metric manifold (M, ϕ, ξ, η, g) with the
curvature tensor expressed by

R0
(X, Y)Z = f1[g(Y, Z)X − g(X, Z)Y]

+ f2[g(X, ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X, ϕY)ϕZ]

+ f3[η(X)η(Z)Y − η(Y)η(Z)X + g(X, Z)η(Y)ξ − g(Y, Z)η(X)ξ], (5)

for all vector fields X, Y, Z, with f1, f2, f3 real smooth functions on M. It is denoted by
M( f1, f2, f3). As particular cases, we mention the following:

(i) A Sasakian space form, if f1 = c+3
4 and f2 = f3 = c−1

4 ;
(ii) A Kenmotsu space form, if f1 = c−3

4 and f2 = f3 = c+1
4 ;

(iii) A cosymplectic space form, if f1 = f2 = f3 = c
4 .

Let M( f1, f2, f3) be a (2m + 1)-dimensional generalized Sasakian space form endowed
with a semi-symmetric non-metric connection ∇. From (3) and (5), it follows that the
curvature tensor R of the semi-symmetric non-metric connection ∇ has the expression

R(X, Y)Z = f1[g(Y, Z)X − g(X, Z)Y]

+ f2[g(X, ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X, ϕY)ϕZ]

+ f3[η(X)η(Z)Y − η(Y)η(Z)X + g(X, Z)η(Y)ξ − g(Y, Z)η(X)ξ]

+ s(X, Z)g(Y, W)− s(Y, Z)g(X, W). (6)

The vector field P on M can be written as P = P⊤ + P⊥, where P⊤ and P⊥ are its
tangential and normal components, respectively.

The Gauss equation for the semi-symmetric non-metric connection is (see [11])

R(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, Z), h(Y, W))− g(h(X, W), h(Y, Z))

+ g(P⊥, h(Y, Z))g(X, W)− g(P⊥, h(X, Z))g(Y, W), (7)

for all vector fields X, Y, Z and W on M, where R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z
is the curvature tensor of ∇ and R(X, Y, Z, W) = g(R(X, Y)Z, W).

Because the connection ∇ is not metric, R(X, Y, Z, W) ̸= R(X, Y, W, Z); then, we
cannot define a sectional curvature on M by the standard definition. We will consider
a sectional curvature for a semi-symmetric non-metric connection (for the motivation,
see [22]) as follows.

If p is a point in M and π ⊂ Tp M a 2-plane section at p spanned by the orthonormal
vectors e1, e2, the sectional curvature K(π) corresponding to the induced connection ∇ can
be defined by

K(π) =
1
2
[R(e1, e2, e2, e1)− R(e1, e2, e1, e2)]. (8)

One can see that this definition does not depend on the orthonormal basis.
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The scalar curvature τ of M is defined by

τ(p) = ∑
1≤i<j≤n

Kij, (9)

where Kij denotes the sectional curvature of the 2-plane section spanned by ei and ej.

Let M be an (n + 1)-dimensional submanifold tangent to ξ and {e1, e2, . . . , en, en+1 = ξ},
an orthonormal basis of the tangent space Tp M at p ∈ M; then, from (9), the scalar curvature
τ of M at p takes the following form:

2τ = ∑
1≤i ̸=j≤n

K(ei ∧ ej) + 2
n

∑
i=1

K(ei ∧ ξ). (10)

Denote by (inf K)(p) = inf{K(π); π ⊂ Tp M, dimπ = 2}.
B.-Y. Chen defined the invariant δM by

δM(p) = τ(p)− inf K(p). (11)

Let L be a k-plane section of Tp M and X ∈ L a unit vector. For an orthonormal basis
{e1 = X, e2, ..., ek} of L, the Ricci curvature RicL of L at X is defined by

RicL(X) = K12 + K13 + . . . + K1k. (12)

It is called the k-Ricci curvature.
Recall that the mean curvature vector H(p) at p ∈ M is defined by

H(p) =
1

n + 1

n+1

∑
i=1

h(ei, ei). (13)

Denoting by hr
ij = g(h(ei, ej), er), i, j = 1, . . . , n + 1, r ∈ {n + 2, . . . , 2m + 1}, the

squared norm of the second fundamental form h is

∥h∥2 =
2m+1

∑
r=n+2

n+1

∑
i,j=1

(hr
ij)

2.

Obviously, from the definition of the vector field P, one has

ω(H) =
1

n + 1

n+1

∑
i=1

g(P, h(ei, ei)) = g(P⊥, H). (14)

For any X ∈ TM, we can write ϕX = PX + FX, where PX and FX are the tangential
and the normal parts of ϕX, respectively. Let

∥P∥2 =
n

∑
i,j=1

g2(Pei, ej).

Lemma 1. Let M be an (n + 1)-dimensional submanifold tangent to ξ of a (2m + 1)-dimensional
trans-Sasakian manifold M. Then, one has the following:
(i) h(ξ, ξ) = 0;
(ii) h(X, ξ) = −αFX, for any vector field X tangent to M orthogonal to ξ.

Proof. Let p ∈ M and X ∈ Tp M; then, we have

∇0
Xξ = −αϕX + β(X − η(X)ξ).
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By the Gauss formula, we get

h(X, ξ) = −αFX.

Taking X = ξ, we obtain (i), and taking X orthogonal to ξ we obtain (ii).

Lemma 2 ([12]). Let f (x1, x2, . . . , xn), n ≥ 3 be a real function on Rn defined by

f (x1, x2, . . . , xn) = (x1 + x2)
n

∑
i=3

+ ∑
3≤i<j≤n

xixj.

If x1 + x2 + . . . + xn = (n − 1)a, then

f (x1, x2, . . . , xn) ≤
(n − 1)(n − 2)

2
a2.

The equality holds if and only if x1 + x2 = x3 = . . . = xn = a.

Lemma 3 ([12]). Let f (x1, x2, . . . , xn), n ≥ 3 be a real function on Rn defined by

f (x1, x2, . . . , xn) = x1

n

∑
i=2

xi +
n

∑
i=2

xi.

If x1 + x2 + . . . + xn = 2a, then we have

f (x1, x2, . . . , xn) ≤ a2.

The equality holds if and only if x1 = x2 + x3 + . . . + xn = a.

3. Chen First Inequality

Referring to the work of C. Özgür and A. Mihai [17], they used modifications of the
Gauss equation for a semi-symmetric non-metric connection. They subsequently intro-
duced a different concept of sectional curvature by utilizing the modified Gauss equation
through the formula Ω(X) = s(X, X) + g(P⊥, h(X, X)). Here, we consider another sec-
tional curvature which was defined above.

In the present section, we obtain Chen’s first inequality for submanifolds of trans-Sasakian
generalized Sasakian space forms admitting a semi-symmetric non-metric connection.

Theorem 1. Let M be an (n + 1)-dimensional (n ≥ 2) submanifold tangent to ξ of a (α, β) trans-
Sasakian generalized Sasakian space form M( f1, f2, f3) admitting a semi-symmetric non-metric
connection, p ∈ M and π ⊂ Tp M a 2-plane section orthogonal to ξ. Then, one has

τ(p)− K(π) ≤ (n − 2)(n + 1)
2

f1 +
3
2

f2{∥P∥2 − ψ2(π)} − n f3

− α2∥F∥2 − n
2

trace s − n(n + 1)
2

ω(H)

+
1
2

trace(s|π) +
1
2

g(trace(h|π), P)

+
n2(n − 2)
2(n − 1)

∥H∥2. (15)

Proof. Let M( f1, f2, f3) be a (2m + 1)-dimensional (α, β) trans-Sasakian generalized
Sasakian space form, ∇ a semi-symmetric non-metric connection on M( f1, f2, f3) and M
an (n + 1)-dimensional submanifold tangent to ξ.
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Let p ∈ M, π ⊂ Tp M be a 2-plane section orthogonal to ξ and {e1, . . . , en, en+1 = ξ}
be an orthonormal basis of the tangent space Tp M and {en+2, . . . , e2m+1} an orthonormal
basis of the normal space T⊥

p M, with Fej = ∥Fej∥en+j+1, ∀j = 1, . . . , n.
We will use formula (10).
If we take X = W = ei, Y = Z = ej, i, j = 1, . . . , n, in the Gauss equation, the scalar

curvature τ is expressed by

2τ(p) = ∑
1≤i ̸=j≤n

R(ei, ej, ej, ei) + 2
2m+1

∑
r=n+2

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]

− ∑
1≤i ̸=j≤n

g(P⊥, h(ej, ej)) + 2
n

∑
j=1

K(ξ ∧ ej). (16)

We calculate R(ei, ej, ej, ei) using formula (6) and put X = W = ei, Y = Z = ej,
for i, j = 1, . . . n, i ̸= j. We have

R(ei, ej, ej, ei) = f1 + 3 f2g2(ϕei, ej)− s(ej, ej). (17)

Introducing Equation (17) into (16), one has

2τ(p) = n(n − 1) f1 + 3 f2 ∑
i ̸=j

g2(ϕei, ej)− (n − 1)λ

+ 2
n

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]− (n + 1)(n − 1)ω(H) + 2

n

∑
j=1

K(ξ ∧ ej), (18)

where we denoted λ = ∑n
j=1 s(ej, ej).

From our definition of the sectional curvature, we obtain

K(ξ ∧ ej) =
1
2
[R(ξ, ej, ej, ξ)− R(ξ, ej, ξ, ej)]. (19)

Take X = W = ξ, Y = Z = ej, for j = 1, . . . , n, in the Gauss equation. We find

R(ξ, ej, ej, ξ) = R(ξ, ej, ej, ξ) + g(h(ξ, ξ), h(ej, ej))− g(h(ξ, ej), h(ξ, ej))

− g(P⊥, h(ej, ej))g(ξ, ξ). (20)

We can rewrite the last equation as

R(ξ, ej, ej, ξ) = R(ξ, ej, ej, ξ) +
2m+1

∑
r=n+2

[hr
jjh

r
ξξ − (hr

jξ)
2]− g(P⊥, h(ej, ej)). (21)

By formula (6) we have

R(ξ, ej, ej, ξ) = f1 − f3 − s(ej, ej), ∀j = 1, . . . , n. (22)

Introducing (22) into (21), one has

R(ξ, ej, ej, ξ) = f1 − f3 − s(ej, ej) +
2m+1

∑
r=n+2

[hr
jjh

r
ξξ − (hr

jξ)
2]− g(P⊥, h(ej, ej)). (23)

By using Lemma 1, we obtain

n

∑
j=1

2m+1

∑
r=n+2

(hr
jξ)

2 =
n

∑
j=1

2m+1

∑
r=n+2

g2(h(ej, ξ), er) = α2
n

∑
j=1

2m+1

∑
r=n+2

g2(Fej, er)
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= α2
n

∑
j=1

∥Fej∥2 = α2∥F∥2.

Then, Equation (23) can be rewritten as

R(ξ, ej, ej, ξ) = f1 − f3 − s(ej, ej)− α2∥F∥2 − g(P⊥, h(ej, ej)). (24)

Similarly, from the Gauss equation, if we put X = Z = ξ, Y = W = ej, for j = 1, . . . n,
we have

R(ξ, ej, ξ, ej) = − f1 + f3 + s(ξ, ξ) + α2∥Fej∥2. (25)

By substituting (24) and (25) in (20), and taking summation, we find

∑
j=1

K(ξ ∧ ej) =
1
2
[2n f1 − 2n f3 − 2α2∥F∥2 − λ − ns(ξ, ξ)− (n + 1)ω(H)]. (26)

If we put (26) in (18), we obtain

2τ(p) = n(n + 1) f1 + 3 f2∥P∥2 − 2n f3

− 2α2∥F∥2 − nλ − ns(ξ, ξ)− n(n + 1)ω(H)

+ 2
2m+1

∑
r=n+2

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]. (27)

Let π = span{e1, e2}. In the Gauss equation, we put X = W = e1, Y = Z = e2. Then,

R(e1, e2, e2, e1) = f1 + 3 f2g2(ϕe1, e2)− s(e2, e2)

+
2m+1

∑
r=n+1

[hr
11hr

22 − (hr
12)

2]− g(P⊥, h(e2, e2)). (28)

Similarly, if we put X = Z = e1, Y = W = e2, in the Gauss equation,

R(e1, e2, e1, e1) = − f1 − 3 f2g2(ϕe1, e2) + s(e1, e1)

−
2m+1

∑
r=n+2

[hr
11hr

22 − (hr
12)

2] + g(P⊥, h(e1, e1)). (29)

So from (8), (28) and (29), we have

K(π) = f1 + 3 f2g2(ϕe1, e2)

− 1
2
trace(s|π)−

1
2

g(trace(h|π), P)]

+
2m+1

∑
r=n+2

[hr
11hr

22 − (hr
12)

2]. (30)

We denote ψ2(π) = g2(ϕe1, e2); then
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τ(p)− K(π) =
(n − 2)(n + 1)

2
f1 +

3
2

f2{∥P∥2 − ψ2(π)} − n f3

− α2∥F∥2 − n
2

λ − n
2

s(ξ, ξ)− n(n + 1)
2

ω(H)

+
1
2
trace(s|π) +

1
2

g(trace(h|π), P)]

+
2m+1

∑
r=n+2

{(hr
11 + hr

22) ∑
3≤i≤n

hr
ii + ∑

3≤i<j≤n
hr

iih
r
jj

− ∑
3≤j≤n

(hr
1j)

2 − ∑
2≤i<j≤n

(hr
ij)

2}, (31)

which implies

τ(p)− K(π) ≤ (n − 2)(n + 1)
2

f1 +
3
2

f2{∥P∥2 − ψ2(π)} − n f3

− α2∥F∥2 − n
2

λ − n
2

s(ξ, ξ)− n(n + 1)
2

ω(H)

+
1
2
trace(s|π) +

1
2

g(trace(h|π), P)]

+
2m+1

∑
r=n+2

{(hr
11 + hr

22) ∑
3≤i≤n

hr
ii + ∑

3≤i<j≤n
hr

iih
r
jj. (32)

We define the real functions fr : Rn → R by

fr(hr
11, hr

22, . . . , hr
nn) = (hr

11 + hr
22) ∑

3≤i≤n
hr

ii + ∑
3≤i<j≤n

hr
iih

r
jj

We study the problem max fr, under the condition hr
11 + hr

22 + . . . + hr
nn = br, where

br is a real number.
Lemma 2 implies that the solution (hr

11, hr
22, . . . , hr

nn) must satisfy

hr
11 + hr

22 = hr
ii =

br

(n − 1)
, i = 3, . . . n,

which gives

fr ≤
(n − 2)

2(n − 1)
(br)2. (33)

By using (32) and (33), it follows that

τ(p)− K(π) ≤ (n − 2)(n + 1)
2

f1 +
3
2

f2{∥P∥2 − ψ2(π)} − n f3

− α2∥F∥2 − n
2
trace s − n(n + 1)

2
ω(H) +

1
2
trace(s|π) +

1
2

g(trace(h|π), P)

+
n2(n − 2)
2(n − 1)

∥H∥2. (34)

Then the proof is achieved.
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4. Chen–Ricci Inequality

In [2], B.-Y. Chen established a sharp estimate of the mean curvature in terms of the
Ricci curvature for all n-dimensional Riemannian submanifolds in a Riemannian space
form M(c) of constant sectional curvature c.

Ric (X) ≤ (n − 1)c +
n2

4
∥H∥2,

It is known as the Chen–Ricci inequality.
One of the present authors [23] derived a Chen–Ricci inequality specifically for sub-

manifolds in Sasakian space forms.
In this section, we obtain a Chen–Ricci inequality for submanifolds tangent to ξ in a

trans-Sasakian manifold endowed with a semi-symmetric non-metric connection.

Theorem 2. Let M( f1, f2, f3) be a (2m + 1)-dimensional (α, β) trans-Sasakian generalized
Sasakian space form, ∇ a semi-symmetric non-metric connection on it and M an (n+ 1)-dimensional
(n ≥ 2) submanifold tangent to ξ. Then, we have the following:

(1) For any unit vector X ∈ Tp M orthogonal to ξ,

Ric(X) ≤ n2

4
∥H∥2 + n f1 + 3 f2∥Pe1∥2 − f3 − α2∥F∥2

− 1
2
[trace s + (n − 1)s(X, X)]

− 1
2
[(n + 1)ω(H) + (n − 1)g(P⊥, h(X, X))]. (35)

(2) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case of (35) if and only if
X ∈ Np, where Np = {X ∈ Tp M|h(X, Y) = 0, ∀Y ∈ {ξ}⊥}.

(3) The equality case of (35) holds identically for all unit tangent vectors orthogonal to ξ at p if
and only if either

(i) hp vanishes on {ξ}⊥ × {ξ}⊥ or
(ii) n = 2 and h(X, Y) = g(X, Y)H, for any X, Y ∈ Tp M orthogonal to ξ.

Proof.

(1) Let p ∈ M, X ∈ Tp M a unit tangent vector orthogonal to ξ. Consider an orthonormal
basis {e1, . . . , en, en+1 = ξ, en+2, . . . , e2m+1} in Tp M( f1, f2, f3), with e1 = X, e2, . . . , en
tangent to M at p.

Ric(X) =
n

∑
j=2

K(e1 ∧ ej) + K(e1 ∧ ξ). (36)

If we take X = W = e1 and Y = Z = ej in the Gauss equation, we have

R(e1, ej, ej, e1) = f1 + 3 f2g2(ϕe1, ej)− s(ej, ej)

+
2m+1

∑
r=n+2

[hr
11hr

jj − (hr
1j)

2]− g(P⊥, h(ej, ej)), (37)

respectively. From the Gauss equation, if we put X = Z = e1, Y = W = ej, we have

R(e1, ej, e1, ej) = − f1 − 3 f2g2(ϕe1, ej) + s(e1, e1)

−
n

∑
r=1

[hr
11hr

jj − (hr
1j)

2] + g(P⊥, h(e1, e1)). (38)
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Similarly to Equation (8), we have

K(e1 ∧ ej) =
1
2
[R(e1, ej, ej, e1)− R(e1, ej, e1, ej)]. (39)

From Equations (37)–(39), we have

K(e1 ∧ ej) = f1 + 3 f2g2(ϕe1, ej)−
1
2
[s(ej, ej) + s(e1, e1)]

+
2m+1

∑
r=n+2

[hr
11hr

jj − (hr
1j)

2]

− 1
2
[g(P⊥, h(ej, ej)) + g(P⊥, h(e1, e1))]. (40)

On the other hand, one has

K(e1 ∧ ξ) =
1
2
[R(ξ, e1, e1, ξ)− R(ξ, e1, ξ, e1)]

= f1 − f3 − α2∥Fe1∥2

− 1
2
[s(e1, e1) + g(P⊥, h(e1, e1)) + s(ξ, ξ)]. (41)

By substituting Equations (40) and (41) in (36), we find

Ric(X) = n f1 + 3 f2

n

∑
j=2

g2(ϕe1, ej)− f3

− 1
2
[trace s + (n − 1)s(X, X)]

− 1
2
[(n + 1)ω(H) + (n − 1)g(P⊥, h(X, X))]

+
n

∑
j=2

2m+1

∑
r=n+2

[hr
11hr

jj − (hr
1j)

2]− α2∥F∥2. (42)

Obviously, one has

hr
11

(
n

∑
i=2

hr
ii

)
≤ 1

4
(hr

11 + hr
22 + ... + hr

nn)
2, (43)

and equality holds if and only if

hr
11 =

n

∑
i=2

hr
ii. (44)

From Equations (42) and (43), we have

Ric(X) ≤ n2

4
∥H∥2 + n f1 + 3 f2∥Pe1∥2 − f3 − α2∥F∥2

− 1
2
[trace s + (n − 1)s(X, X)]

− 1
2
[(n + 1)ω(H) + (n − 1)g(P⊥, h(X, X))]. (45)

(2) If a unit vector X at p satisfies the equality case of (35), from (42), (43) and (44),
one obtains {

hr
1i = 0, 2 ≤ i ≤ n, ∀r ∈ {n + 2, . . . , 2m + 1},

hr
11 = hr

22 + . . . + hr
nn, ∀r ∈ {n + 2, . . . , 2m + 1}.
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Therefore, because H(p) = 0, we have hr
1j = 0 for all j = 1, . . . , n, r ∈ {n + 2,

. . . , 2m + 1}; that is, X ∈ Np.

(3) The equality case of inequality (35) holds for all unit tangent vectors at p if and only if{
hr

ij = 0, 1 ≤ i ̸= j ≤ n, r ∈ {n + 2, . . . , 2m + 1},
hr

11 + . . . + hr
nn − 2hr

ii = 0, i ∈ {1, . . . , n}, r ∈ {n + 2, . . . , 2m + 1}.

There are two cases:

(i) n ̸= 2, hr
ij = 0. It follows that hp vanishes on {ξ}⊥ × {ξ}⊥.

(ii) n = 2; then, h(X, Y) = h(X, Y)H, for any X, Y ∈ {ξ}⊥.

We recall standard definitions of certain classes of submanifolds in trans-Sasakian
manifolds.

Let M be a trans-Sasakian manifold and M a submanifold of M tangent to the Reeb
vector field ξ.

According to the behaviour of the tangent spaces of M under the action of ϕ, we
distinguish the following classes of submanifolds.

The submanifold M of M is an invariant submanifold if all its tangent spaces are
invariant by ϕ, i.e., ϕ(Tp M) ⊂ Tp M, ∀p ∈ M.

The submanifold M of M is an anti-invariant submanifold if ϕ maps any tangent space
into the normal space, i.e., ϕ(Tp M) ⊂ T⊥

p M, ∀p ∈ M.
The submanifold M is a slant submanifold if for any p ∈ M and any X ∈ Tp M, linearly

independent on ξ, the angle θ between ϕX and Tp M is constant. The angle θ ∈ [0, π
2 ] is

called the slant angle of M in M.
We state the corresponding Chen–Ricci inequalities for the above submanifolds.

Corollary 1. Let M( f1, f2, f3) be a (2m + 1)-dimensional (α, β) trans-Sasakian generalized
Sasakian space form, ∇ a semi-symmetric non-metric connection on it and M an (n+ 1)-dimensional
(n ≥ 2) invariant submanifold.

Then, for each unit vector X ∈ Tp M orthogonal to ξ, we have

Ric(X) ≤ n2

4
∥H∥2 + n f1 + 3 f2 − f3

− 1
2
[trace s + (n − 1)s(X, X)]

− 1
2
[(n + 1)ω(H) + (n − 1)g(P⊥, h(X, X))]. (46)

Corollary 2. Let M( f1, f2, f3) be a (2m + 1)-dimensional (α, β) trans-Sasakian generalized
Sasakian space form, ∇ a semi-symmetric non-metric connection on it and M an (n+ 1)-dimensional
(n ≥ 2) anti-invariant submanifold.

Then, for each unit vector X ∈ Tp M orthogonal to ξ, we have

Ric(X) ≤ n2

4
∥H∥2 + n f1 − f3 − nα2

− 1
2
[trace s + (n − 1)s(X, X)]

− 1
2
(n + 1)ω(H) + (n − 1)g(P⊥, h(X, X))]. (47)

Corollary 3. Let M( f1, f2, f3) be a (2m + 1)-dimensional (α, β) trans-Sasakian generalized
Sasakian space form, ∇ a semi-symmetric non-metric connection on it and M an (n+ 1)-dimensional
(n ≥ 2) slant submanifold.
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Then, for each unit vector X ∈ Tp M orthogonal to ξ, we have

Ric(X) ≤ n2

4
∥H∥2 + n f1 + 3 f2 cos2 θ − f3 − nα2 sin2 θ

− 1
2
[trace s + (n − 1)s(X, X)]

− 1
2
[(n + 1)ω(H) + (n − 1)g(P⊥, h(X, X))]. (48)

5. Generalized Euler Inequality for Special Contact Slant Submanifolds

B.Y. Chen [24] proved a generalized Euler inequality for n-dimensional submanifolds
in a Riemannian space form of constant sectional curvature c:

∥H∥2 ≥ 2τ

n(n − 1)
− c,

with equality holding identically if and only if the submanifold is totally umbilical.
In this section, we prove a generalized Euler inequality for certain submanifolds in a

trans-Sasakian manifold endowed with a semi-symmetric non-metric connection.
In [18], we extended the definition of a special slant submanifold in a Sasakian mani-

fold to trans-Sasakian manifolds.
Let M be a proper slant submanifold (θ ̸= 0, π

2 ) of a trans-Sasakian manifold M. We
call M a special contact slant submanifold if

(∇0
XP)Y = cos2 θ[α(g(X, Y)ξ − η(Y)X) + β(g(ϕX, Y)ξ − η(Y)ϕX0]. ∀X, Y ∈ Γ(TM).

Then, the components of the second fundamental form are symmetric, i.e.,

hk
ij = hi

jk = hj
ik, ∀i, j, k = 1, . . . , n.

For special contact slant submanifolds, we prove a generalized Euler inequality.

Theorem 3. Let M( f1, f2, f3) be a (2n+1)-dimensional (α, β) trans-Sasakian generalized Sasakian
space form, ∇ a semi-symmetric non-metric connection on it and M an (n+ 1)-dimensional (n ≥ 2)
special contact slant submanifold. Then,

∥H∥2 ≥ 2(n + 2)
(n − 1)(n + 1)2 τ − n(n + 2)

n2 − 1
f1

+ 3
n(n + 2)

(n − 1)(n + 1)2 f2 cos2 θ +
2n(n + 2)

(n − 1)(n + 1)2 f3 +
2n(n + 2)

(n − 1)(n + 1)2 α2 sin2 θ

− n(n + 2)
(n − 1)(n + 1)2 [trace s + (n + 1)ω(H)]. (49)

Proof. Consider a (2n + 1)-dimensional (α, β) trans-Sasakian generalized Sasakian space
form M( f1, f2, f3) with a semi-symmetric non-metric connection ∇ and M an (n + 1)-
dimensional special contact slant submanifold.

For any p ∈ M and π ⊂ TpM, a 2-plane section orthogonal to ξ, let {e1, . . . , en, en+1 = ξ}
be an orthonormal basis of the tangent space Tp M and {en+2, . . . , e2n+1} an orthonormal
basis of the normal space T⊥

p M, with Fej = (sin θ)en+j+1, ∀j = 1, . . . , n.
In this case, Equation (27) becomes

2τ(p) = n(n + 1) f1 + 3n f2 cos2 θ − 2n f3

− 2nα2 sin2 θ − ntrace s − n(n + 1)ω(H)

− ∥h∥2 + (n + 1)2∥H∥2. (50)
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On the other hand, we have

(n + 1)2∥H∥2 = ∑
i

g(h(ei, ei), h(ei, ei)) + ∑
i ̸=j

g(h(ei, ei), h(ej, ej))

=
n

∑
i=1

[
n

∑
j=1

(hi
jj)

2 + 2 ∑
1≤j<k≤n

hi
jjh

i
kk]. (51)

From Equations (50) and (51), we obtain

2τ(p) = n(n + 1) f1 + 3n f2 cos2 θ − 2n f3

− 2nα2 sin2 θ − ntrace s − n(n + 1)ω(H)

+ 2 ∑
i

∑
j<k

hi
jjh

i
kk − 2 ∑

i ̸=j
(hi

jj)
2 − 6 ∑

i<j<k
(hk

ij)
2, (52)

Let us now introduce a parameter m given by m = n+2
n−1 , with n ≥ 2, for studying the

inequality of ∥H∥2 by mimicking the technique used in ([25]). Then, we have

(n + 1)2∥H∥2 − m{2τ − n(n + 1) f1 + 3n cos2 θ − 2n f3

− 2nα2 sin2 θ − ntrace s − n(n + 1)ω(H)}
= ∑

i
(hi

ii)
2 + (1 + 2m)∑

i ̸=j
(hi

jj)
2 + 6m ∑

i<j<k
(hk

ij)
2

− 2(m − 1)∑
i

∑
j<k

hi
jjh

i
kk

= ∑
i
(hi

ii)
2 + 6m ∑

i<j<k
(hk

ij)
2 + (m − 1)∑

i
∑
j<k

(hi
jj − hi

kk)
2

+ {1 + 2m − (n − 2)(m − 1)}∑
i ̸=j

(hi
jj)

2 − 2(m − 1)∑
i ̸=j

hi
iih

i
jj

= 6m ∑
i<j<k

(hk
ij)

2 + (m − 1) ∑
i ̸=j,k

∑
j<k

(hi
jj − hi

kk)
2

+
1

n − 1 ∑
i ̸=j

{
hi

ii − (n − 1)(m − 1)hi
jj

}2
≥ 0. (53)

It follows that

∥H∥2 ≥ 2(n + 2)
(n − 1)(n + 1)2 τ − n(n + 2)

n2 − 1
f1

+ 3
n(n + 2)

(n − 1)(n + 1)2 f2 cos2 θ +
2n(n + 2)

(n − 1)(n + 1)2 f3 +
2n(n + 2)

(n − 1)(n + 1)2 α2 sin2 θ

− n + 2
(n − 1)(n + 1)2 [n trace s + n(n + 1)ω(H)]. (54)

6. Example

We will give an example of a special contact slant submanifold in R5 with the standard
Sasakian strucure, with a semi-symmetric non-metric connection.

Consider on R2m+1 the Sasakian structure (R2m+1, ϕ0, η, ξ, g), given by
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η =
1
2

(
dz −

m

∑
i=1

yidxi

)
, ξ = 2

∂

∂z
,

g = −η ⊗ η +
1
4

m

∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi),

ϕ0

(
m

∑
i=1

(
Xi

∂

∂xi + Yi
∂

∂yi

)
+ Z

∂

∂z

)
=

m

∑
i=1

(
Yi

∂

∂xi − Xi
∂

∂yi

)
+

m

∑
i=1

Yiyi ∂

∂z
,

with {xi, yi, z}, i = 1, . . . , m, the Cartesian coordinates on R2m+1.
A semi-symmetric non-metric connection is given by

∇XY = ∇0
XY + η(Y)X.

In particular, one derives

ϕ0

(
∂

∂xi

)
= − ∂

∂yi ,

ϕ0

(
∂

∂xi

)
=

∂

∂xi + yi ∂

∂z
,

ϕ0(ξ) = 0.

It is known that the ϕ0-sectional curvature of R2m+1 is −3.
We define a three-dimensional special contact slant submanifold by the equation

x(u, v, t) = 2((u + v), k cos v, v − u, k sin v, t),

in R5 with the usual Sasakian structure, endowed with the above semi-symmetric non-
metric connection.

It is special contact slant submanifold with slant angle θ = cos−1
√

2
2+k2 .

An orthonormal frame is given by

e1 =
1√
2
(1, 0,−1, 0, 0),

e2 =
1√

k2 + 2
(1,−k sin v, 1, k cos v, 0),

e3 = 2(0, 0, 0, 0, 1) = ξ,

e4 =
1

sin θ
Fe1 = e1∗ ,

e5 =
1

sin θ
Fe2 = e2∗ .

We compute the slant angle and obtain

cos θ = g(ϕ0e2, e1) = −g(ϕ0e1, e2) =

√
2

2 + k2

Now, we compute the second fundamental form.
Obviously, h(e3, e3) = 0.
Also, we know from Lemma 1 that h(ei, e3) = − sin θei∗ , i = 1, 2.
By standard calculations, we obtain

h(e1, e1) = h(e1, e2) = 0
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and
h(e2, e2) =

1
2k2 + 8

[2(0,−k cos v, 0,−k sin v, 0)].

Let π = span{e1, e2}. In the Gauss equation, we put X = W = e1, Y = Z = e2. Then,

R(e1, e2, e2, e1) = −3g2(ϕe1, e2)− s(e2, e2)

+ g(h(e1, e1), h(e2, e2))− g(h(e1, e2), h(e1, e2))− g(P⊥, h(e2, e2)).

In our case, s(e2, e2) = 0 and g(ξ, h(e2, e2)) = 0. Then, R(e1, e2, e2, e1) = − 6
2+k2 .

Similarly, R(e1, e2, e1, e1) =
6

k2+2 .
Consequently, K(π) = − 6

2+k2 and τ = K(π) + 2.
Also, H = 1

3 h(e2, e2) ̸= 0, i.e., M is not a minimal submanifold.

7. Conclusions

In this article, we dealt with trans-Sasakian manifolds admitting a semi-symmetric
non-metric connection. We considered the sectional curvature defined recently in [22].

We established Chen’s first inequality, the Chen–Ricci inequality and the generalized
Euler inequality for submanifolds tangent to the Reeb vector field in a trans-Sasakian
manifold endowed with a semi-symmetric non-metric connection. Particular cases of such
submanifolds were also discussed.

This study can be continued, for instance, to obtain other Chen inequalities or improv-
ing the present results for special classes of submanifolds in trans-Sasakian manifolds or in
other ambient spaces.
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