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Abstract: Index spaces serve as valuable metric models for studying properties relevant to various
applications, such as social science or economics. These properties are represented by real Lipschitz
functions that describe the degree of association with each element within the underlying metric
space. After determining the index value within a given sample subset, the classic McShane and
Whitney formulas allow a Lipschitz regression procedure to be performed to extend the index values
over the entire metric space. To improve the adaptability of the metric model to specific scenarios, this
paper introduces the concept of a composition metric, which involves composing a metric with an
increasing, positive and subadditive function ϕ. The results presented here extend well-established
results for Lipschitz indices on metric spaces to composition metrics. In addition, we establish
the corresponding approximation properties that facilitate the use of this functional structure. To
illustrate the power and simplicity of this mathematical framework, we provide a concrete application
involving the modeling of livability indices in North American cities.
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1. Introduction

Metric models, constructed from the aggregation of various variables, serve as useful
frameworks that enable prospective approaches in fields such as the social sciences. One
version of these models is given by so-called index spaces (see [1] and the related literature),
which consist of a triple (M, d, I), where (M, d) represents a metric space and I denotes an
index (essentially, a non-negative Lipschitz function satisfying additional regularity prop-
erties). Such models prove advantageous in practical contexts, as they allow the extension
of significant indices defined within a metric subspace of (M, d) to the entire space with
the same Lipschitz norm, as seen in the classical scenario of the Lipschitz regression. This
methodology is justified when attempting to model special circumstances that do not con-
form to linear constraints. The usefulness of these results has been demonstrated in recent
years by a large number of research papers in various disciplines. For example, concrete
applications can be observed in machine learning, where this conceptual framework is
employed [2]. Analogous concepts are also widely used in other scientific fields [3,4].

However, there are many cases in which the metric of the problem is not established
and has to be defined at some stage in the modeling process. This choice can be critical,
as different metrics can lead to very different results. This article attempts to redefine this
methodology by introducing a novel approach to obtain, in a straightforward manner, from
a simple metric, another metric that better fits the problem. This newly proposed metric,
denoted dϕ, is chosen from the set of composition metrics ϕ ◦ d, where d is the original
metric and ϕ is a continuity modulus. In particular, we show that this adaptation of the
initial metric space yields significant improvements over using the original metric structure

Axioms 2024, 13, 192. https://doi.org/10.3390/axioms13030192 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13030192
https://doi.org/10.3390/axioms13030192
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-2544-8875
https://orcid.org/0000-0001-8398-8664
https://orcid.org/0009-0001-2328-2173
https://orcid.org/0000-0001-8854-3154
https://doi.org/10.3390/axioms13030192
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13030192?type=check_update&version=1


Axioms 2024, 13, 192 2 of 17

(M, d). To this end, we provide an example that consists of extending the AARP livability
index, known for certain US cities, to a wider range of cities, thereby evaluating and
analyzing the errors incurred under different considerations. Furthermore, we introduce a
new category of indices, called standard indices, aimed at increasing the effectiveness of the
proposed approximation technique. In all of these cases, the Lipschitz constant, together
with other normalization properties related to the Katetov condition, serves as a central
tool for controlling the resulting extension over all scenarios.

The ideas presented here are not new. The notion of modulus of continuity can be
found in many works, usually in the context of mathematical analysis (see [5] and the
references therein). However, it is not easy to find applied works in the literature that use
this tool, which is essentially of a theoretical nature. The concept of composition metrics
can be found, under various names, in several works, including some articles from the early
part of the twentieth century. The notion of continuous metric transformations (metric-
preserving functions in the literature) is first introduced in Wilson’s 1935 article [6]. A paper
by Borsík and Doboš in 1981 [5] compiles some of the conditions under which a given
function composed with a metric will return a metric, and vice versa. Furthermore, the
article by Valentine [7] already introduces a continuity modulus in the Lipschitz condition.

Therefore, our interest is to carry out all of this study in the framework of metric
models related to the extension of Lipschitz functions, specifically by introducing a class
of Lipschitz maps that aims to give a broader definition by incorporating an alternative
metric for improved extension capabilities. This involves a more skillful adaptation to
the dataset and an improved extension of the indices. Our research will explore the
instances of this new space that are relevant to us. We will explore its relevance to the
field of interest, in particular to the index theory, while analyzing its effectiveness and
contrasting it with established methods. To achieve this, we have organized this paper as
follows. In Section 2, we will present the main concepts on real Lipschitz functions and
metric spaces and re-introduce the generalization proposal (composition metrics and other
mathematical tools). Section 3 deals with the formal context of what we call indices. We
will analyze spaces whose elements are these objects, exposing two methods of extension
to larger domains, whose results, in practical contexts, will also be presented at the end
of the paper. Thus, finally, in Section 4, we will explore the practical application of the
above findings to algorithms that numerically execute the described extension procedures.
We will delve into specific examples in which we examine their functionality, paying
particular attention to performance differences compared to the original alternative and
other potential procedures.

2. Basic Definitions and Concepts

Let us first explain some elementary facts on metric spaces and Lipschitz functions
(see [8,9]). Consider a set D that is non-empty and a real map from d : D × D (R+ being
the positive reals). It is said that d is a metric (distance) in the case that d(a, b) = 0 if
a = b, symmetric (that is, d(a, b) = d(b, a)) and transitive (d(a, b) ≤ d(a, c) + d(c, b)) for
a, b, c ∈ D. The metric d is bounded if d(x, y) < K for a constant K. A metric subspace of
D is any subset D0 endowed with the same distance. A metric space as above is compact.
For each sequence {sn}n ⊆ D, there is a subsequence {snk}k that tends to some element
a ∈ D. This property is sometimes called the sequential characterization of compactness in
metric spaces.

The maps we are interested in in this paper are those that satisfy the Lipschitz condition.
A metric space valued function f from a metric space (D, d) to another metric space (R, r)
is Lipschitz if there is a number K ∈ R that satisfies:

r( f (x), f (y)) ≤ Kd(x, y), x, y ∈ D.
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The best constant K above is what is call the Lipschitz norm (or constant), and some-
times it is said that f is K-Lipschitz. The symbol Lip( f ) is used for the Lipschitz norm of
f . Clearly,

sup
x,y∈D, x ̸=y

r( f (x), f (y)) · (d(x, y))−1 = Lip( f ).

Suppose f is a real function defined on D but known only in S ⊂ D. Several classical
results concern the extension of f to D while preserving some initial properties of f in S.
The main result in this direction is when the property we want to preserve is the Lipschitz
condition and is called the McShane–Whitney theorem [10,11]. Because of the useful
extension formulas that can be obtained, this result has been the starting point for much
research on the subject.

Theorem 1. Let L > 0, and let f : S ⊂ D → R be an L-Lipschitz map. Then, there is always
an extension of f preserving the Lipschitz constant L, that is, a function F : D → R satisfying
F ↾S= f . This extension can be given by any of the following formulas (sometimes called the
Whitney and McShane extensions),

FW(x) = inf
y∈S

{
f (y) + Ld(x, y)

}
, FM(x) = sup

y∈S

{
f (y)− Ld(x, y)

}
for every x ∈ D.

These extensions are in a sense optimal: if F is any other Lipschitz extension, we have
FM ≤ F ≤ FW . Note also that F := tFW + (1 − t)FM is a Lipschitz extension if t ∈ (0, 1),
and the Lipschitz norm is also L.

The explanation and proofs of the general results on Lipschitz maps can be found
in [9].

Composition Metrics and Modulus of Continuity

We now focus on the possibility of generalizing the Lipschitz condition to include
a broader class of functions, satisfying a more relaxed criterion and thereby preserving
the extension theorems. This paper will address this in a positive way with what we call
ϕ-Lipschitz maps. First, we will define the family of maps Φ, which will serve as a form
of the generalized continuity module [12]. However, our main focus will be on metrics
that can be formulated as compositions of a pre-existing metric with these functions, rather
than on the functions themselves. Our specific interpretation of such a continuity module
is outlined below:

Definition 1. A map ϕ : R+ → R+ belongs to Φ when, for every x, y ∈ R+, we have:

(i). ϕ(x + y) ≤ ϕ(x) + ϕ(y) and ϕ(0) = 0.
(ii). ϕ(x) < ϕ(y) when x < y.
(iii). ϕ is a continuous function.

As we said, such functions are often called moduli of continuity. Examples of functions
belonging to Φ are ϕ(x) = xα for 0 < α < 1 or the sigmoid function σ(x) = 1

1+e−x . Thus, a
modulus of continuity is defined to be an increasing function ω : [0,+∞) → [0,+∞) which
satisfies that ω(0) = 0 is continuous at 0. Sometimes, other requirements are imposed.
For example, in [9], (Chapter 6, Section 4) continuity modules are related to metrics in a
similar way to the one we present here, although restricted to the context of the study of
uniform continuity.

Now, following the scheme of the definition of the Lipschitz map, we will introduce a
function ϕ ∈ Φ of the distance. The definition is as follows.
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Definition 2. If (D, d) and (R, r) are metric spaces, take a map f : D → R. Suppose that ϕ ∈ Φ.
Then, f is a ϕ-Lipschitz map whenever we have the existence of a constant K > 0 that satisfies that,
for all x, y ∈ D,

r( f (x), f (y)) ≤ Kϕ(d(x, y)).

As in the standard case, the constant K > 0 is a Lipschitz constant of the ϕ−Lipschitz map f .
We will consider a new function ϕ ◦ d = dϕ as the composition of the distance d with ϕ ∈ Φ.

We observe that every L-Lipschitz map is also a ϕ-Lipschitz map for ϕ(x) = x and
K = L. In addition, consider the function f : R+ → R+, defined as f (x) =

√
x. While this

function is not Lipschitz, it meets the criteria of being ϕ-Lipschitz for ϕ = f ∈ Φ and K = 1.
Thus, this category of mappings effectively generalizes the notion of the L-Lipschitz map.
We will see further improvements motivated by this construction in Section 3 by means of
a different map, f (x) = log(x + 1), for example.

We propose redefining the distance to encompass new maps satisfying the proposed
condition alongside the Lipschitz maps within the resulting metric space. By adjusting ϕ,
we gain direct control over modifying the original metric to better suit the posed problem.
Subsequently, we will demonstrate that dϕ indeed constitutes a valid distance.

Proposition 1. If (D, d) is a metric space, and supposing that ϕ ∈ Φ, then we have that dϕ is a
distance too.

Proof. Because ϕ is an injective function (due to its strict monotonicity) and ϕ(0) = 0, it
is evident that dϕ(x, y) = 0 if and only if d(x, y) = 0. Since d is a metric, this occurs if
and only if x = y, establishing the identity of indiscernibles for dϕ. The symmetry of d
implies directly the symmetry of dϕ. Considering the triangle inequality, monotonicity and
subadditivity of ϕ, we have

dϕ(x, z) ≤ ϕ(d(x, y) + d(y, x)) ≤ dϕ(x, y) + dϕ(y, z).

Consequently, dϕ is a distance.

The reciprocal of this result is usually false. For example, if D = R and we let ϕ ∈ Φ
be ϕ(x) =

√
x for x ≥ 0, and d(x, y) = |x − y|2, we know that dϕ = |x − y| is a metric on

D, while d is not. To illustrate this, consider taking x = 0, y = 1 and z = 3, and observe
that d(x, z) > d(x, y) + d(y, z), which violates the triangle inequality. However, there exists
a sort of converse implication. Assuming that for any metric space (D, d), the function dϕ

constitutes a metric, we can infer certain conditions that ϕ must meet. For instance, it is
straightforward to verify that ϕ(0) = 0. Moreover, we will demonstrate next that ϕ must
exhibit subadditivity.

Let x, y ∈ R+ and define a metric space D = {a, b, c} such that d(a, b) = x, d(b, c) = y
and d(a, c) = x + y. Such a d is evidently a metric on D. Since dϕ is a metric, applying
the triangle inequality yields ϕ(x + y) = dϕ(a, c) ≤ dϕ(a, b) + dϕ(b, c) = ϕ(x) + ϕ(y), thus
establishing the subadditivity of ϕ. Thus, if a function ϕ : R+ → R+ satisfies that dϕ

is a metric for all metrics d, then ϕ is subadditive and ϕ(0) = 0. However, there might
be instances where the required conditions of monotonicity and continuity for ϕ are not
fulfilled. In other words, dϕ can qualify as a metric for every metric space (D, d) without ϕ
being strictly monotonically increasing or continuous. For instance, consider ϕ defined as
follows: ϕ(x) = 0 if x = 0, and ϕ(x) = 1 if x > 0. For each metric space (D, d), we observe
the following:

(a) For any a, b ∈ D, the condition dϕ(a, b) = 0 holds if and only if d(a, b) = 0 because ϕ
is only null at 0. Since d is a metric, this holds if and only if a = b, demonstrating that
dϕ satisfies the identity of indiscernibles.

(b) Given that d(a, b) = d(b, a) for all a, b ∈ D, it is evident that dϕ(a, b) = dϕ(b, a),
indicating the symmetry of dϕ.
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(c) Let a, b, c ∈ D with corresponding distances x = d(a, b), y = d(b, c) and z = d(a, c). If
a, b, c are distinct, then x, y, z > 0 since d is a metric, leading to ϕ(x) = ϕ(y) = ϕ(z) = 1.

Consequently, dϕ satisfies the triangle inequality for a, b, c. In cases where some
elements of D coincide, the triangular inequality for dϕ trivially holds for them.

To better comprehend the relationship between d and dϕ, we depict in Figures 1 and 2
a visual representation of the behavior of two specific metrics: the Euclidean metric d in
R and its composition with ϕ(x) = log(1 + x), denoted as dϕ. In Figure 1, it is evident
that dϕ “smoothens” the distance between two real numbers concerning d. More precisely,
d and dϕ exhibit similar behavior when x and y are “close” to each other, but, for more
distant values, dϕ dampens the growth in comparison to d. Figure 2 offers a comparison
of the triangular inequality behavior between d and dϕ. Once again, we observe how the
logarithmic growth of ϕ influences dϕ and its triangular inequality,

dϕ

(
(x, y), (z, t)

)
= log

(
1 +

√
(x − z)2 + (y − t)2

)
. (1)

Figure 1. Comparison: d(x, y) (pink) and dϕ(x, y) (blue).

(a) (b)

Figure 2. Visualization of the triangular inequality of both d and dϕ: (a) d(x, y) (pink) versus

d(x, 0) + d(0, y) (blue) and (b) dϕ(x, y) (pink) versus dϕ(x, 0) + dϕ(0, y) (blue).

Example 1. Additional examples of ϕ-Lipschitz maps are provided below:

• A mapping f : Rn → R is termed α-Hölder continuous if there exist constants C > 0 and
α > 0 satisfying for all x, y ∈ D

r( f (x), f (y)) ≤ Cd(x, y)α.
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These mappings qualify as ϕ-Lipschitz maps for K = C. Specifically, if α ∈ (0, 1], then
defining ϕ(x) = xα places ϕ within Φ, and f is ϕ-Lipschitz with K = C. If α > 1, it can be
demonstrated that f becomes a constant map, rendering it ϕ-Lipschitz for any α ≥ 0.

• Consider R equipped with its standard metric, and let ϕ ∈ Φ. Subadditivity implies
ϕ(x)− ϕ(y) ≤ ϕ(x − y) for x ≥ y; hence, d(ϕ(x), ϕ(y)) ≤ ϕ(d(x, y)). Thus, every ϕ ∈ Φ
qualifies as a ϕ-Lipschitz function with K = 1. Examples of ϕ functions, in addition to those al-
ready mentioned, include ϕ(x) = arctan(x), ϕ(x) = x(x + 1)−1 or ϕ(x) = x(x2 + 1)−1/2.

The compactness for subsets of the metric spaces (D, dϕ) in terms of the compactness
of (D, d) is straightforward. For example, in (R2, dϕ) with dϕ, as in (1), any closed ball
is compact.

Proposition 2. Suppose that (D, d) is compact. Then, for every function, ϕ ∈ Φ (D, dϕ) is
also compact.

3. Index Extension

The aim of this section is to adapt the concepts of index and index space in the terms
that were introduced in [1] to the context of the composition metrics. We will also explain
the extension methods available to obtain an approximation framework for Lipschitz
regression. The first is supported by what are known in [1] as standard indices, which are
essentially defined by the distance to a reference point. The second one is an application of
the already explained McShane and Whitney extension formulas.

Our models essentially consist of a metric space (D, d) and an index I (a real Lipschitz
map) defined on it. These indices give meaningful values to the elements of D, which are
the objects of the models. The Lipschitz condition of the index is the tool that introduces
a certain concordance of the metric with the nature of the distance in D. The essence of
the research we propose in this paper is that we introduce another tool to improve models
based on index spaces: the construction of composition metrics dϕ that improve the fit of
the metric to the situation we want to model.

The term index space is defined in [1] as a triplet (D, d, I) where I : D → R serves as
the index function, which is considered bounded if supa∈D|I(a)| ≤ C for some C > 0. The
infimum of all such constants C satisfying this inequality is denoted as B(I), represented by
B(I) = supa∈D|I(a)|. When discussing the normed space structure of the space of functions
with the uniform norm, we use | · |∞ in place of B(·).

We will need two more boundedness-type properties to characterize the set of indices
we are interested in.

Definition 3. Consider a function I : D → R to be an index. If Q > 0, we say that it is
Q-normalized when for all a, b ∈ D

dϕ(a, b) ≤ Q(|I(a)|+ |I(b)|).

This kind of map is sometimes called a Katetov function. The normalization constant N(I) for
I is the optimal Q. If ϕ ∈ Φ, the index I is said to be ϕ-coherent for K > 0 if for all a, b ∈ D

|I(a)− I(b)| ≤ Kdϕ(a, b),

which means that it is ϕ-Lipschitz for K. The coherence constant C(I) for I is the infimum of all K’s.

In practical scenarios involving the construction of models using index spaces, the
index value might not be readily accessible for every element within the metric space.
This situation can arise when acquiring all the necessary data for the model’s context
is either costly or infeasible. Hence, it becomes advantageous to possess tools enabling
the approximation of the index from non-indexed elements. As previously mentioned,
this section proposes two methods to address this challenge: firstly, by identifying or
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approximating the desired index using what we term as standard indices, and, secondly, by
approaching the question as a Lipschitz regression problem using the classical extension
formulas. Both techniques can be adapted to the case of composition metrics, as we will
see below.

3.1. Standard Indices and Approximation

A distance function d allows us to define indices that are inherently natural, known
as standard indices. For a given point a ∈ D, we can define an index Ia as Ia(b) := d(a, b),
where b ∈ D. These functions are called standard indices. Usually, the criterion for
selecting a involves identifying the element that minimizes specific properties, although
any other element could be chosen instead. The aim of this section is to introduce an
additional tool, the composition metric dϕ, which allows us to use the associated standard
indices b 7→ dϕ(a, b). Our interest, therefore, is in showing a method for approximation
by means of standard indices or any other index. We will first present some results about
the compactness of these function spaces to establish the framework. We will then turn
our attention to the central issue of approximation. The main goal is to show that a robust
approximation method is possible, at least in theory.

Note that uniformly bounded sets of indices (without Lipschitz-type requirements) are
pointwise compact. Indeed, let C > 0 and consider the set of functions
FC := {I : D → R : B(I) ≤ C}. There are two topologies that can be defined here:
the norm topology (for B(I) := supa∈D |I(a)|) and the one of the pointwise convergence.

If a constant k satisfies |k| ≤ C, take FC,k := {I : D → R : k ≤ B(I) ≤ C}. It is a
compact space with the topology of pointwise convergence since each element of {Iη}η∈Λ
can be seen as a member of Πa∈D[k, C], which is a product of compact sets in a space with
the topology of the product. By Tychonoff’s theorem, it is compact.

However, although we cannot expect compactness with respect to the topology of
uniform convergence of the entire space of uniformly bounded functions, the space of
standard indices is compact.

Proposition 3. Let ϕ ∈ Φ. Let (D, d) be a compact metric space. Then there exists C > 0 such
that the space S := {dϕ(a, ·) : a ∈ D} of standard indices associated with the metric dϕ, is included
in FC, which is compact in the uniform topology.

Proof. First, note that due to the compactness of (D, d), the metric d is bounded by a
certain constant R > 0. Then, S is bounded by C := ϕ(R) and so S ⊂ FC. In addition,
let {dϕ(an, ·)}n ⊂ S. By the compactness of (D, d) again and by Proposition 2, we already
know that (D, dϕ) is compact, so the sequence ann has a subsequence ankk that converges
to a0 ∈ D with respect to dϕ. For any ε > 0, there exists k0 ∈ N such that dϕ(ank , a0) < ε for
all k ≥ k0. Then, for any b ∈ D, using the triangular inequality, we have for k ≥ k0

sup
b∈D

∣∣dϕ(ank , b)− dϕ(a0, b)
∣∣ ≤ sup

b∈D
dϕ(ank , a0) = dϕ(ank , a0) < ε.

Therefore, dϕ(ank , ·)k converges uniformly to dϕ(a0, ·).

This allows us to obtain that there is always a best approximation for each Lipschitz
index I by the elements of S, as stated in Corollary 1.

Corollary 1. Let ϕ ∈ Φ and (D, d) be a compact metric space. For every function I, which is
a Lipschitz index acting in the compact space (D, dϕ), there is an element a0 ∈ S such that the
standard index Ia0,ϕ is the best approximation to I in S, that is,

inf{∥I − Ia,ϕ∥∞ : a ∈ D} = ∥I − Ia0,ϕ∥∞.
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Proof. A direct compactness argument gives the proof. The function F : S → R defined as

F(Ia,ϕ) = ∥I − Ia,ϕ∥∞, a ∈ D,

is continuous (and even Lipschitz), since∣∣F(Ia,ϕ)− F(Ib,ϕ)
∣∣ = ∣∣∥I − Ia,ϕ∥∞ − ∥I − Ib,ϕ∥∞

∣∣ ≤ ∥∥Ia,ϕ − Ib,ϕ∥∞

= sup
c∈D

∣∣ϕ ◦ d(a, c)− ϕ ◦ d(b, c)
∣∣ ≤ ϕ ◦ d(a, b) = dϕ(a, b),

for all a, b ∈ D. The compactness of S (Proposition 3) proves the result.

Let us now focus our attention on the approximation bound for general Lipschitz
indices. In particular, we will show that we can always obtain an estimate of the error made
by this approximation procedure in terms of the generalization of the normalization and
the coherence constants. For technical reasons, we also need to introduce a specific type of
sequence that will feature the result we are seeking.

A sequence ann ⊂ D is termed pointwise Cauchy if, for each b ∈ D, the sequence
limn d(an, b) exists. Every convergent sequence is pointwise Cauchy, but the converse is
not necessarily true. For instance, the sequence an = 1/n in D = (0, 1] with the Euclidean
metric serves as an example of a non-convergent pointwise Cauchy sequence. The definition
above can directly be translated for the composition metrics dϕ, ϕ ∈ Φ.

The following result will finally give us the tool to approximate an index using the
standard indices, in the sense of an improvement to [1], (Th. 1). We will also see that
this approximation depends on the product of the normalization and coherence constants.
Specifically, we will see these results for the following set of indices to be approximated:

RK,Q,C :=

I ≥ 0 :
|I(a)− I(b)| ≤ Kdϕ(a, b),

1+KQ
K inf(I) + dϕ(a, b) ≤ Q(I(a) + I(b)),

B(I) ≤ C

.

The proof of the following result is similar to the theorem discussed before. We include
the proof for the aim of completeness.

Theorem 2. Let K, Q > 0 such that KQ ≥ 1. For every I ∈ RK,Q,C, there is a sequence {an}n
that is pointwise Cauchy and I(b) ≤ inf(I) + lim

n
Kdϕ(an, b) ≤ KQI(b), b ∈ D.

Proof. Take b ∈ D and fix n ∈ N. Then, for every n ∈ N, there is an element an ∈ D such
that I(an)− 1

n ≤ inf(I) and so

inf(I) + Kdϕ(an, b) ≤ KQI(an) + KQI(b)− KQ inf(I)

≤ KQI(b) + KQI(an)− KQ
(

I(an)− 1
n

)
= KQI(b) + KQ

n .

In addition,
I(b)− I(an) ≤ |I(b)− I(an)| ≤ Kdϕ(an, b),

and therefore

I(b) ≤ Kdϕ(an, b) + I(an) ≤ Kdϕ(an, b) + inf(I) + 1
n ≤ KQI(b) + 1+KQ

n ,

for all n ∈ N and b ∈ D. Now, observe that dϕ(an, ·) = Ian(·) ∈ S. Thus, leveraging the
compactness of S, as demonstrated in Proposition 3, there exists a subsequence ank k such
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that lim
k

dϕ(ank , b) = dϕ(a0, b) for each b ∈ D and some a0 ∈ D. Consequently, ank k forms a

pointwise Cauchy sequence, and, based on the last inequality, we conclude that

I(b) ≤ inf(I) + K lim
k

dϕ(ank , b) ≤ KQI(b), b ∈ D.

So, the function Ĩ := inf(I) + K lim
k

dϕ(ank , ·) can be seen as an approximation for

I ∈ RK,Q,C. The maximum error committed is bounded by

sup
b∈D

∣∣ Ĩ(b)− I(b)
∣∣ ≤ sup

b∈D
|KQI(b)− I(b)| = (KQ − 1)C.

If KQ ≈ 1, the comparison between Ĩ and I is reasonable. However, as these constants
increase, the approximation may deteriorate.

Furthermore, by setting b = a0 in the result of Theorem 2, we obtain

I(a0) ≤ inf(I) + K lim
k

dϕ(ank , a0) = inf(I) + Kdϕ(a0, a0) = inf(I).

Therefore, I(a0) = inf(I). Hence, we can express Ĩ(·) = I(a0) + dϕ(a0, ·), where
a0 ∈ D is a point at which I attains its minimum. Additionally, for the indices we work with,
we can assume inf(I) = 0, allowing us to make this approximation for any Q-normalized
and ϕ-coherent index for K. In this scenario, KĨ(·) = dϕ(a0, ·).

Remark 1. The condition QK ≥ 1 stated in Theorem 2 is, in a way, universal in index spaces. This
is because I ≥ 0, and I reaches its minimum at b ∈ D (which occurs, for example, when D is finite
or compact), and this minimum is 0. Hence,

I(a) = I(a)− I(b) = |I(a)− I(b)| ≤ Kdϕ(a, b)

≤ KQ(I(a) + I(b)) = KQI(a).

Consequently, if there is b ∈ D with I(b) = 0, we also have KQ ≥ 1. Moreover, even if such a
scenario does not arise, in the case of I within a compact space, we have inf(I) = I(b) for a b ∈ D,
implying that I0(a) := I(a)− I(b) constitutes a non-negative index that retains the characteristics
of I, with I0(b) = 0.

3.2. McShane and Whitney Formulas as Approximation Tools

Another approach to the extension problem is to formulate an estimate by means
of the expressions for extending Lipschitz functions outlined in Section 2. While there
are alternative expansion techniques, such as those discussed in [13], which may be more
suitable for specific purposes, for our overarching application it proves more advantageous
to use the classical McShane and Whitney formulas. The method follows the procedure
explained in [1], adapted to the case of the composition metric. A full explanation can be
found in Section 4 of that article and in the example given in Section 5 of the same article.

Remark 2. To ensure that the composition dϕ defines a metric, in the proof of Proposition 1, we only
considered properties (i)–(iii) of Φ. That is, the continuity property is not necessary, although it was
needed to ensure the compactness results for standard indices and to obtain the result of Theorem 2.
However, this is not the case for these results on the McShane–Whitney extensions, since all that is
required is that dϕ defines a metric. Thus, the functions of Φ can be more general than a continuity
modulus for this technique.
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Convex combinations of the classical extension formulas can also be used. Further-
more, as in the case of standard indices, the product of the normalization and coherence
constants is related to the accuracy of the approximation. Note that

IW(a) = inf
b∈D

{I(b) + Kdϕ(a, b)}

≤ inf
b∈D

{I(b) + KQ(I(a) + I(b))}

= (1 + KQ) inf
b∈D

I(b) + KQI(a),

for any a ∈ D. So,

sup
a∈D

∣∣∣IW(a)− I(a)
∣∣∣ ≤ (1 + KQ)

∣∣∣∣ inf
b∈D

I(b)
∣∣∣∣+ |KQ − 1| sup

a∈D
|I(a)|.

If we suppose that infb∈D I(b) = 0 and KQ ≥ 1, as in the case of standard indices, the
last bound is reduced to

sup
a∈D

∣∣∣IW(a)− I(a)
∣∣∣ ≤ (KQ − 1)C,

what indicates that the approximation improves when KQ → 1. Similar bounds can be
found for the McShane formula and then for any convex combination of both.

4. Applications: The Livability Index for Cities

In this section, we outline a methodological approach for practically implementing the
theoretical concepts discussed in this paper to extend a given index. We begin with a finite
set of elements characterized by certain real variables, where the value of a specific index
I needs to be determined. For some of these elements, the value of the index is already
known. Our objective is to extrapolate this known information to estimate the value of the
index for elements where it is not yet defined. Mathematically, this set forms a metric space
D, equipped with a suitable distance metric tailored to the nature of the data or the problem
under consideration. Additionally, there exists a known index within a subset D0 ⊂ D
that we aim to extend to the entire space D. To accomplish this objective, we propose the
next procedure.

4.1. Methodology

The first matter we analyze is whether the diverse characteristics of the variables could
distort the distance under consideration, given the heterogeneity of their scales. To mitigate
this potential problem, we suggest normalizing the variables to a common scale by the
following method: we subtract the minimum and divide by the interval in the range. That
is, let D = {yj}n

j=1 and yj = (xj
1, · · · , xj

m). Let ak := maxj xj
k and bk := minj xj

k for each
k = 1, · · · , m. We then transform

xj
k ∼

xj
k − bk

ak − bk
,

for all j and k, ensuring that the new variables are restricted to the interval [0,1], maintaining
the same scale.

In order to evaluate the accuracy of the upcoming approximation, we require a measure
of the error incurred, the Root Mean Square Error (RMSE). This metric provides the expected
error that is given by

RMSE =

√√√√ 1
n

n

∑
j=1

(
Ĩ(aj)− I(aj)

)2,

where a1, . . . , an represent the observations for which we aim to estimate the error, and Ĩ
denotes the approximation to I. However, given the absence of information about the index
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values we seek to approximate, we require a strategy to estimate this error. In our approach,
we partition D0, the subset of observations with known indices, into two subsets: a training
set and a test set. Seventy percent of the total observations are randomly selected for the
training set, which we use to perform the expansion. The remaining observations from
the test set are then utilized to calculate the Root Mean Square Error (RMSE). However,
the inherent randomness in this process may influence the resulting error, rendering it
potentially non-representative. To address this issue, we employ the method of cross-
validation. This implies the repetition several times (twenty) and considers the respective
errors to give a more consistent result in terms of accuracy.

In order to select a ϕ function that best fits the model, we engage in an optimization
process aimed at minimizing the error bound on the test set. According to Theorem 2,
this means minimizing the product of the coherence and normalization constants. We
would partition our dataset into three subsets: the training and test subsets mentioned
earlier, along with a validation subset used for fitting. However, due to the potentially
limited number of available observations, the resulting subsets may not be sufficiently
significant for this study. Therefore, we will utilize the values obtained from the test set as a
reference for our optimization process. To accomplish this, we will consider that the linear
combination of functions in Φ with positive scalars is another function in Φ. We will first
select a set of elementary functions (ϕj)j = 1n ⊂ Φ, and then examine for which values
λ1, . . . , λn ≥ 0 the function ϕ := λ1ϕ1 + . . . + λnϕn ensures that the metric dϕ is optimal
in terms of the bound. For this purpose, we will employ the particle swarm optimization
algorithm available in the R library “pso”. Unlike algorithms based on the gradient of
the function, this type of algorithm explores the entire possible set of parameters, thereby
avoiding convergence to non-absolute minima.

Taking the Whitney and McShane extensions, we may analyze whether we can con-
sider an intermediate extension that optimizes the error. That is to say, to find the value
α ∈ [0, 1] for which the formula I := (1 − α)IW + αIM makes the error to be minimum. The
better way to obtain this real number would be by considering a validation set, but, as we
explained above, we will use the test set instead. So, we determine the parameter α using
the next result.

Proposition 4. Let I : D0 ⊂ D → R be an index that is ϕ-coherent, K > 0. Let S1, S2 ⊂ D0 such
that S1 ∪ S2 = D0 and S1 ∩ S2 = ∅. Consider

IW(b) = inf{a ∈ S1 : I(a) + Kdϕ(a, b)}, IM(b) = sup{a ∈ S1 : I(a)− Kdϕ(a, b)}.

Naming IE
α := (1 − α)IW + αIM, then

min
0≤α≤1

∑
b∈S2

(
I(b)− IE

α (b)
)2

= ∑
b∈S2

(
I(b)− IE

α0
(b)

)2
,

for

α0 =
∑b∈S2

(
IW(b)− I(b)

)(
IW(b)− IM(b)

)
∑b∈S2

(IW(b)− IM(b))2 .

Proof. Consider F(α) = ∑b∈S2

(
I(b)− IE

α (b)
)2. We can see that

F(α) = ∑
b∈S2

(
I(b)− IW(b) + α

(
IW(b)− IM(b)

))2
,
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so

F′(α) = 2 ∑
b∈S2

(
I(b)− IW(b) + α

(
IW(b)− IM(b)

))(
IW(b)− IM(b)

)
+ 2α ∑

b∈S2

(
IW(b)− IM(b)

)2
.

The solution of the equation F′(α) = 0 gives the desired value of α0, taking into
account that

F′′(α) = 2 ∑
b∈S2

(
IW(b)− IM(b)

)2
≥ 0.

We opted to utilize the Root Mean Square Error (RMSE) as the error metric instead
of other alternatives because it ensures the differentiability of the function F under con-
sideration. This facilitates a straightforward analysis of its minimum, as demonstrated in
the previous proposition. Opting for other error measures defined in terms of absolute
value, such as Mean Absolute Error (MAE) or Symmetric Mean Absolute Percentage Error
(SMAPE), would necessitate a more intricate and indirect approach to determine the opti-
mal α due to the non-differentiable nature of such definitions. If we consider extending
by identifying the index with a standard one, we proceed to locate the element a0 ∈ D
that minimizes the index. In this scenario, we take Ĩ(b) := Kdϕ(a0, b) to find an estimate of
I(b), taking into account min(I) = 0 after processing. However, it is also important to note
that the choice of how we quantify an error can lead to different extensions. For example,
RMSE is known to be sensitive to outliers, so minimizing this measure tends to result in
models that are more sensitive to large errors. Conversely, favoring SMAPE minimization
leads to models that take into account the proportional accuracy of predictions, making
them more robust to outliers and better suited to scenarios in which relative accuracy is
important. Thus, the choice ultimately depends on the specific objectives and requirements
of the problem domain.

4.2. Extension of a Livability Index

In the following, we will validate our proposed approach using the so-called AARP
Livability Index. In 2018, 55 percent of the world’s population lived in urban areas, a figure
that is expected to rise to 68 percent by 2050, according to [14]. The rapid urbanization
emphasizes the increasing significance of examining and quantifying concepts such as
quality of life or livability in cities, as evidenced by various indices detailed in [15]. The
objectives of these indices are twofold: firstly, to conceptualize livability and determine
the parameters that characterize it and, secondly, to offer insights into which cities or
neighborhoods provide superior living conditions. Equipped with this knowledge, urban
planners can identify areas in need of intervention, while public administrations can target
development and investment initiatives in regions with poor living conditions. However,
assessing livability can be a complex task due to the large number of factors involved, many
of which are difficult to assess. For example, TheEconomist’s “Global Liveability Index”,
one of the most widely used, includes thirty indicators across five categories, with some
indicators building on others. In addition, certain factors, such as climate discomfort for
travelers or levels of corruption, are subjective and inherently difficult to quantify. In this
section, we propose the utilization of the index extension theory developed in the previous
section to approximate livability using only indicators related to alternative mobility. The
aim is to shift the focus away from subjective or complex social indicators and instead
concentrate on factors that can be easily estimated based on existing infrastructure and the
connectivity of urban patterns.

Let us elaborate on the datasets we will utilize. Walk Score® https://www.walkscore.
com (accessed on 12 January 2024) is a website that assesses the walkability performance

https://www.walkscore.com
https://www.walkscore.com
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of 123 cities in the United States and Canada on a scale from 0 to 100. This assessment
is based on various parameters such as intersection density, block length, and access to
amenities within a 5 min walk. Additionally, Walk Score employs a similar scoring system
to evaluate cities’ performances for walking and cycling. Our objective is to use these three
indicators to approximate the AARP Livability Index https://livabilityindex.aarp.org/
scoring (accessed on 11 November 2023). This index evaluates 61 different indicators across
seven categories (housing, neighborhood, transportation, environment, health, engagement
and opportunity) to gauge the livability of US cities, including factors such as housing costs,
crime rates, air quality and income inequality. The resulting score ranges from 0 to 100,
with 50 representing an average score, higher scores indicating above-average performance
and vice versa.

In mathematical terms, our metric space is D ⊂ [0, 100]3, where each element
(x, y, z) ∈ D represents a city with walk, transport and bike scores x, y and z, respec-
tively, equipped with the canonical metric d of R3. For 101 US cities, we have defined the
index of interest, which we will refer to as I, and our objective is to define it for 22 Canadian
cities as well. Table 1 provides an example of our dataset.

Table 1. Examples of scores and indices for some cities.

City Walk Score Transit Score Bike Score I

New York 88 88.6 69.3 63
Los Angeles 68.6 52.9 58.7 49

Chicago 77.2 65 72.2 57
Toronto 61 78.2 61 ?
Houston 47.5 36.2 48.6 48
Montreal 65.4 67 72.6 ?

We have implemented the extension of our index according to the considerations of
Section 4.1. In particular, for illustrative purposes, we study our method by considering
two linear combinations of functions of Φ as follows:

ϕ(x) = p1x + p2 log(1 + x) + p3 arctan(x) + p4
x

1 + x
, p1, . . . , p4 ≥ 0,

and

ψ(x) = p1
√

x + p2 log
(
1 +

√
x
)
+ p3 arctan

(√
x
)
+ p4

√
x

1 +
√

x
, p1, . . . , p4 ≥ 0.

Table 2 presents a comparative analysis of the two extension procedures studied
(standard indices and McShane–Whitney type approximation) and of the various metrics
considered. The results show that writing our index as a standard index provides poor
performance (a high mean error, making it unsuitable for consideration). As far as the
McShane–Whitney-type formulas are concerned, it preserves the standard deviation, also
reducing the expected RMSE a little. However, it should be noted that our technique
requires a longer computation time, mainly due to the optimization process involved. This
time can vary according to the optimization algorithm chosen and the dimension of the
problem, although, as we will see, it can be similar to most techniques used today.

Furthermore, Table 3 provides the result when a convex expression as ψ is considered
in this scenario, alongside the results of the classical technique. In particular, there is a
better result when compared with the original metric, particularly noticeable in the case of
standard indices. This variance in performance highlights the fact that the choice of the
ϕ-metric has a significant impact on the degree of improvement obtained relative to the
original metric. Another option would be to use the concept of local Lipschitz to split up
our problem and obtain locally better Lipschitz constants. We could see whether it is more
efficient to have many fast classical local extensions, or one global but slower one, using an
approximation in the context of the ϕ-Lipschitz functions.

https://livabilityindex.aarp.org/scoring
https://livabilityindex.aarp.org/scoring
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Table 2. Different procedures for the design of the function ϕ.

Function ϕ
Standard McShane–Whitney

Lipschitz ϕ-Lipschitz Lipschitz ϕ-Lipschitz

Mean RMSE 138.43 79.48 5.08 5.04

Median RMSE 140.49 81.25 5.12 5.05

Standard deviation 24.11 8.78 0.61 0.60

Seconds per iteration 1.039 × 10−3 3.316 × 10−1 1.513 × 10−3 3.330 × 10−1

Table 3. Different procedures for the design of the function ψ.

Function ψ
Standard McShane–Whitney

Lipschitz ψ-Lipschitz Lipschitz ψ-Lipschitz

Mean RMSE 138.43 16.69 5.08 4.55

Median RMSE 140.49 16.50 5.12 4.47

Standard deviation 24.11 1.52 0.61 0.63

Seconds per iteration 1.039 × 10−3 3.000 × 10−1 1.513 × 10−3 3.013 × 10−1

We also provide a comparison of these results with those obtained by applying dif-
ferent regression algorithms widely studied in the literature: neural networks and linear
regression. The results of this comparison are summarized in Table 4. It is noteworthy
that the results obtained by a neural network are comparable to those obtained by the
McShane–Whitney technique, both in terms of the estimated error and its deviation and
in terms of execution time. We can also compare the performance of the standard indices
with that of a linear regression. For our example, similar results are obtained, except for
the computation time, where linear regression proves to be more efficient. To allow a
more comprehensive comparison of these behaviors, Figure 3 illustrates the different errors
obtained in each iteration of the cross-validation. Each of the ψ metric models is plotted
next to the most similar one discussed above.

Table 4. Performance of ψ-metric models and other regression methods.

Standard McShane–Whitney Neural Net Linear

Mean RMSE 16.69 4.55 4.40 13.80

Median RMSE 16.50 4.47 4.42 13.65

Standard deviation 1.52 0.63 0.46 3.25

Seconds per iteration 3.000 × 10−1 3.013 × 10−1 1.923 × 10−1 4.341 × 10−3

It should also be noted that the way in which this improvement is achieved could vary
from one method to another and from one metric to another. With this in mind, we have
taken a concrete division into training and test sets (the 71 most populated cities will serve
as the training and the rest as the test) and applied the results of the extension studied.
In the case of standard indices, if we look at Figure 4, we can see that by redefining the
metric to dϕ or dψ, the improvement is general, i.e., we obtain a lower error for each element
following the original trend. However, in the case of the McShane–Whitney method, Figure
5 shows that depending on the new metric, the accuracy can be different for each element,
although on average it is lower, as we have seen before.
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Figure 3. Comparison of extension errors using McShane–Whitney formulas for different metrics:
(a) results for d (yellow) and dϕ (blue) and (b) results for d (yellow) and dψ (blue).
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Figure 4. Comparison of extension errors using standard indices for different metrics: (a) results for d
(yellow) and dϕ (green) and (b) results for d (yellow) and dψ (green).
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Figure 5. Comparison of extension errors using McShane–Whitney formulas for different metrics:
(a) results for d (yellow) and dϕ (green) and (b) results for d (yellow) and dψ (green).
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Finally, in Table 5, we will present the predictions generated by each method and
provide a ranking based on these predictions. Given that we lack a benchmark for
our index, we will assess its performance by comparing it with other existing indices
when evaluating the resulting rankings. “The Mercer Quality of Living City Ranking”
https://mobilityexchange.mercer.com/Insights/quality-of-living-rankings (accessed on 3
December 2023) ranks Canadian cities in the following increasing order: Calgary, Ottawa,
Toronto and Vancouver. It is noteworthy that this ranking is largely consistent with the one
we have derived. Although the standard indices may not offer an exact approximation of
the index in question, they still provide a reliable overview for establishing a ranking.

Table 5. Ranking of Canadian cities.

Ranking Standard McShane–Whitney Neural Net Linear

1 Vancouver Montreal Vancouver Vancouver
2 Toronto Vancouver Toronto Toronto
3 Montreal Longueuil Montreal Montreal
4 Burnaby Toronto Burnaby Burnaby
5 Longueuil Saskatoon Longueuil Longueuil
6 Mississauga Winnipeg Ottawa Ottawa
7 Winnipeg Burnaby Winnipeg Winnipeg
8 Ottawa Mississauga Mississauga Surrey
9 Brampton Ottawa Brampton Laval

10 Quebec Brampton Quebec Mississauga
11 Surrey Surrey Laval Kitchener
12 Laval Quebec Surrey Brampton
13 Kitchener Edmonton Kitchener Hamilton
14 Calgary Kitchener Calgary Saskatoon
15 Saskatoon Windsor Gatineau Calgary
16 Markham Laval Markham Quebec
17 Hamilton Hamilton London Windsor
18 Edmonton Calgary Hamilton Edmonton
19 London London Edmonton Vaughan
20 Gatineau Gatineau Windsor Markham
21 Vaughan Markham Vaughan London
22 Windsor Vaughan Saskatoon Gatineau

5. Conclusions

We have introduced an innovative procedure for the extension of indices defined
on metric subspaces of metric models. The main contribution of our results is that they
include a new class of metrics (composition metrics) that give us more flexibility in the
approximation tools for finding adapted results of Lipschitz regression processes. While
the state-of-the-art Lipschitz extensions are highly dependent on the chosen metric, this
methodology provides us with a straightforward way to improve extension results without
a complex study of which metrics are well suited to the problem. In particular, the intro-
duction of this wide class of metrics starting from a standard distance (e.g., the Euclidean
distance) allows this improvement by reducing the Lipschitz constant. We provide the
approximation formulas as well as the error bounds for the proposed procedure. However,
the limitation of reducing the use of experimental data has to be taken into account, as some
variables (those involved in the definition of the metric) are necessary for the application of
the model. Only a subset of the index dataset can be artificially reconstructed using the
proposed method; otherwise, the reliability of the results is not guaranteed.

As an applied example, we show how we can extend the so-called livability index for
large urban centers in the United States, for which this index is known, from Canadian
cities. These results are interesting as they provide more information on a topic of current
interest. The results show that our techniques produce similar results to other widely used
techniques, with the advantage of better interpretability.

https://mobilityexchange.mercer.com/Insights/quality-of-living-rankings
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The methodology presented here can be applied to a broad class of problems where
classification is performed by one or more specific indices. Lipschitz extensions can be used
to obtain a combined technique for analyzing livability indices as the core of our research
plan. On the one hand, we measure experimental data to obtain real information. On the
other hand, this information is complemented by a new classification of cities based on the
extension of the experimental data. By adding both inputs in an optimal way, in this work,
we have shown that consistent results can be obtained without the need to increase the
experimental work too much, making quality research on the livability of cities possible
using fewer resources.
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