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Abstract: In this paper, we consider blow-up solutions for the fourth-order nonlinear Schrödinger
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equation, including the Ḣγc -concentration and limiting profiles, which extend and improve the
existing results in the literature.
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1. Introduction

In this paper, we study the nonlinear fourth-order Schrödinger equation with
mixed dispersions{

iψt − ∆2ψ + µ∆ψ + |ψ|pψ = 0, (t, x) ∈ [0, T∗)×RN ,
ψ(0, x) = ψ0(x),

(1)

where µ ∈ R, ψ : [0, T∗) × RN → C is a complex valued function, 0 < T∗ ≤ ∞, 0 <
p < 4∗ (where 4∗ = +∞ if N = 1, 2, 3, 4 and 4∗ = 8

N−4 if N ≥ 5). Karpman in [1]
first introduced the fourth-order Schrödinger Equation (1) to stabilize soliton instabilities.
Karpman and Shagalov in [2] also proposed a small fourth-order dispersion term to describe
the propagation of intense laser beams in a bulk medium with Kerr nonlinearity. In recent
years, there has been a great deal of interest in using higher-order operators to model
physical phenomena (see [3–8]).

When µ = 0, Equation (1) entails the scaling invariance

ψλ(t, x) = λ
4
p ψ(λ4t, λx), λ > 0.

This implies that if ψ solves (1) with µ = 0, then ψλ solves the same equation with the

initial data ψλ(0, x) = λ
4
p ψ0(λx). A direct computation shows

∥ψλ(0)∥Ḣγ = λ
γ+ 4

p −
N
2 ∥ψ0∥Ḣγ .

This implies that the Sobolev Ḣγc -norm and Lebesgue Lpc -norm are invariant under
the scaling ψ 7→ ψλ, where

γc :=
N
2
− 4

p
and pc :=

2N
N − 2γc

=
Np
4

.
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Although there is not any scaling invariance for Equation (1) with µ ̸= 0, γc and pc
are referred to as the critical Sobolev and Lebesgue exponents of (1), respectively. When
0 ≤ γc ≤ 2, i.e., 8

N ≤ p ≤ 4∗, Equation (1) is referred to as Ḣγc -critical. In particular, when
γc = 0 and γc = 2, Equation (1) is referred to as L2-critical (or mass-critical) and Ḣ2-critical
(or energy-critical), respectively.

If the initial data ψ0 ∈ H2, then Equation (1) reflects the mass and energy conserva-
tion laws:

∥ψ(t)∥L2 = ∥ψ0∥L2 , E(ψ(t)) = E(ψ0),

where the energy E is defined by

E(ψ(t)) =
1
2
∥∆ψ(t)∥2

L2 +
µ

2
∥∇ψ(t)∥2

L2 −
1

p + 2
∥ψ(t)∥p+2

Lp+2 . (2)

If the initial data ψ0 ∈ Ḣγc ∩ Ḣ2 with γc ≤ 1, then the equation only assumes energy
conservation. The conservation of mass is no longer available in this setting.

Recently, Equation (1) was investigated extensively in [9–18]. The local well-posedness
in H2 was studied in [9,13,15]. The global well-posedness for (1) in H2 was studied by
Fibich, Ilan, and Papanicolaou in [19]. The global properties, including the sharp thresh-
old of scattering and blow-up, asymptotical behavior, and scattering were investigated
in [12,15–18,20]. When 0 < p < 8

N , it follows that all the solutions of (1) exist globally
using the mass conservation. Boulenger and Lenzmann in [21] proved the existence of
radial blow-up solutions for (1) with 8

N ≤ p ≤ 4∗. When µ = 0, the dynamical properties
of the blow-up solutions of (1) were investigated in [22–28]. However, when µ ̸= 0, the
dynamical properties of the blow-up solutions of (1) have not yet been discussed.

The aim of this paper is to consider the dynamical properties of the blow-up solutions
of (1) with µ ̸= 0. However, compared with the case µ = 0 considered in [25,26,28], there
are two major difficulties in the analysis of the blow-up solutions of (1). One is the loss
of mass conservation due to the initial data ψ0 ∈ Ḣγc ∩ Ḣ2; the other is the loss of scaling
invariance to (1) with µ ̸= 0. Since there is no scaling invariance for µ ̸= 0, we choose the
ground states of the equations

∆2Q + (−∆)γc Q − |Q|pQ = 0, (3)

and
∆2R + |R|pc−2R − |R|pR = 0, (4)

to describe some of the concentration properties and limiting profiles of the blow-up
solutions to (1), respectively, where (3) and (4) arise in the study of the optimal constants of
inequalities (12) and (14) (see [25]).

The structure of this paper is as follows: In Section 2, we provide some preliminary
information, including the local well-posedness of (1), the profile decomposition of the
bounded sequences in Ḣγc ∩ Ḣ2, and the localized virial to (1). In Section 3, we investigate
the dynamical properties of the blow-up solutions of (1) with µ ̸= 0 in the L2-critical and
L2-supercritical cases, including the concentration properties and limiting profiles.

2. Preliminaries

First, we recall the local well-posedness for the Cauchy problem (1).

Lemma 1 ([14]). Let 0 < p < 4∗ and ψ0 ∈ H2. Then, there exists T = T(∥ψ0∥H2), such that (1)
admits a unique solution ψ ∈ C([0, T), H2). If T∗ < ∞, then ∥∆ψ(t)∥L2 → ∞ as t ↑ T∗, where
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T∗ is the maximal existence time of solution ψ(t). Moreover, for all [0, T∗), the following mass and
energy conservation laws follow:

M(ψ(t)) =
∫
RN

|ψ(t, x)|2dx = M(ψ0), (5)

E(ψ(t)) = E(ψ0), (6)

where E(ψ(t)) is defined by (2).

Next, in order to study the existence of the blow-up solutions, we recall the localized
virial to (1) established in [21]. Let φ : RN → R be a radial function which satisfies
∇j φ ∈ L∞, for 1 ≤ j ≤ 6,

φ(r) :=

{
r2

2 f or r ≤ 1
const. f or r ≥ 10,

and φ′′(r) ≤ 1, f or r ≥ 0.

For R > 0, we define φR(r) := R2 φ( r
R ). When ψ ∈ C([0, T∗); H2), we define the

localized virial of ψ(t) by

MφR(ψ(t)) := 2Im
∫
RN

ψ(t, x)∇φR(x)∇ψ(t, x)dx. (7)

Boulenger and Lenzmann in [21] obtained the following time evolution of MφR(ψ(t)).

Lemma 2 ([21], Lemma 3.1). Let 0 < p < 4∗ and R > 0. Let ψ ∈ C([0, T∗); H2) be a radial
solution to (1), then,

d
dt

MφR(ψ(t)) ≤2NpE(ψ(t))− (Np − 8)∥∆ψ(t)∥2
L2 − (Np − 4)µ∥∇ψ(t)∥2

L2 + Xµ[ψ(t)]

+O

 1
R4 +

∥∇ψ(t)∥2
L2

R2 +
∥∇ψ(t)∥p/2

L2

R
(N−1)p

2

+
|µ|
R2


=4Q(ψ(t)) + Xµ[ψ(t)] +O

 1
R4 +

∥∇ψ(t)∥2
L2

R2 +
∥∇ψ(t)∥p/2

L2

R
(N−1)p

2

+
|µ|
R2

,

for any t ∈ [0, T∗), where

Xµ[ψ(t)] ≤
{

0 f or µ ≤ 0,
A0|µ|∥∇ψ(t)∥2

L2 f or µ < 0,

with some constant A0 > 0.

Lemma 3 ([29], Proposition 1.32). Let s0 ≤ s ≤ s1. Then, Ḣs0 ∩ Ḣs1 is included in Ḣs, and

∥v∥Ḣs ≤ ∥v∥1−θ
Ḣs0

∥v∥θ
Ḣs1 , f or all v ∈ Ḣs0 ∩ Ḣs1 , (8)

where s = (1 − θ)s0 + θs1.

Lemma 4 ([26], Theorem 1.1). If 0 < p < 4∗, then

∥v∥p+2
Lp+2 ≤ 4(p + 2)

4(p + 2)− Np

(
4(p + 2)− Np

Np

) Np
8 1
∥R∥p

L2

∥v∥
4(p+2)−Np

4
L2 ∥∆v∥

Np
4

L2 , (9)

for all v ∈ H2, where R ∈ H2 is a ground state of the equation

∆2R + R − |R|pR = 0. (10)
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Moreover, the following Pohozaev’s identities follow.

∥∆R∥2
L2 =

Np
4(p + 2)

∥R∥p+2
Lp+2 =

Np
8 − p(N − 4)

∥R∥2
L2 . (11)

Lemma 5 ([25], Proposition 3.2). Let 8
N < p < 4∗. Then, for all v ∈ Ḣγc ∩ Ḣ2

∥v∥p+2
Lp+2 ≤ p + 2

2
1

∥Q∥p
Ḣγc

∥v∥p
Ḣγc ∥∆v∥2

L2 , (12)

where Q ∈ Ḣγc ∩ Ḣ2 is a ground state of (3). Moreover, the following Pohozaev’s identities follow.

∥Q∥2
Ḣ2 =

2
p + 2

∥Q∥p+2
Lp+2 =

2
p
∥Q∥2

Ḣγc . (13)

Lemma 6 ([25], Proposition 3.2). Let 8
N < p < 4∗. Then, for all v ∈ Lpc ∩ Ḣ2

∥v∥p+2
Lp+2 ≤ p + 2

2
1

∥R∥p
Lpc

∥v∥p
Lpc ∥∆v∥2

L2 , (14)

where R ∈ Lpc ∩ Ḣ2 is a ground state solution of the elliptic Equation (4). Moreover, the following
Pohozaev’s identities hold true:

∥R∥2
Ḣ2 =

2
p + 2

∥R∥p+2
Lp+2 =

2
p
∥R∥2

Lpc . (15)

Since the uniqueness of the ground state solutions to (10), (3) and (4) is still unknown,
to study the dynamical properties of blow-up solutions, we introduce the notions of Sobolev
and Lebesgue ground states. Denote

G0(u) := ∥u∥
8
N +2

L
8
N +2

÷
[
∥u∥

8
N
L2∥∆u∥2

L2

]
, u ∈ H2,

G(u) := ∥u∥p+2
Lp+2 ÷

[
∥u∥p

Ḣγc ∥∆u∥2
L2

]
, u ∈ Ḣγc ∩ Ḣ2,

K(u) := ∥u∥p+2
Lp+2 ÷

[
∥u∥p

Lpc ∥∆u∥2
L2

]
, u ∈ Lpc ∩ Ḣ2.

Definition 1 (Ground states).

1 We call the Sobolev ground states the maximizers of G0 and G, which are solutions to (10)
and (3), respectively. We denote the set of Sobolev ground states of G0 and G by G0 and G,
respectively.

2 We call the Lebesgue ground states the maximizers of K, which are solutions to (4). We
denote the set of Lebesgue ground states by K.

It follows from the optimal constants in (9), (12), and (14) that all the Sobolev ground
states have the same Ḣγc -norm and all the Lebesgue ground states have the same Lpc -norm.
We thus denote

G0 := ∥Q∥L2 , ∀Q ∈ G0, G1 := ∥Q∥Ḣγc , ∀Q ∈ G, G2 := ∥R∥Lpc , ∀R ∈ K. (16)

Finally, we recall the following two compactness lemmas:

Lemma 7 ([28], Compactness lemma I). Suppose that {un}∞
n=1 is a bounded sequence in H2

and satisfies
lim sup

n→∞
∥∆un∥L2 ≤ M, lim sup

n→∞
∥un∥L8/N+2 ≥ m > 0.
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Then, there exist {xn}∞
n=1 ⊂ RN and V ∈ H2, such that, up to a subsequence,

un(·+ xn) ⇀ V weakly in H2

with

∥V∥p
L2 ≥ 2

p + 2
mp+2

M2 Gp
0 .

Lemma 8 ([25], Compactness lemma II). Let 8
N < p < 4∗. Let {vn}∞

n=1 be a bounded sequence
in Ḣγc ∩ Ḣ2, such that

lim sup
n→∞

∥vn∥Ḣ2 ≤ M, lim sup
n→∞

∥vn∥Lp+2 ≥ m.

• Then, there exist V ∈ Ḣγc ∩ Ḣ2 and a sequence {yn}∞
n=1 in RN , such that up to a subsequence,

vn(·+ yn) ⇀ V weakly in Ḣγc ∩ Ḣ2,

with

∥V∥p
Ḣγc ≥ 2

p + 2
mp+2

M2 Gp
1 . (17)

• Then, there exist W ∈ Lpc ∩ Ḣ2 and a sequence {zn}∞
n=1 in RN , such that up to a subsequence,

vn(·+ zn) ⇀ W weakly in Lpc ∩ Ḣ2,

with

∥W∥p
Lpc ≥ 2

p + 2
mp+2

M2 Gp
2 . (18)

Remark 1. The lower bounds (17) and (18) are optimal. Indeed, taking vn = Q in the first case
and vn = R in the second case where Q ∈ G and R ∈ K, we obtain the equalities.

3. Dynamic of Blow-Up Solutions in the L2-Critical and L2-Supercritical Cases

In this section, we study the dynamical properties of the blow-up solutions for (1) in
the L2-critical and L2-supercritical cases.

3.1. The Sharp Threshold Mass of Blow-Up and Global Existence

It easily follows from the local well-posedness that the solution of (1) with small initial
data exists globally, and the solution may blow up in finite time for some large initial data.
Therefore, whether there is a sharp threshold of global existence and blow-up for (1) is
of particular interest. Next, we obtain the sharp threshold mass of global existence and
blow-up for (1) by using the scaling argument and the inequality (9).

Theorem 1. Let ψ0 ∈ H2, µ > 0, p = 8
N . Then, we obtain the following sharp threshold mass of

the global existence and blow-up :
(i) If ∥ψ0∥L2 ≤ G0, then all solutions of (1) exist globally.
(ii) For any ρ > G0, there exist initial data ψ0, such that ∥ψ0∥L2 = ρ and the corresponding

solution ψ(t) of (1) blows up in finite time.

Remark 2. When µ = 0, Fibich, Ilan, and Papanicolaou in [19] proved that all solutions of (1)
with initial data ∥ψ0∥L2 < G0 exist globally. When µ > 0, we prove that all solutions of (1) with
initial data ∥ψ0∥L2 ≤ G0 exist globally. This suggest that the defocusing second-order dispersion
term may prevent the occurrence blow-up.
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Proof. (i) When ∥ψ0∥L2 < G0, we deduce from (2) and (9) that

E(ψ0) = E(ψ(t)) =
1
2
∥∆ψ(t)∥2

L2 +
µ

2
∥∇ψ(t)∥2

L2 −
1

p + 2
∥ψ(t)∥p+2

Lp+2

≥
(

1
2
−

∥ψ0∥
p
L2

2Gp
0

)
∥∆ψ(t)∥2

L2 .

Due to ∥ψ0∥L2 < G0, we have that ∥∆ψ(t)∥L2 is uniformly bounded for all times t.
Therefore, (i) follows from the conservation of mass and Lemma 1.

When ∥ψ0∥L2 = G0, we prove this result by contradiction. If the solution ψ(t) of (1)
blows up in finite time, then there exists T∗ > 0, such that limt→T∗ ∥∆ψ(t)∥L2 = ∞. Set

ρ2(t) = ∥∆R∥L2 /∥∆ψ(t)∥L2 and v(t, x) = ρ(t)N/2ψ(t, ρ(t)x).

Let {tn}∞
n=1 be any time sequence, such that tn → T∗, ρn := ρ(tn) and vn(x) := v(tn, x).

Then, the sequence {vn} satisfies

∥vn∥L2 = ∥ψ(tn)∥L2 = ∥ψ0∥L2 = G0, ∥∆vn∥L2 = ρ2
n∥∆ψ(tn)∥L2 = ∥∆R∥L2 . (19)

Observe that

0 ≤ 1
2
∥∆vn∥2

L2 −
1

p + 2
∥vn∥p+2

Lp+2 =ρ4
n

(
1
2
∥∆ψ(tn)∥2

L2 −
1

p + 2
∥ψ(tn)∥p+2

Lp+2

)
=ρ4

n

(
E(ψ0)−

µ

2
∥∇ψ(tn)∥2

L2

)
≤ρ4

nE(ψ0) → 0, as n → ∞. (20)

This implies that

lim
n→∞

∥vn∥p+2
Lp+2 =

p + 2
2

∥∆R∥2
L2 .

Thus, we deduce from (19) that there exist subsequences, still denoted by {vn} and
u ∈ H2\{0}, such that

un := τxn vn ⇀ u ̸= 0 weakly in H2,

for some {xn} ⊆ RN . This implies that there exists C0 > 0, such that

lim
n→∞

∥∇vn∥2
L2 = lim

n→∞
∥∇un∥2

L2 ≥ C0 > 0. (21)

On the other hand, we deduce from (9) and ∥ψ(t)∥L2 = ∥ψ0∥L2 = ∥R∥L2 that

1
2
∥∆ψ(t)∥2

L2 −
1

p + 2
∥ψ(t)∥p+2

Lp+2 ≥ 0,

for all t ∈ [0, T∗). This implies that

µ

2
∥∇ψ(t)∥2

L2 ≤ E(ψ0),

for all t ∈ [0, T∗). We consequently obtain that

∥∇vn∥2
L2 = ρ2

n∥∇ψ(tn)∥2
L2 ≤ 2ρ2

n
µ

E(ψ0) → 0, as n → ∞,

which is a contradiction with (21). Thus, the solution ψ(t) of (1) exists globally.
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(ii) Let R ∈ G0 be radial. We define the initial data ψ0(x) = cλ
N
2 R(λx) with c = ρ

G0
and

some λ > 1. Then, ∥ψ0∥L2 = ρ. Applying the Pohoz̆aev identity for the following equation:

∆2R + R − |R|pR = 0, (22)

i.e., 1
2∥∆R∥2

L2 = 1
p+2∥R∥p+2

Lp+2 , we deduce that

E(ψ0) =
|c|2λ4

2
∥∆R∥2

L2 +
µ|c|2λ2

2
∥∇R∥2

L2 −
|c|p+2λ

Np
2

p + 2
∥R∥p+2

Lp+2

= −|c|2λ4

2
(|c|p − 1)∥∆R∥2

L2 +
µ|c|2λ2

2
∥∇R∥2

L2 . (23)

Now, taking λ, such that

µ∥∇R∥2
L2

(|c|p − 1)∥∆R∥2
L2

< λ2.

This implies E(ψ0) < 0. Thus, the solution ψ of (1) with initial data ψ0 blows up by
applying the same method as that of Theorem 3 in [21].

3.2. The L2-Critical Case

In this subsection, we investigate some dynamical properties of the blow-up solutions
for (1) with µ ̸= 0 in the L2-critical case.

Theorem 2. (L2-concentration) Let ψ0 ∈ H2, µ ̸= 0, p = 8
N . If the solution ψ(t) of (1) blows up

in finite time T∗ > 0. Let a(t) be a real-valued non-negative function defined on [0, T∗) satisfying

a(t)∥∆ψ(t)∥
1
2
L2 → ∞ as t → T∗. Then, there exists x(t) ∈ RN , such that

lim inf
t→T∗

∫
|x−x(t)|≤a(t)

|ψ(t, x)|2dx ≥ G2
0 , (24)

where G0 is defined by (16).

Remark 3. By a similar analysis as that in Remark 2, this theorem gives the L2-concentration and
rate of L2-concentration of the blow-up solutions of (1).

Proof. Let R ∈ G0; we set

ρ2(t) = ∥∆R∥L2 /∥∆ψ(t)∥L2 and v(t, x) = ρ
N
2 (t)ψ(t, ρ(t)x).

Let {tn}∞
n=1 be any time sequence, such that tn → T∗, ρn := ρ(tn) and vn(x) := v(tn, x).

Then, the sequence {vn} satisfies

∥vn∥L2 = ∥ψ(tn)∥L2 = ∥ψ0∥L2 , ∥∆vn∥L2 = ρ2
n∥∆ψ(tn)∥L2 = ∥∆R∥L2 . (25)

Observe that

|E0(vn)| =
∣∣∣∣12
∫
RN

|∆vn(x)|2dx − 1
p + 2

∫
RN

|vn(x)|p+2dx
∣∣∣∣

=ρ4
n

∣∣∣∣12
∫
RN

|∆ψ(tn, x)|2dx − 1
p + 2

∫
RN

|ψ(tn, x)|p+2dx
∣∣∣∣

≤ρ4
n

∣∣∣∣E(ψ0) +
|µ|
2

∫
RN

|∇ψ(tn, x)|2dx
∣∣∣∣. (26)
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Thus, applying the inequality (8), we deduce that E0(vn) → 0, as n → ∞. This implies∫
RN |vn(x)|p+2dx → p+2

2 ∥∆R∥2
L2 .

Set mp+2 = p+2
2 ∥∆R∥2

L2 and M = ∥∆R∥L2 . Then, it follows from Lemma 7 that there
exist V ∈ H2 and {xn}∞

n=1 ⊂ RN , such that, up to a subsequence,

vn(·+ xn) = ρN/2
n ψ(tn, ρn(·+ xn)) ⇀ V weakly in H2 (27)

with
∥V∥L2 ≥ G0. (28)

Note that
a(tn)

ρn
=

a(tn)∥∆ψ(tn)∥1/2
L2

∥∆R∥1/2
L2

→ ∞, as n → ∞.

Then, for every r > 0, there exists n0 > 0, such that for every n > n0, rρn < a(tn).
Therefore, using (27), we obtain

lim inf
n→∞

sup
y∈RN

∫
|x−y|≤a(tn)

|ψ(tn, x)|2dx ≥ lim inf
n→∞

sup
y∈RN

∫
|x−y|≤rρn

|ψ(tn, x)|2dx

≥ lim inf
n→∞

∫
|x−xn |≤rρn

|ψ(tn, x)|2dx

= lim inf
n→∞

∫
|x|≤r

ρN
n |ψ(tn, ρn(x + xn))|2dx

= lim inf
n→∞

∫
|x|≤r

|v(tn, x + xn)|2dx

≥ lim inf
n→∞

∫
|x|≤r

|V(x)|2dx, f or every r > 0,

which means that

lim inf
n→∞

sup
y∈RN

∫
|x−y|≤a(tn)

|ψ(tn, x)|2dx ≥
∫
RN

|V(x)|2dx.

Since the sequence {tn}∞
n=1 is arbitrary, we obtain

lim inf
t→T∗

sup
y∈RN

∫
|x−y|≤a(t)

|ψ(t, x)|2dx ≥
∫
RN

|R(x)|2dx. (29)

Observe that for every t ∈ [0, T∗), the function g(y) :=
∫
|x−y|≤a(t) |ψ(t, x)|2dx is

continuous on y ∈ RN and g(y) → 0 as |y| → ∞. So, there exists a function x(t) ∈ RN ,
such that for every t ∈ [0, T∗)

sup
y∈RN

∫
|x−y|≤a(t)

|ψ(t, x)|2dx =
∫
|x−x(t)|≤a(t)

|ψ(t, x)|2dx.

This and (29) yield (24).

Next, we study the limiting profile of the blow-up H2-solutions with critical norms.
To do so, we recall the following characterization of the ground states:

Lemma 9 (Characterization of ground states [28]). Let p = 8
N . If u ∈ H2 is such that

∥u∥L2 = G0 and

E0(u) :=
1
2
∥u∥2

Ḣ2 −
1

p + 2
∥u∥p+2

Lp+2 = 0,



Axioms 2024, 13, 191 9 of 14

then there exists R ∈ G0, such that u is of the form

u(x) = eiθλ
N
2 R(λx + x0),

for θ ∈ RN , λ > 0 and x0 ∈ RN .

Theorem 3. Let ψ0 ∈ H2, µ < 0, p = 8
N . Assume ∥ψ0∥L2 = G0 and the corresponding solution

ψ of (1) blows up in finite time T∗ > 0, then there exist R1 ∈ G0, ρ(t) > 0, x(t) ∈ RN and
θ(t) ∈ [0, 2π), such that

ρN/2(t)ψ(t, ρ(t)(·+ x(t)))eiθ(t) → R1 strongly in H2, as t → T∗. (30)

Proof. We use the notations in the proof of Theorem 2. Assume that ∥ψ0∥L2 = G0. Recall
that we have verified that ∥V∥L2 ≥ G0 in the proof of Theorem 2. Whence

G0 ≤ ∥V∥L2 ≤ lim inf
n→∞

∥vn∥L2 = lim inf
n→∞

∥ψ(tn)∥L2 = ∥ψ0∥L2 = G0,

and then,
lim

n→∞
∥vn∥L2 = ∥V∥L2 = G0, (31)

which implies
vn(·+ xn) → V strongly in L2 as n → ∞.

We infer from the inequality (8) that

∥∇(vn(·+ xn)− V)∥2
L2 ≤ C∥vn(·+ xn)− V∥L2∥∆(vn(·+ xn)− V)∥L2 .

From ∥∆vn(·+ xn)∥L2 ≤ C, we obtain

∇vn(·+ xn) → ∇V in L2 as n → ∞.

Next, we will prove that vn(·+ xn) converges to V strongly in H2. For this purpose,
we estimate as follows:

0 = lim
n→∞

|E0(vn)| =
∣∣∣∣12
∫
RN

|∆R(x)|2dx − 1
p + 2

lim
n→∞

∫
RN

|vn(x)|p+2dx
∣∣∣∣

=

∣∣∣∣12
∫
RN

|∆R(x)|2dx − 1
p + 2

∫
RN

|V(x)|p+2dx
∣∣∣∣. (32)

Thus, we infer from the inequality (9) that

1
2

∫
RN

|∆R(x)|2dx =
1

p + 2

∫
RN

|V(x)|p+2dx ≤ 1
2
∥V∥p

L2

Gp
0

∥∆V∥2
L2 =

1
2
∥∆V∥2

L2 . (33)

On the other hand, we deduce from (25) that ∥∆V∥L2 ≤ lim infn→∞ ∥∆vn(·+ xn)∥L2 =
∥∆R∥L2 . Hence, we have ∥Q∥H2 = ∥V∥H2 and

vn(·+ xn) → V strongly in H2 as n → ∞. (34)

This and (33) imply that

E0(V) =
1
2

∫
RN

|∆V(x)|2dx − 1
p + 2

∫
RN

|V(x)|p+2dx = 0.

Up to now, we have verified that

∥V∥L2 = G0 and E0(V) = 0.
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Applying Lemma 9, there exists R1 ∈ G0, such that

V(x) = eiθ R1(x + x0) f or some θ ∈ [0, 2π), x0 ∈ RN

and
ρN/2

n ψ(tn, ρn(·+ x0)) → eiθ R1(·+ x0) strongly in H2 as n → ∞.

Since the sequence {tn}∞
n=1 is arbitrary, we infer that there are two functions x(t) ∈ RN

and θ(t) ∈ [0, 2π), such that

ρN/2(t)eiθ(t)ψ(t, ρ(t)(x + x(t))) → R1 strongly in H2 as t → T∗.

3.3. The L2-Supercritical Case

In this subsection, we investigate some dynamical properties of the blow-up solu-
tions for (1) with ψ0 ∈ Ḣγc ∩ Ḣ2 in the L2-supercritical case. The main difficulty in this
consideration is the lack of conservation of mass.

Theorem 4. Let µ ∈ R, 8
N < p < 4∗, ψ0 ∈ Ḣγ ∩ Ḣ2 with γ = min{γc, 1}. If the solution ψ(t)

of (1) blows up in finite time T∗ > 0 and satisfies

sup
t∈[0,T∗)

∥ψ(t)∥Ḣγc < ∞ i f γc ≤ 1, sup
t∈[0,T∗)

∥ψ(t)∥Ḣγc∩Ḣ1 < ∞ i f 1 < γc < 2. (35)

Assume that a(t) > 0, such that

a(t)∥∆ψ(t)∥
1

2−γc
L2 → ∞, (36)

as t → T∗. Then, there exist x1(t), x2(t) ∈ RN , such that

lim inf
t→T∗

∫
|x−x1(t)|≤a(t)

|(−△)
γc
2 ψ(t, x)|2dx ≥ G2

1 , (37)

and
lim inf

t→T∗

∫
|x−x2(t)|≤a(t)

|ψ(t, x)|pc dx ≥ Gpc
2 . (38)

Remark 4. The assumption ψ0 ∈ Ḣγ ∩ Ḣ2 with γ = min{γc, 1} guarantees that the energy
E(ψ) is well-defined.

Proof. Let Q ∈ G; we set

ρ(t) = ∥∆Q∥
1

2−γc
L2 /∥∆ψ(t)∥

1
2−γc
L2 and v(t, x) = ρ

4
p (t)ψ(t, ρ(t)x).

Let {tn}∞
n=1 be an any time sequence, such that tn → T∗, ρn = ρ(tn) and vn(x) =

v(tn, x). Then, it follows from assumption (35) that vn satisfies ∥vn∥Ḣγc = ∥ψ(tn)∥Ḣγc < ∞
uniformly in n. Moreover, by some direct computations, we obtain

∥∆vn∥L2 = ρ
2−γc
n ∥∆ψ(tn)∥L2 = ∥∆Q∥L2 ,

and
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|E0(vn)| =
∣∣∣∣12
∫
RN

|∆vn(x)|2dx − 1
p + 2

∫
RN

|vn(x)|p+2dx
∣∣∣∣

=ρ
2(2−γc)
n

∣∣∣∣12
∫
RN

|∆ψ(tn, x)|2dx − 1
p + 2

∫
RN

|ψ(tn, x)|p+2dx
∣∣∣∣

=ρ
2(2−γc)
n

∣∣∣∣E(ψ(tn))−
µ

2

∫
RN

|∇ψ(tn, x)|2dx
∣∣∣∣

=
∥∆Q∥2

L2

∥∆ψ(tn)∥2
L2

∣∣∣∣E(ψ0)−
µ

2

∫
RN

|∇ψ(tn, x)|2dx
∣∣∣∣. (39)

When 0 < γc < 1, applying the inequality (8), that is

∥∇ψ(tn)∥2
L2 ≤ ∥∆ψ(tn)∥

2(1−γc)
2−γc

L2 ∥ψ(tn)∥
2

2−γc
Ḣγc , (40)

we have E0(vn) → 0 as n → ∞. When 1 ≤ γc < 2, it follows from (35) that E0(vn) → 0 as
n → ∞. These imply that ∥vn∥p+2

Lp+2 → p+2
2 ∥∆Q∥2

L2 as n → ∞.

Set mp+2 = p+2
2 ∥∆Q∥2

L2 and M = ∥∆Q∥L2 . Then, it follows from Lemma 8 that there
exist V ∈ Ḣγc ∩ Ḣ2 and {xn}∞

n=1 ⊂ RN , such that up to a subsequence,

vn(·+ xn) = ρ
4
p
n ψ(tn, ρn ·+xn) ⇀ V weakly in Ḣγc ∩ Ḣ2

with
∥V∥Ḣγc ≥ G1. (41)

By the definition of Ḣγc , we have

(−∆)
γc
2 ρ

4
p
n ψ(tn, ρn ·+xn) ⇀ (−∆)

γc
2 V weakly in L2.

Thus, for any R > 0,∫
|x|≤R

|(−∆)
γc
2 V(x)|2dx ≤ lim inf

n→∞

∫
|x−xn |≤ρnR

|(−∆)
γc
2 ψ(tn, x)|2dx.

In view of the assumption a(tn)/ρn → ∞, this implies immediately∫
|x|≤R

|(−∆)
γc
2 V|2dx ≤ lim inf

n→∞
sup

y∈RN

∫
|x−y|≤a(tn)

|(−∆)
γc
2 ψ(tn, x)|2dx.

Then, we can prove this theorem by a similar argument as that in Theorem 3. The
proof of (38) is similar, so we omit it. This completes the proof.

Let us now study the limiting profile of the blow-up Ḣγc ∩ Ḣ2 solutions with critical
norms. To do so, we recall the following characterization of the ground states.

Lemma 10 (Characterization of ground states [25]). Let 8
N < p < 4∗.

1. If u ∈ Ḣγc ∩ Ḣ2 is such that ∥u∥Ḣγc = G1 and

E0(u) :=
1
2
∥u∥2

Ḣ2 −
1

p + 2
∥u∥p+2

Lp+2 = 0,

then, u is of the form

u(x) = eiθλ
4
p Q(λx + x0),

for some Q ∈ G, θ ∈ RN , λ > 0 and x0 ∈ RN .
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2. If u ∈ Lpc ∩ Ḣ2 is such that ∥u∥Lpc = G2 and

H(u) :=
1
2
∥u∥2

Ḣ2 −
1

p + 2
∥u∥p+2

Lp+2 = 0,

then, u is of the form

u(y) = eiϑρ
4
p R(ρy + y0),

for some R ∈ K, ϑ ∈ RN , ρ > 0 and y0 ∈ RN .

Proposition 1 (Limiting profile with critical norms). Let µ ∈ R, 8
N < p < 4∗, ψ0 ∈ Ḣγ ∩ Ḣ2

with γ = min{γc, 1}, and the corresponding solution ψ(t) of (1) blows up in the finite time
T∗ > 0.

1. Assume that

sup
t∈[0,T∗)

∥ψ(t)∥Ḣγc = G1. (42)

If 1 < γc < 2, assume further that supt∈[0,T∗) ∥ψ(t)∥Ḣ1 < ∞. Then, there exists Q1 ∈ G,
θ(t) ∈ R, λ(t) > 0 and y(t) ∈ RN , such that

eiθ(t)λ
4
p (t)ψ(t, λ(t) ·+y(t)) → Q1 strongly in Ḣγc ∩ Ḣ2,

as t ↑ T∗.
2. Assume that

sup
t∈[0,T∗)

∥ψ(t)∥Ḣγc < ∞, sup
t∈[0,T∗)

∥ψ(t)∥Lpc = G2. (43)

If 1 < γc < 2, assume further that supt∈[0,T∗) ∥ψ(t)∥Ḣ1 < ∞. Then, there exist Q2 ∈
K, ϑ(t) ∈ R, ρ(t) > 0 and z(t) ∈ RN , such that

eiϑ(t)ρ
4
p (t)ψ(t, ρ(t) ·+z(t)) → Q2 strongly in Lpc ∩ Ḣ2,

as t ↑ T∗.

Proof. We only treat the first term, the second one is similar. It is enough to show that for
any (tn)n≥1 satisfying tn ↑ T∗, there exists a subsequence still denoted by (tn)n≥1, Q1 ∈ G,
sequences θn ∈ R, λn > 0 and yn ∈ RN , such that

eitθn λ
4
p
n ψ(tn, λn ·+yn) → Q1 strongly in Ḣγc ∩ Ḣ2, (44)

as n → ∞. Using the notation given in the proof of Theorem 4, we have

vn(·+ yn) = λ
4
p
n ψ(tn, λn ·+yn) ⇀ V weakly in Ḣγc ∩ Ḣ2,

as n → ∞ with ∥V∥Ḣγc ≥ G1. By the semi-continuity of weak convergence, (41) and (42),
we have

G1 ≤ ∥V∥Ḣγc ≤ lim inf
n→∞

∥vn∥Ḣγc = lim inf
n→∞

∥ψ(tn)∥Ḣγc ≤ G1.

We thus obtain

lim
n→∞

∥vn∥Ḣγc = ∥V∥Ḣγc = G1. (45)
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This shows that vn(·+ yn) → V strongly in Ḣγc as n → ∞. Using the sharp Gagliardo–
Nirenberg inequality (12), we have

vn(·+ yn) → V strongly in Lp+2,

as n → ∞. Using (39) and (45), the sharp Gagliardo–Nirenberg inequality (12) yields

∥Q∥2
Ḣ2 =

2
p + 2

lim
n→∞

∥vn∥p+2
Lp+2 =

2
p + 2

∥V∥p+2
Lp+2 ≤

(∥V∥Ḣγc

G1

)p

∥V∥2
Ḣ2 = ∥V∥2

Ḣ2 .

This combined with

∥V∥Ḣ2 ≤ lim inf
n→∞

∥vn∥Ḣ2 = ∥Q∥Ḣ2

shows that

lim
n→∞

∥vn∥Ḣ2 = ∥V∥Ḣ2 = ∥Q∥Ḣ2 . (46)

Combining (45), (46) and the fact v(·+ yn) ⇀ V weakly in Ḣγc ∩ Ḣ2, we conclude that

vn(·+ yn) → V strongly in Ḣγc ∩ Ḣ2,

as n → ∞. In particular, we have

E0(V) = lim
n→∞

E0(vn) = 0.

Therefore, we have proved that V ∈ Ḣγc ∩ Ḣ2 and satisfies

∥V∥Ḣγc = G1, E0(V) = 0.

Applying Lemma 10, there exists Q1 ∈ G, such that V(y) = eiθλ
4
p Q1(λy + y0) for

some θ ∈ R, λ > 0 and y0 ∈ RN . We thus obtain

vn(·+ yn) = λ
4
p
n ψ(tn, λn ·+yn) → V = eiθλ

4
p Q1(λ ·+y0) strongly in Ḣγc ∩ Ḣ2,

as n → ∞. Redefining variables, we prove (44). The proof is complete.
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