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Abstract: This paper studies a particular type of planar Filippov system that consists of two disconti-
nuity boundaries separating the phase plane into three disjoint regions with different dynamics. This
type of system has wide applications in various subjects. As an illustration, a plant disease model
and an avian-only model are presented, and their bifurcation scenarios are investigated. By means
of the regularization approach, the blowing up method, and the singular perturbation theory, we
provide a different way to analyze the dynamics of this type of Filippov system. In particular, the
boundary equilibrium bifurcations of such systems are studied. As a consequence, the nonsmooth
fold bifurcation becomes a saddle-node bifurcation, while the persistence bifurcation disappears
after regularization.

Keywords: Filippov system; boundary equilibrium bifurcation; regularization; blow up; singular
perturbation theory
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1. Introduction

The Filippov system has been widely applied in many subjects, such as biology, elec-
trical engineering, automatic control, and so on [1–6]. A Filippov system is a discontinuous
dynamical system composed of two or more smooth vector fields that are separated by
discontinuity boundaries [1,7]. In particular, the Filippov system consisting of one disconti-
nuity boundary that separates the phase plane into two regions has been widely studied;
see, for instance, [5,7–10]. There are also some analyses of the Filippov system with two
discontinuity boundaries separating R2 into four regions; see [11–14]. Recently, some work
on a Filippov system with two discontinuity boundaries separating R2 into three regions
attracted our attention [15,16].

The case with three regions has fruitful applications in the real world. For example,
such a Filippov plant disease model can help us understand disease transmission dynamics
and provide economic and environmentally acceptable control strategies [15]. An avian-
only model that incorporates culling off the infected and susceptible birds can also be
described by a Filippov system with two discontinuity boundaries separating R2 into three
regions [16].

The inspiration for this work is the work by Chen [15] and Yang [16], where the
stability of different types of equilibria of such a Filippov system is studied. However,
the bifurcation analysis of such systems is rare, particularly the boundary equilibrium
bifurcation. In fact, boundary equilibrium bifurcations of Filippov systems have received
more and more attention in the past decades [2,16–20]. In this work, we investigate the
boundary equilibrium bifurcations of Filippov systems with two discontinuity boundaries.
Instead of the classical Filippov convention, we choose the regularization method to
study the dynamics of such systems, which enables us to build up a relationship between
discontinuity-induced bifurcations and smooth bifurcations. The analysis of the present
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work shows that the equilibrium bifurcation either becomes a saddle-node bifurcation or
disappears after regularization.

There are different ways to regularize a Filippov system [21–27]. In this work, we chose
the method introduced by Sotomayor and Teixeira [27]. This method has already been
applied to the case where the discontinuity boundary divides R2 into two regions [28–36]
and into four regions [11,14,37]. However, according to the authors’ knowledge, they have
not been applied to the case with three regions, which have more applications in reality.

In the process of regularization, the singular perturbation theory and blowing up
technique play an important role. As we see in Section 3, the regularized system RZ can be
reduced to a singular perturbation problem after a scaling transformation. The regularized
system is characterized by two time scales, slow time t and fast time τ, which are related by
τ = t/ε. The slow-time system defines a reduced system for ε = 0 [28]. The dynamics of
the singular perturbation problem are obtained by combining the two distinguished limits
at ε = 0: the slow-time dynamics and the fast-time dynamics.

The structure of this paper is organized as follows: The next section is an overview of
the Filippov system with rich discontinuity boundaries, different types of equilibria, the
regularization method, and the geometric singular perturbation theory. Additionally, the
definition of persistence bifurcation and nonsmooth fold bifurcation are given. In Section 3,
we present the main results of this work. The bifurcation analysis of a Filippov plant disease
model and its corresponding regularization are investigated in Section 3.1. The bifurcations
and phase portraits of a Filippov avian-only model and its corresponding regularization
are presented in Section 3.2. In Section 4, we summarize the main results of this paper and
point out the future direction.

2. Preliminaries

The definition of a Filippov system that has rich boundaries, different types of equi-
libria, the regularization method, and two kinds of boundary equilibrium bifurcations is
introduced in this section.

2.1. Definition of a Filippov System with Rich Boundaries

The planar Filippov system with one discontinuity boundary that separates R2 into
two regions has been widely studied in much of the literature; see its definition, for instance,
in [3,5,38,39]. In this paper, we study the planar Filippov system with two discontinuity
boundaries that separates R2 into three regions, that is,

Z(X) =


F1(X), if X ∈ G1,
F2(X), if X ∈ G2,
F3(X), if X ∈ G3,

(1)

where X = (x, y) ∈ R2. The vector fields F1, F2, F3 are given by F1 = ( f1, g1), F2 =
( f2, g2), F3 = ( f3, g3). The discontinuity set Σ is composed of two parts:

Σ1 = {X ∈ R2 : H1(X) = 0}, Σ2 = {X ∈ R2 : H2(X) = 0, H1(X) ≥ 0},

where H1, H2 are smooth scalar functions. For instance, here, we consider H1(X) =
y − y0, H2(X) = x − x0. The intersection of the discontinuity boundaries Σ1 and Σ2 is the
point (x0, y0). The boundaries separate R2 into three regions, G1, G2, and G3, defined as

G1 = {X ∈ R2 : H1(X) < 0} = {X ∈ R2 : y < y0},

G2 = {X ∈ R2 : H1(X) > 0, H2(X) < 0} = {X ∈ R2 : y > y0, x < x0},

G3 = {X ∈ R2 : H1(X) > 0, H2(X) > 0} = {X ∈ R2 : y > y0, x > x0}.
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For convenience, we use the following notations in the subsequent discussion:

Σ+,y0 = {(x, y0)|x > x0}, Σ−,y0 = {(x, y0)|x < x0},

Σx0,+ = {(x0, y)|y > y0}, Σx0,y0 = {(x0, y0)}.

Notice that Σ1 = Σ+,y0 ∪ Σ−,y0 ∪ Σx0,y0 and Σ2 = Σx0,+ ∪ Σx0,y0 . The distribution of
R2 by the discontinuity boundaries is presented in Figure 1.

x

y

S-,y0 S+,y0

S x0 ,+

S x0 ,y0

G3G2

G1

Figure 1. The discontinuity set separates R2 into three regions G1, G2, G3.

With the above notations, Z(X) can be rewritten as the general Filippov system
Z(X) = (Z1(X), Z2(X), Z3(X)), where

Z1(X) =

{
F1(X), if X ∈ G1,
F3(X), if X ∈ G3,

with the discontinuity boundary Σ+,y0 ,

Z2(X) =

{
F1(X), if X ∈ G1,
F2(X), if X ∈ G2,

with the discontinuity boundary Σ−,y0 , and

Z3(X) =

{
F2(X), if X ∈ G2,
F3(X), if X ∈ G3,

with the discontinuity boundary Σx0,+. The dynamics of Z in G1, G2, and G3 are defined
by the flows of F1, F2, and F3, respectively. The dynamics of the discontinuity boundaries
are defined in the usual way. Here, we take the subsystem Z3 as an example to define its
dynamics when X ∈ Σx0,+. Following [1], the boundary Σx0,+ is divided into the following:

• The sliding region: Σs
x0,+ = {X ∈ Σx0,+ : (H2F2(X)) · (H2F3(X)) ≤ 0},

• The crossing region: Σc
x0,+ = {X ∈ Σx0,+ : (H2F2(X)) · (H2F3(X)) > 0},

where H2Fi =

(
∂H2

∂x
,

∂H2

∂y

)
· ( fi, gi), i = 2, 3.

On the sliding region Σs
x0,+, the sliding vector field F23 is defined by the Filippov’s

convex method [7] as
F23 = (1 − λ23)F2 + λ23F3, (2)
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where

λ23(X) =
H2F2(X)

H2(F2 − F3)(X)
, 0 ≤ λ23 ≤ 1.

In a similar way, the sliding vector fields F12 and F13 are defined as

F12 = (1 − λ12)F1 + λ12F2 with λ12(X) =
H1F1(X)

H1(F1 − F2)(X)
,

F13 = (1 − λ13)F1 + λ13F3 with λ13(X) =
H1F1(X)

H1(F1 − F3)(X)
.

2.2. Definition of Equilibria

This part distinguishes different types of equilibria in the Filippov system (1).

Definition 1 (Admissible equilibrium). A point X ∈ G = G1 ∪ G2 ∪ G3 is an admissible
equilibrium of (1) if

Fi(X) = 0, X ∈ Gi,

where i = 1, 2, 3.

Definition 2 (Pseudo-equilibrium). A point X̃ is a pseudoequilibrium of (1) if it is an equilibrium
of the sliding vector fields F12, F13, or F23, i.e.,

F12(X̃) = 0, X̃ ∈ Σs
−,y0

,

or
F13(X̃) = 0, X̃ ∈ Σs

+,y0
,

or
F23(X̃) = 0, X̃ ∈ Σs

x0,+.

Here, Σs
−,y0

, Σs
+,y0

denote the sliding region on the boundary Σ−,y0 , Σ+,y0 , respectively.

Definition 3 (Boundary equilibrium). A point X̂ is termed as a boundary equilibrium of (1) on
Σ−,y0 if

F1(X̂) = 0 and H1(X̂) = 0,

or F2(X̂) = 0 and H1(X̂) = 0;

a boundary equilibrium on Σ+,y0 if

F1(X̂) = 0 and H1(X̂) = 0,

or F3(X̂) = 0 and H1(X̂) = 0;

a boundary equilibrium on Σx0,+ if

F2(X̂) = 0 and H2(X̂) = 0,

or F3(X̂) = 0 and H2(X̂) = 0.

2.3. Description of the Regularization Method

The regularization method provides a different way to study the dynamics of Filippov
systems. The regularization of a Filippov system is a smooth approximation of the Filippov
system that removes the discontinuities. Therefore, the regularization makes it possible to
construct a relationship between the Filippov systems and smooth systems.

In this section, we briefly review the regularization method proposed in [27]. It
should be noticed that for system (1), the discontinuity boundary loses smoothness at the
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intersection point (x0, y0). It needs additional blow-up before applying the regularization
method, which is shown more detail in Section 3.

Definition 4. A C∞ function φ : R → R is a transition function if φ(x) = −1 for x ≤ −1,
φ(x) = 1 for x ≥ 1 and φ′(x) > 0 if x ∈ (−1, 1).

Given a Filippov system

Z(X) =

{
F(X), if H(X) < 0,
G(X), if H(X) > 0,

(3)

where H(X) is a smooth scalar function, and the discontinuity boundary is Σ = {X ∈ R2 :
H(X) = 0}, the regularization of (3) is a 1-parameter family given by

RZ(X) =

(
1
2
+

φε(H(X))

2

)
G(X) +

(
1
2
− φε(H(X))

2

)
F(X), (4)

with φε(x) = φ
( x

ε

)
for ε > 0.

2.4. Geometric Singular Perturbation Theory

Geometric singular perturbation theory (GSPT) is an important tool in the field of
continuous dynamical systems. A singular perturbation problem in R2 is a differential
system which can be written as

x′ = dx/dτ = f (x, y, ε), y′ = dy/dτ = εg(x, y, ε), (5)

or equivalently, after the time rescaling t = ετ,

εẋ = dx/dt = f (x, y, ε), ẏ = dy/dt = g(x, y, ε), (6)

where (x, y) ∈ R2, f , g are smooth functions. Here, system (5) is called the fast system.
System (6) is called the slow system. Observe that for ε > 0, the phase portraits of the fast
and the slow systems coincide. When ε = 0, the set

M = {(x, y) : f (x, y, 0) = 0} (7)

consists of all the equilibria of the fast system. We call M the slow manifold of the singular

perturbation problem. A point p ∈ M is said to be normally hyperbolic if
∂ f
∂x

∣∣∣∣
p
̸= 0.

Notice that when ε = 0, the slow system defines a dynamical system on M, called the
reduced problem:

f (x, y, 0) = 0, ẏ = g(x, y, 0). (8)

Combining results on the dynamics of these two limiting problems, one obtains
information on the dynamics for small values of ε; more details are provided in [28].

2.5. Description of the Boundary Equilibrium Bifurcations

The two types of boundary equilibrium bifurcations discussed in this work are given
here. More details about these bifurcations can be found in [1,20,40].

• Boundary Equilibrium Bifurcations:

1. Persistence:
A branch of admissible equilibria firstly turns into a boundary equilibrium, and
then a branch of pseudoequilibria as the parameter varies;

2. Nonsmooth fold bifurcation:
A branch of admissible equilibria collides with a pseudoequilibrium, then be-
comes a boundary point, and then both disappear as the parameter varies.
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3. Main Results and Examples

Since system (1) is composed of several parts of boundaries, that is, Σ = Σ+,y0 ∪
Σ−,y0 ∪ Σx0,+ ∪ Σx0,y0 , we have to apply the regularization method to each part separately.
Notice that the boundaries lose smoothness at Σx0,y0 , or the point (x0, y0), so this point
needs additional consideration, which is explained by specific examples in the next section.
Here, we only present the formula for regularizing system (1) at the boundaries Σ+,y0 ,
Σ−,y0 , and Σx0,+.

Recall that system (1) can be written as Z(X) = (Z1(X), Z2(X), Z3(X)) with the
boundaries Σ+,y0 , Σ−,y0 , Σx0,+. Next, we apply the regularization method in [27] to the
subsystems Z1(X), Z2(X), and Z3(X).

1. For the subsystem Z1 with the boundary y = y0, x > x0, its regularization is given by

RZ1 =

[
1
2
+

1
2

φ

(
y − y0

ε

)]
F3(x, y) +

[
1
2
− 1

2
φ

(
y − y0

ε

)]
F1(x, y). (9)

2. For Z2 with the boundary y = y0, x < x0, its regularization is

RZ2 =

[
1
2
+

1
2

φ

(
y − y0

ε

)]
F2(x, y) +

[
1
2
− 1

2
φ

(
y − y0

ε

)]
F1(x, y). (10)

3. For Z3 with the boundary x = x0, y > y0, its regularization is

RZ3 =

[
1
2
+

1
2

φ

(
x − x0

ε

)]
F3(x, y) +

[
1
2
− 1

2
φ

(
x − x0

ε

)]
F2(x, y). (11)

For the subsystem RZ1 , assuming u = (y − y0)/ε, system (9) can be written as a
singular perturbation problem

d
dt

(
x
εu

)
=


1
2
( f1(x, y) + f3(x, y)) +

φ(u)
2

( f3(x, y)− f1(x, y))

1
2
(g1(x, y) + g3(x, y)) +

φ(u)
2

(g3(x, y)− g1(x, y))

. (12)

By rescaling time by τ = t/ε, system (12) becomes

d
dτ

(
x
u

)
=

ε

[
1
2
( f1(x, y) + f3(x, y)) +

φ(u)
2

( f3(x, y)− f1(x, y))
]

1
2
(g1(x, y) + g3(x, y)) +

φ(u)
2

(g3(x, y)− g1(x, y))

. (13)

The slow manifold M1 is given by

M1 =

{
(u, y) :

1
2
(g1(x, y) + g3(x, y)) +

φ(u)
2

(g3(x, y)− g1(x, y)) = 0
}

.

Then, the slow system (12) defines a dynamical system on M1

(
dx/dt

0

)
=


1
2
( f1(x, y) + f3(x, y)) +

φ(u)
2

( f3(x, y)− f1(x, y))

1
2
(g1(x, y) + g3(x, y)) +

φ(u)
2

(g3(x, y)− g1(x, y))

.

In a similar way, we derive the slow manifold M2 for system RZ2

M2 =

{
(u, y) :

1
2
(g1(x, y) + g2(x, y)) +

φ(u)
2

(g2(x, y)− g1(x, y)) = 0
}

,
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and the reduced problem

(
dx/dt

0

)
=


1
2
( f1(x, y) + f2(x, y)) +

φ(u)
2

( f2(x, y)− f1(x, y))

1
2
(g1(x, y) + g2(x, y)) +

φ(u)
2

(g2(x, y)− g1(x, y))

.

For system (11), suppose v = (x − x0)/ε, then it becomes

d
dt

(
εv
y

)
=


1
2
( f2(x, y) + f3(x, y)) +

φ(v)
2

( f3(x, y)− f2(x, y))

1
2
(g2(x, y) + g3(x, y)) +

φ(v)
2

(g3(x, y)− g2(x, y))

. (14)

Rescaling time by τ = t/ε, system (14) becomes

d
dτ

(
v
y

)
=


1
2
( f2(x, y) + f3(x, y)) +

φ(v)
2

( f3(x, y)− f2(x, y))

ε

[
1
2
(g2(x, y) + g3(x, y)) +

φ(v)
2

(g3(x, y)− g2(x, y))
]
. (15)

The slow manifold M3 is given by

M3 =

{
(v, y) :

1
2
( f2(x, y) + f3(x, y)) +

φ(v)
2

( f3(x, y)− f2(x, y)) = 0
}

.

The reduced problem is

(
0

dy/dt

)
=


1
2
( f2(x, y) + f3(x, y)) +

φ(v)
2

( f3(x, y)− f2(x, y))

1
2
(g2(x, y) + g3(x, y)) +

φ(v)
2

(g3(x, y)− g2(x, y))

.

Comparing the singular perturbation problem with Filippov system (1), we have the
following results.

Theorem 1 ([14]). For the Filippov system Zi(X) and its regularization RZi (X), the trajectories
of RZi (X) are the solutions of a singular perturbation problem. The sliding region is homeomorphic
to the slow manifold, and the sliding vector field Fj is homeomorphic to the reduced problem on Mi,
i = 1, 2, 3, j = 13, 12, 23.

Subsequently, we take two specific examples to illustrate the regularization of the
Filippov system with rich discontinuity boundaries.

3.1. The Filippov Plant Disease Model

Plant diseases are currently one of the major threats to crop production and the world-
wide economy [41,42]. Many different measures have been implemented to control plant
diseases, such as the use of chemicals [43], rogue infected trees [44], and the removal of
infected branches [45]. In order to understand the disease transmission dynamics and
provide economic and environmentally acceptable control strategies, many mathematical
models have been constructed [46]. More recently, a Filippov plant disease model that in-
corporates cutting off infected branches and replanting susceptible trees has been built [15].
The model [15] is constructed based on the following regulations:

1. When y < y0, no control strategy is taken;
2. When y > y0, x < x0, infected branches are cut off at a rate of c1 > 0, and disease-free

trees are replanted at a rate of d > 0;
3. When y > y0, x > x0, infected branches are removed at a rate of c2 > 0,
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which can be written as a Filippov system with two boundaries:

Z(X) =


F1(X), if X ∈ G1,
F2(X), if X ∈ G2,
F3(X), if X ∈ G3,

(16a)

where

F1(x, y) = (ax − βxy − ηx, βxy − δy),

F2(x, y) = (ax − βxy − ηx + dx + c1y, βxy − δy − c1y),

F3(x, y) = (ax − βxy − ηx + c2y, βxy − δy − c2y),

(16b)

and

G1 = {(x, y)|y < y0}, G2 = {(x, y)|x < x0, y > y0}, G3 = {(x, y)|x > x0, y > y0}. (16c)

The discontinuity set Σ consists of two parts:

Σ1 = {X ∈ R2 : y − y0 = 0}, Σ2 = {X ∈ R2 : x − x0 = 0, y − y0 ≥ 0}.

Here, x > 0, y > 0, respectively, represent the number of susceptible and infected trees.
a is the planting rate and a > η > 0. β > 0 is the transmission rate. η > 0, δ > 0 denote the
death rate of the susceptible and infected trees, respectively. x0 > 0, y0 > 0, respectively,
denote the susceptible threshold value and the infected threshold level.

3.1.1. Equilibria and Bifurcation

It is simple to check whether system (16) has two equilibria in region Gi: a saddle
equilibrium E0(0, 0) and an equilibrium Ei, i = 1, 2, 3, which can be expressed as

E1 = (x1, y1) =

(
δ

β
,

a − η

β

)
;

E2 = (x2, y2) =

(
δ + c1

β
,
(a − η + d)(δ + c1)

βδ

)
;

E3 = (x3, y3) =

(
δ + c2

β
,
(a − η)(δ + c2)

βδ

)
.

By straightforward computation, E1 is a center, while the equilibrium Ei in region Gi
is globally asymptotically stable, i = 2, 3.

In [15], the authors discuss the stability of all equilibria of 16 different cases based on
the values of xi and yi, i = 0, 1, 2, 3. Instead of the discussion of stability, we focus on the
bifurcation analysis in this work. Only the case under the condition

x0 < x1 < x3 < x2 with y0 < y1 < y3 < y2, or y1 < y0 < y3 < y2,

or y1 < y3 < y0 < y2, or y1 < y3 < y2 < y0
(17)

is analyzed; the other cases are similar, so we omit their analysis here. Furthermore, for our
analysis, the condition

βx0 − c2 ≤ 0, c1 > c2, a > η (18)

is required.

Proposition 1. A nonsmooth fold bifurcation occurs in system (16) under condition (17). Specifi-
cally, the following is performed:

1. When x0 < x1 < x3 < x2 and y1 < y0 < y3 < y2, system (16) has an asymptotically
stable focus, a center equilibrium, and a pseudosaddle;
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2. When x0 < x1 < x3 < x2 and y0 = y3, the center equilibrium is preserved, while the
other two points collide and turn into a boundary equilibrium of the vector field F3;

3. When x0 < x1 < x3 < x2 and y0 > y3, system (16) only has a center equilibrium.

The proof for the existence and stability of each equilibrium is derived from the work
in [15]. Then, it is direct to derive the proof of this proposition.

Next, we study the regularization of the plant disease system (16).

3.1.2. Regularization

Definition 5 (Simple discontinuity [11]). Assuming that there exists a polynomial function
T such that T−1(0) = Σ1 ∪ Σ2, we say that p ∈ T−1(0) is a simple discontinuity of Z if p is a
regular point of T, that is,

▽T(p) =
(

∂T
∂x

(p),
∂T
∂y

(p)
)
̸= (0, 0).

According to Definition 5 and taking T = (x − x0)(y − y0), the discontinuity set Σ
of system (16) can be divided into the simple discontinuity Σ+,y0 ∪ Σ−,y0 ∪ Σx0,+ and the
nonsimple discontinuity Σx0,y0 . The meaning of these notations is referred to Section 2.1.
Subsequently, the regularization method [27] is applied separately to each part of the
discontinuity set of the Filippov plant disease model (16).

• Case I.
For the nonsimple discontinuity Σx0,y0 , we first transform it into a simple discontinuity.
To this end, we consider the map

ϕ : S1 ×R+ → R2, ϕ(θ, r) = (x0 + r cos θ, y0 + r sin θ). (19)

Then, the discontinuous vector field induced by ϕ on S1 ×R+ has only simple discon-
tinuities, and it is determined by the smooth vector fields Fi on ϕ−1(Gi), i = 1, 2, 3; see
Figure 2. More details about the map ϕ are provided in [11,14,47].

Φ

(x0, y0)

G1 Φ−1(G1)

G2 Φ−1(G2)G3 Φ−1(G3)

�π

π/2

Figure 2. There is a nonsimple discontinuity (x0, y0) on the left. There are only simple discontinuities
on the right.

The dynamics of the point (x0, y0) are given by the map ϕ with r = 0. In the new
coordinates (r, θ), it is direct to compute

rθ̇ = − fi sin θ + gi cos θ.

After performing the time scaling t = rτ, then

θ′ = − fi sin θ + gi cos θ,
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where Fi = ( fi, gi), i = 1, 2, 3. Substituting the specific form of ( fi, gi), for 0 < θ < π/2,
F3(x, y) = ( f3, g3) = (ax − βxy− ηx + c2y, βxy− δy− c2y), the dynamics are given by

θ′ = cos θ(βx0y0 − δy0 − c2y0)− sin θ(ax0 − βx0y0 − ηx0 + c2y0);

for π/2 < θ < π, F2(x, y) = ( f2, g2) = (ax − βxy − ηx + dx + c1y, βxy − δy − c1y),
the dynamics are

θ′ = cos θ(βx0y0 − δy0 − c1y0)− sin θ(ax0 − βx0y0 − ηx0 + dx0 + c1y0);

for π < θ < 2π, F1(x, y) = ( f1, g1) = (ax − βxy − ηx, βxy − δy), the dynamics are

θ′ = cos θ(βx0y0 − δy0)− sin θ(ax0 − βx0y0 − ηx0).

Except for the nonsimple discontinuity Σx0,y0 , the regularization method [27] can be
applied to the other boundaries directly.

• Case II.
For the Filippov system

Z1(x, y) =
{

F1(x, y), (x, y) ∈ G1,
F3(x, y), (x, y) ∈ G3,

with the boundary Σ+,y0 = {(x, y0)|y = y0, x > x0}. Applying the regularization
approach [27], the regularized vector field is

RZ1 =

[
1
2
+

1
2

φ

(
y − y0

ε

)]
F3(x, y) +

[
1
2
− 1

2
φ

(
y − y0

ε

)]
F1(x, y). (20)

That is,

ẋ =

[
1
2
+

1
2

φ

(
y − y0

ε

)]
(ax − βxy − ηx + c2y) +

[
1
2
− 1

2
φ

(
y − y0

ε

)]
(ax − βxy)

−
[

1
2
− 1

2
φ

(
y − y0

ε

)]
ηx

=ax − βxy − ηx +
c2y
2

+
c2y
2

φ

(
y − y0

ε

)
,

ẏ =

[
1
2
+

1
2

φ

(
y − y0

ε

)]
(βxy − δy − c2y) +

[
1
2
− 1

2
φ

(
y − y0

ε

)]
(βxy − δy)

=βxy − δy − c2y
2

− c2y
2

φ

(
y − y0

ε

)
.

(21)
System (21) can be transformed into a singular perturbation problem by

y = y0 + η cos ψ, ε = η sin ψ, (22)

where η ≥ 0 and ψ ∈ [0, π], which is

ηψ̇ =− sin ψ

[
βx(y0 + η cos ψ)− δ(y0 + η cos ψ)− c2(y0 + η cos ψ)

2

− c2(y0 + η cos ψ)

2
φ(cot ψ)

]
,

ẋ =ax − βx(y0 + η cos ψ)− ηx

+
c2(y0 + η cos ψ)

2
+

c2(y0 + η cos ψ)

2
φ(cot ψ).
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Now, ε = 0 is represented by η = 0. The slow manifold is given by M1 ={
(x, ψ) ∈ R× (0, π) : − sin ψ

[
βxy0 − δy0 −

c2y0

2
− φ(cot ψ)

2
c2y0

]
= 0

}
, i.e.,

φ(cot ψ) =
2βxy0 − 2δy0 − c2y0

c2y0
=

2βx − 2δ − c2

c2
. The slow manifold is a curve that

connects (x, ψ) =

(
δ + c2

β
, 0
)

and (x, ψ) =

(
δ

β
, π

)
.

• Case III.
For the Filippov system

Z2(x, y) =
{

F1(x, y), (x, y) ∈ G1,
F2(x, y), (x, y) ∈ G2,

with the boundary Σ−,y0 = {(x, y0)|y = y0, x < x0}, its regularized system is

RZ2 =

[
1
2
+

1
2

φ

(
y − y0

ε

)]
F2(x, y) +

[
1
2
− 1

2
φ

(
y − y0

ε

)]
F1(x, y), (23)

i.e.,

ẋ = ax − βxy − ηx +
dx + c1y

2
+

dx + c1y
2

φ

(
y − y0

ε

)
,

ẏ = βxy − δy − c1y
2

− c1y
2

φ

(
y − y0

ε

)
.

(24)

After performing transformation (22), system (24) is transformed into a singular
perturbation problem:

ηψ̇ =− sin ψ

[
βx(y0 + η cos ψ)− δ(y0 + η cos ψ)− c1(y0 + η cos ψ)

2

− c1(y0 + η cos ψ)

2
φ(cot ψ)

]
,

ẋ =ax − βx(y0 + η cos ψ)− ηx +
dx + c1(y0 + η cos ψ)

2
+

dx
2

φ(cot ψ)

+
c1(y0 + η cos ψ)

2
φ(cot ψ).

For ε = 0, the slow manifold is given by

M2 =
{
(x, ψ) ∈ R× (0, π) : − sin ψ

[
βxy0 − δy0 −

c1y0

2
− c1y0

2
φ(cot ψ)

]
= 0

}
,

i.e., φ(cot ψ) =
2βx − 2δ − c1

c1
. Since our discussion is under the condition 0 < x < x0

and x0 < x1 < x3 < x2, it gives φ(cot ψ) < −1. Thus, there is no slow manifold.
• Case IV.

For the Filippov system

Z3(x, y) =
{

F2(x, y), (x, y) ∈ G2,
F3(x, y), (x, y) ∈ G3,

with the boundary Σx0,+ = {(x0, y)|x = x0, y > y0}, the regularized system is

RZ3 =

[
1
2
+

1
2

φ

(
x − x0

ε

)]
F3(x, y) +

[
1
2
− 1

2
φ

(
x − x0

ε

)]
F2(x, y), (25)
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i.e.,

ẋ = ax − βxy − ηx +
dx + c1y + c2y

2
+

c2y − dx − c1y
2

φ

(
x − x0

ε

)
,

ẏ = βxy − δy − c1y + c2y
2

+
c1y − c2y

2
φ

(
x − x0

ε

)
.

(26)

After performing the transformation

x = x0 + η cos ψ, ε = η sin ψ, (27)

where η ≥ 0 and ψ ∈ [0, π], system (26) is changed into a singular perturbation
problem

ηψ̇ =− sin ψ

[
a(x0 + η cos ψ)− β(x0 + η cos ψ)y − η(x0 + η cos ψ) +

dη cos ψ

2

+
c1y + c2y + dx0

2
+

(c2y − c1y − d(x0 + η cos ψ))

2
φ(cot ψ)

]
,

ẏ =β(x0 + η cos ψ)y − δy − c1y + c2y
2

+
c1y − c2y

2
φ(cot ψ).

For ε = 0, the slow manifold is given by

M3 =
{
(ψ, y) ∈ (0, π)×R :

− sin ψ

[
ax0 − βx0y − ηx0 +

dx0

2
+

c1y + c2y
2

+
c2y − dx0 − c1y

2
φ(cot ψ)

]
= 0

}
,

i.e., φ(cot ψ) =
2ax0 − 2βx0y − 2ηx0 + dx0 + c1y + c2y

c1y + dx0 − c2y
. Taking account of condi-

tion (18), it gives φ(cot ψ) > 1, so the slow manifold does not exist.

Based on the above analysis, the plane R2 has now been divided into seven regions
after blowing up the origin and applying the regularization approach; see Figure 3.

G1

G2 G3

I1I2

I3

Figure 3. The blowing up and regularization approach separates R2 into seven regions G1, G2, G3, I1,
I2, I3, and the circle.

Concerning the nonsmooth fold bifurcation that occurred in the Filippov system (16),
after regularization, we have the following results.
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Proposition 2. A saddle-node bifurcation occurs in the regularized system of (16).

Proof. An equilibrium (ordinary equilibrium, boundary equilibrium, or pseudoequilibrium)
of the Filippov system Z remains an equilibrium of its regularization RZ with the same type
of stability [27]. For the three cases of the nonsmooth fold bifurcation, it is straightforward
to derive the following results:

1. When x0 < x1 < x3 < x2 and y1 < y0 < y3 < y2, the stable focus in region G3 and the
center equilibrium in region G1 are preserved, while the pseudosaddle point on Σ+,y0

becomes a saddle in region I1 after regularization;
2. When x0 < x1 < x3 < x2 and y0 = y3, the center equilibrium in region G1 is preserved.

After regularization, the boundary equilibrium of F3,
(

δ+c2
β , y0

)
, is preserved but

located at
(

δ+c2
β , y

)
, where y0 − ε < y < y0 + ε;

3. When x0 < x1 < x3 < x2 and y0 > y3, the regularized system Rε only has a center
equilibrium in region G1.

In the entire process, as y0 varies, the center stays unchanged, while the focus and the
saddle collide and then disappear. Thus, a saddle-node bifurcation occurs.

In the next section, we assign specific parameter values to the Filippov system (16)
and its regularization, which helps us observe the difference in the dynamical behavior
between the Filippov system (16) and its regularized system.

3.1.3. Simulation Results

The simulation results with the fixed parameter values a = 1, β = 0.5, η = 0.3,
δ = 0.5, d = 0.2, c1 = 0.6, c2 = 0.55, x0 = 0.6 are show in Figure 4. It is simple to observe
that an admissible focus (2.1, 2.94) collides with the pseudosaddle (10/7, 2), and then both
disappear, while the center equilibrium (1, 7/5) remains unchanged as y0 varies. Therefore,
a nonsmooth fold bifurcation occurs.

x

y

(a)

x

y

(b)

x

y

(c)

Figure 4. Nonsmooth fold bifurcation. Parameters are fixed at (a) y0 = 2, (b) y0 = 2.94, (c) y0 = 3.

Under the chosen parameter values, the Filippov system (16) becomes

Z(x, y) =


F1(x, y), (x, y) ∈ G1,
F2(x, y), (x, y) ∈ G2,
F3(x, y), (x, y) ∈ G3,

(28a)

where

F1(x, y) = (x − 0.5xy − 0.3x, 0.5xy − 0.5y),

F2(x, y) = (x − 0.5xy − 0.3x + 0.2x + 0.6y, 0.5xy − 0.5y − 0.6y),

F3(x, y) = (x − 0.5xy − 0.3x + 0.55y, 0.5xy − 0.5y − 0.55y).

(28b)

Considering each part of the discontinuity set, we have the following results.
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• Case I.
Compared with the analysis in Section 3.1.2, the dynamics of the singular point Σx0,y0

can be discussed in three different regions.
For 0 < θ < π/2,

θ′ = cos θ(0.5x0y0 − 0.5y0 − 0.55y0)− sin θ(x0 − 0.5x0y0 − 0.3x0 + 0.55y0);

For π/2 < θ < π,

θ′ = cos θ(0.5x0y0 − 0.5y0 − 0.6y0)− sin θ(x0 − 0.5x0y0 − 0.3x0 + 0.2x0 + 0.6y0);

For π < θ < 2π,

θ′ = cos θ(0.5x0y0 − 0.5y0)− sin θ(x0 − 0.5x0y0 − 0.3x0).

• Case II.
In region I1, the slow manifold is given by

M1 =

{
(x, ψ) ∈ R× (0, π) : − sin ψ

[
0.5xy0 − 0.5y0 −

0.55y0

2
− 0.55y0

2
φ(cot ψ)

]
= 0

}
,

which is a curve that connects (x, ψ) = (2.1, 0) and (x, ψ) = (1, π). However, the
point (1, π) is not normally hyperbolic since

∂

∂ψ

[
− sin ψ(0.5xy − 0.5y − 0.55y

2
− 0.55y

2
φ(cot ψ))

]∣∣∣∣
(1,π)

= 0.

Therefore, it needs additional blow-up. First of all, this point is translated to the
origin by (x1, ψ1) = (x − 1, ψ − π). Then, we perform the blowing up ψ1 = s sin ϑ,
x1 = s cos ϑ with s ≥ 0 and ϑ ∈ [π, 2π]. With the new coordinates, it gives the
following:

s′ = − sin(s sin ϑ + π) sin ϑG(s, ϑ), ϑ′ = −cos ϑ sin(s sin ϑ + π)

s
G(s, ϑ),

where G(s, ϑ) = 0.5(s cos ϑ + 1)y − 0.5y − 0.55y
2

− 0.55y
2

φ(cot(s sin ϑ + π)). It is easy

to check that G(0, ϑ) = 0 and
∂G
∂s

= 0.5y cos ϑ. Since lims→0
ϑ′

s
= 0.5y cos2 ϑ sin ϑ, the

angle component on the blowing up locus is decreasing for ϑ ∈ [π, 2π].
• Case III.

In region I2, the slow manifold does not exist.
• Case IV.

In region I3, the slow manifold does not exist.

Now, we look at the global dynamics of the regularized system of (28) as the parameter
y0 varies. Recall that the plane R2 has been divided into seven regions after regularization.
Next, we describe the dynamics of each region. First of all, for all the cases, the dynamics
of the regularized system in G1, G2, G3 are defined by the dynamics of F1, F2, F3 in the
respective region. In region I2, there is no equilibrium, and the flow is smoothly connected
to the flows of G1 and G2. The flow in region I3 smoothly connects to the flows of G2 and G3.
Subsequently, we consider the dynamics for the other regions for the three cases discussed
in Proposition 3.

• For the case y1 < y0 < y3 < y2, choosing y0 = 2 since y3 = 2.94 under the chosen
parameter values, from the analysis of case I, we have the following on the circle:

1. When 0 < θ < π/2, θ′ = −0.92 sin θ − 1.5 cos θ < 0. Thus, θ is decreasing;
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2. When π/2 < θ < π, θ′ = −1.14 sin θ − 1.6 cos θ. Then, θ′ < 0 for π/2 < θ < θ0,
while θ′ > 0 for θ0 < θ < π. Here θ0 is given by θ′|θ=θ0 = 0;

3. When π < θ < 2π, θ′ = 0.18 sin θ − 0.4 cos θ. Then, θ′ > 0 for π < θ < θ0, while
θ′ < 0 for θ0 < θ < 3π/2, where θ0 is defined as the same as the previous case.
When 3π/2 < θ < 2π, θ′ < 0.

In region I1, from the analysis of case II, it is easy to compute that the reduced problem

has an equilibrium at (x, ψ) = (10/7, ψ0), and φ(cot ψ0) = − 85
385

. The flow goes in

the positive direction of the x-axis if ψ ∈ (0, ψ0) and in the negative direction of the
x-axis if ψ ∈ (ψ0, π); see Figure 5a.

• When y0 = y3 = 2.94, on the circle, we have the following:

1. When 0 < θ < π/2, θ′ = −1.155 sin θ − 2.205 cos θ < 0;

2. When π/2 < θ < π, θ′ = −1.422 sin θ − 2.352 cos θ. Then, θ′ < 0 for π/2 < θ <
θ0, while θ′ > 0 for θ0 < θ < π, where θ′|θ=θ0 = 0;

3. When π < θ < 2π, θ′ = 0.462 sin θ − 0.588 cos θ. Therefore, θ′ > 0 for π < θ <
θ0, while θ′ < 0 for θ0 < θ < 3π/2. For 3π/2 < θ < 2π, θ′ < 0.

In region I1, the reduced problem has one equilibrium at (x, ψ) = (2.1, 0). The vector
points to the negative direction of the x-axis on the slow manifold.

• When y0 > y3, for instance, y0 = 3, then on the circle, we have the following:

1. When 0 < θ < π/2, θ′ = −1.17 sin θ − 2.25 cos θ < 0;

2. When π/2 < θ < π, θ′ = −1.44 sin θ − 2.4 cos θ. Then, θ′ < 0 for π/2 < θ < θ0,
while θ′ > 0 for θ0 < θ < π;

3. When π < θ < 2π, θ′ = 0.48 sin θ − 0.6 cos θ. For this case, when π < θ < 3π/2,
sin θ < 0, cos θ < 0, there is a θ0 that θ′ = 0. Then, θ′ > 0 for π < θ < θ0, while
θ′ < 0 for θ0 < θ < 3π/2. When 3π/2 < θ < 2π, sin θ < 0, cos θ > 0, we have
θ′ < 0.

In region I1, the reduced problem has no equilibrium, and the vector of the slow
manifold points to the negative direction of the x-axis; see Figure 5c.

(a) (b) (c)

Figure 5. Phase portrait of the regularization of system (28). The semicylinder represents the blowing
up locus and the flows with a simple arrow and with a double arrow represent the slow and fast
systems, respectively. Generated by (a) y0 = 2, (b) y0 = 2.94, (c) y0 = 3.

3.2. The Filippov Avian-Only Model

Influenza is the most diversified in birds, particularly in wild waterfowl. Outbreaks of
avian influenza in domestic poultry could, through a process of genetic reassortment, muta-
tion, or both, introduce new influenza subtypes into the human population. In the context
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of widespread susceptibility, such an event could be the precursor of a pandemic. Since
there is no cure for avian influenza, recommendations for precautions are both necessary
and reasonable during poultry outbreaks. Many different types of mathematical models
have been proposed for comparing interventions aimed at preventing and controlling an
influenza pandemic [48–50]. Among all the preventative strategies, they have found that
culling infected birds and those in contact with them is an effective method to control the
spread [12,16,51]. Recently, an avian-only model has been constructed that incorporates
culling only the infected birds, or both the infected and susceptible birds, depending on
whether the numbers of infected and susceptible birds exceed the economic threshold
values or not. The specific rules are as follows:

1. When y < y0, no control strategy is taken;
2. When y > y0, x < x0, infected birds are culled at a rate of c2;
3. When y > y0, x > x0, infected birds are culled at a rate of c3 and, meanwhile,

susceptible birds are culled at a rate of c1,

Therefore, an avian-only model can be described by the following Filippov system:

Z(X) =


F1(X), if X ∈ G1,
F2(X), if X ∈ G2,
F3(X), if X ∈ G3,

(29a)

with

F1(x, y) =
(

rx
(

1 − x
K

)
− βxy, βxy − µy − dy

)
,

F2(x, y) =
(

rx
(

1 − x
K

)
− βxy, βxy − µy − dy − c2y

)
,

F3(x, y) =
(

rx
(

1 − x
K

)
− βxy − c1x, βxy − µy − dy − c3y

)
,

(29b)

in regions

G1 = {(x, y)|y < y0}, G2 = {(x, y)|x < x0, y > y0}, G3 = {(x, y)|x > x0, y > y0}. (29c)

The discontinuity set Σ = Σ1
⋃

Σ2 is defined the same as in Section 3.1, where

Σ1 = {X ∈ R2 : y − y0 = 0}, Σ2 = {X ∈ R2 : x − x0 = 0, y − y0 ≥ 0}.

Here, x and y represent the numbers of susceptible and infected birds. β > 0 denotes
the transmission rate. µ > 0 is the natural death rate. d > 0 is the disease-related death
rate. Notice that the susceptible birds are assumed to be subject to logistic growth, where r
is the intrinsic growth rate and K is the maximal carrying capacity. x0, y0 > 0 denote the
respective susceptible threshold value and the infected threshold level. r > c1, c2 < c3 and
c1, c2, c3 > 0.

3.2.1. Equilibria and Bifurcation

System (29) in region Gi has two types of equilibria: the disease-free equilibria E1
i0, E2

i0
and the endemic equilibrium Ei, i = 1, 2, 3, which can be expressed as
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E1
10 = (0, 0), E2

10 = (K, 0),

E1 = (x1, y1) =

(
µ + d

β
,

1
β

(
r − r(µ + d)

Kβ

))
;

E1
20 = (0, 0), E2

20 = (K, 0),

E2 = (x2, y2) =

(
µ + d + c2

β
,

1
β

(
r − r(µ + d + c2)

Kβ

))
;

E1
30 = (0, 0), E2

30 = (K, 0),

E3 = (x3, y3) =

(
µ + d + c3

β
,

1
β

(
r − c1 −

r(µ + d + c3)

Kβ

))
.

In [16], they discuss the stability of all the equilibria of 16 different cases depending on
the values of xi and yi, i = 0, 1, 2, 3. In this work, we only concentrate on the bifurcation
analysis of the case

x1 < x2 < x3 < x0 with y0 < y3 < y2 < y1, or y3 < y0 < y2 < y1,

or y3 < y2 < y0 < y1, or y3 < y2 < y1 < y0.
(30)

The other cases are similar, so we omit their analysis here. Moreover, in this paper, we
only discuss the case when the unique endemic equilibrium Ei exists. Then, the disease-
free equilibrium E1

i0 is always unstable, while the equilibrium Ei in region Gi is globally
asymptotically stable, i = 1, 2, 3.

Besides, for our analysis, the condition

r
β

(
1 − x0

K

)
< y0 (31)

is imposed.

Proposition 3. A persistence bifurcation occurs in system (29) under the condition x1 < x2 <
x3 < x0. Specifically, the following holds:

1. When x1 < x2 < x3 < x0 and y0 < y2, system (29) has a stable focus;
2. When x1 < x2 < x3 < x0 and y0 = y2, this focus turns into a boundary equilibrium;
3. When x1 < x2 < x3 < x0 and y3 < y2 < y0 < y1, the boundary equilibrium turns into

a pseudonode.

The proof of the existence and stability of each equilibrium is derived from the work
in [16,52], and the proof of this proposition can directly be derived from it.

Next, we study the regularization of the avian-only system (29).

3.2.2. Regularization

Again, the discontinuity set Σ of system (29) can be divided into the simple discon-
tinuity Σ+,y0 ∪ Σ−,y0 ∪ Σx0,+ and the nonsimple discontinuity Σx0,y0 . Subsequently, the
regularization method is applied separately to each part of the discontinuity set of the
Filippov avian-only model (29).

• Case I.
For the nonsimple discontinuity Σx0,y0 , it is firstly transformed into a simple disconti-
nuity by the map (19). Then, the dynamics are given by

θ′ = − fi sin θ + gi cos θ, Fi = ( fi, gi), i = 1, 2, 3.



Axioms 2024, 13, 186 18 of 25

For 0 < θ < π/2, F3(x, y) =
(

rx
(

1 − x
K

)
− βxy − c1x, βxy − µy − dy − c3y

)
, the

dynamics are given by

θ′ = cos θ(βx0y0 − µy0 − dy0 − c3y0)− sin θ
(

rx0

(
1 − x0

K

)
− βx0y0 − c1x0

)
;

For π/2 < θ < π, F2(x, y) =
(

rx
(

1 − x
K

)
− βxy, βxy − µy − dy − c2y

)
, the dynamics

is
θ′ = cos θ(βx0y0 − µy0 − dy0 − c2y0)− sin θ

(
rx0

(
1 − x0

K

)
− βx0y0

)
;

For π < θ < 2π, F1(x, y) =
(

rx
(

1 − x
K

)
− βxy, βxy − µy − dy

)
, the dynamics are

θ′ = cos θ(βx0y0 − µy0 − dy0)− sin θ
(

rx0

(
1 − x0

K

)
− βx0y0

)
.

Now, we apply the regularization method to the other boundaries.
• Case II.

For the Filippov system

Z1(x, y) =
{

F1(x, y), (x, y) ∈ G1,
F3(x, y), (x, y) ∈ G3,

with the boundary Σ+,y0 = {(x, y0)|y = y0, x > x0}, the regularized vector field is

RZ1 =

[
1
2
+

1
2

φ

(
y − y0

ε

)]
F3(x, y) +

[
1
2
− 1

2
φ

(
y − y0

ε

)]
F1(x, y). (32)

Around region Σ+,y0 , the differential system is given by

ẋ =

[
1
2
+

1
2

φ

(
y − y0

ε

)](
rx
(

1 − x
K

)
− βxy − c1x

)
−
[

1
2
− 1

2
φ

(
y − y0

ε

)]
βxy

+

[
1
2
− 1

2
φ

(
y − y0

ε

)]
rx
(

1 − x
K

)
=rx

(
1 − x

K

)
− βxy − c1x

2
− c1x

2
φ

(
y − y0

ε

)
,

ẏ =

[
1
2
+

1
2

φ

(
y − y0

ε

)]
(βxy − µy − dy − c3y) +

[
1
2
− 1

2
φ

(
y − y0

ε

)]
(βxy − µy)

−
[

1
2
− 1

2
φ

(
y − y0

ε

)]
dy

=βxy − µy − dy − c3y
2

− c3y
2

φ

(
y − y0

ε

)
.

(33)

Then, system (33) can be transformed into a singular perturbation problem by

y = y0 + η cos ψ, ε = η sin ψ, (34)

where η ≥ 0 and ψ ∈ [0, π], which is

ηψ̇ =− sin ψ
[

βx(y0 + η cos ψ)− µ(y0 + η cos ψ)− d(y0 + η cos ψ)− c3y0

2

− c3η cos ψ

2
− c3(y0 + η cos ψ)

2
φ(cot ψ)

]
,

ẋ =rx
(

1 − x
K

)
− βx(y0 + η cos ψ)− c1x

2
+

c1x
2

φ(cot ψ).
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Now, ε = 0 is represented by η = 0. The slow manifold is given by M1 ={
(x, ψ) ∈ R× (0, π) : − sin ψ

[
βxy0 − µy0 − dy0 −

c3

2
y0 −

φ(cot ψ)

2
c3y0

]
= 0

}
, i.e.,

φ(cot ψ) =
2βxy0 − 2µy0 − 2dy0 − c3y0

c3y0
=

2βx − 2µ − 2d − c3

c3
. Since x > x0 > x3 =

µ + d + c3

β
, φ(cot ψ) > 1, there is no slow manifold.

• Case III.
For the Filippov system

Z2(x, y) =
{

F1(x, y), (x, y) ∈ G1,
F2(x, y), (x, y) ∈ G2,

with the boundary Σ−,y0 = {(x, y0)|y = y0, x < x0}, the regularized system is

RZ2 =

[
1
2
+

1
2

φ

(
y − y0

ε

)]
F2(x, y) +

[
1
2
− 1

2
φ

(
y − y0

ε

)]
F1(x, y). (35)

Around region Σ−,y0 , the differential system is given by

ẋ = rx
(

1 − x
K

)
− βxy,

ẏ = βxy − µy − dy − c2y
2

− c2y
2

φ

(
y − y0

ε

)
.

(36)

Applying the transformation (34), we obtain

ηψ̇ =− sin ψ
[

βx(y0 + η cos ψ)− µ(y0 + η cos ψ)− d(y0 + η cos ψ)− c2y0

2

+
c2η cos ψ

2
− c2(y0 + η cos ψ)

2
φ(cot ψ)

]
,

ẋ =rx
(

1 − x
K

)
− βx(y0 + η cos ψ).

For ε = 0, the slow manifold is
M2 =

{
(x, ψ) ∈ R× (0, π) : − sin ψ

[
βxy0 − µy0 − dy0 −

c2y0

2
− φ(cot ψ)

c2y0

2

]
= 0

}
,

i.e., α(cot ψ) =
2βx − 2µ − 2d − c2

c2
. The slow manifold is a curve that connects

(x, ψ) =

(
µ + d + c2

β
, 0
)

and (x, ψ) =

(
µ + d

β
, π

)
.

• Case IV.
For the Filippov system

Z3(x, y) =
{

F2(x, y), (x, y) ∈ G2,
F3(x, y), (x, y) ∈ G3,

with the boundary Σx0,+ = {(x0, y)|x = x0, y > y0}, its regularized system is

RZ3 =

[
1
2
+

1
2

φ

(
x − x0

ε

)]
F3(x, y) +

[
1
2
− 1

2
φ

(
x − x0

ε

)]
F2(x, y). (37)

Around region Σx0,+, the differential system is given by

ẋ = rx
(

1 − x
K

)
− βxy − c1x

2
− c1x

2
φ

(
x − x0

ε

)
,

ẏ = βxy − µy − dy − c2y + c3y
2

+
c2y − c3y

2
φ

(
x − x0

ε

)
.

(38)
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Then, system (38) is transformed into a singular perturbation problem by map (27) as

ηψ̇ =− sin ψ

[
r(x0 + η cos ψ)

(
1 − x0 + η cos ψ

K

)
− β(x0 + η cos ψ)y − c1x0

2

− c1η cos ψ

2
− c1(x0 + η cos ψ)

2
φ(cot ψ)

]
,

ẏ =β(x0 + η cos ψ)y − µy − dy − c2y + c3y
2

+
c2y − c3y

2
φ(cot ψ).

For ε = 0, the slow manifold is given by

M3 =
{
(ψ, y) ∈ (0, π)×R : − sin ψ

(
rx0

(
1 − x0

K

)
− βx0y − c1x0

2
− c1x0

2
φ(cot ψ

)
= 0

}
,

i.e., φ(cot ψ) =
2
(

rx0

(
1 − x0

K

)
− βx0y

)
− c1x0

c1x0
=

2
(

r
(

1 − x0

K

)
− βy

)
− c1

c1
. Taking

account of the condition (31) and y > y0, it gives φ(cot ψ) < −1. There is no slow
manifold.

Considering persistence bifurcation happened in the Filippov system (29), after regu-
larization, we have the following conclusion.

Proposition 4. Persistence bifurcation disappears after regularization.

Proof. Since the quantity and stability of the equilibria of Z do not change after regulariza-
tion, it is straightforward to derive the following results:

1. When x1 < x2 < x3 < x0 and y0 < y2, the stable focus in region G2 preserves after
regularization;

2. When x1 < x2 < x3 < x0 and y0 = y2, after regularization, the boundary equilibrium

of F2

(
µ+d+c2

β , y0

)
is preserved but located at

(
µ+d+c2

β , y
)

, where y0 − ε < y < y0 + ε;

3. When x1 < x2 < x3 < x0 and y3 < y2 < y0 < y1, the regularized system RZ has a
stable node in region I2.

In the entire process, as y0 varies, the regularized system RZ always has a stable
equilibrium but is located at different regions. Besides, it is simple to check that system RZ
has no other equilibria. Since no qualitative property changes as the parameter y0 varies,
there is no bifurcation occurring in system RZ.

In the next section, we fix specific parameter values to observe the persistence bifurca-
tion and its qualitative properties after regularization.

3.2.3. Simulation Results

The simulation results are given in Figure 6 when the parameter values are fixed as
r = 0.0047, β = 2 × 10−5, K = 600, µ = 1.2 × 10−3, d = 4 × 10−3, c1 = 0.001, c2 = 0.003,
c3 = 0.006, x0 = 570. It is simple to observe from Figure 6 that an admissible focus
(410, 74.416) turns into a pseudonode (344.68, 100) as y0 varies, while no extra equilibria
appear. Therefore, a persistence bifurcation occurs in system (29).
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�
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(a) (b)
�

�

(c)

Figure 6. Persistence bifurcation. Generated by (a) y0 = 50, (b) y0 = y2, (c) y0 = 100.

Now, we look at what happens to this bifurcation after regularization. Under the
chosen parameter values, the Filippov system (29) becomes

Z(x, y) =


F1(x, y), (x, y) ∈ G1,
F2(x, y), (x, y) ∈ G2,
F3(x, y), (x, y) ∈ G3,

(39a)

where

F1(x, y) =
(

0.0047x
(

1 − x
600

)
− 2 × 10−5xy, 2 × 10−5xy − 1.2 × 10−3y

−4 × 10−3y
)

,

F2(x, y) =
(

0.0047x
(

1 − x
600

)
− 2 × 10−5xy, 2 × 10−5xy − 1.2 × 10−3y

−4 × 10−3y − 0.003y
)

,

F3(x, y) =
(

0.0047x
(

1 − x
600

)
− 2 × 10−5xy − 0.001x, 2 × 10−5xy − 1.2 × 10−3y

−4 × 10−3y − 0.006y
)

.

(39b)

Considering each part of the discontinuity set, we have the following results.

• Case I.
Compared with the analysis in Section 3.1.2, the dynamics of Σx0,y0 can be discussed
in three different regions. For 0 < θ < π/2,

θ′ = cos θ(2 × 10−5x0y0 − 1.2 × 10−3y0 − 4 × 10−3y0 − 0.006y0)− sin θ(
0.0047x0

(
1 − x0

600

)
− 2 × 10−5x0y0 − 0.001x0

)
;

For π/2 < θ < π,

θ′ = cos θ(2 × 10−5x0y0 − 1.2 × 10−3y0 − 4 × 10−3y0 − 0.003y0)− sin θ(
0.0047x0

(
1 − x0

600

)
− 2 × 10−5x0y0

)
;

For π < θ < 2π,

θ′ = cos θ(2 × 10−5x0y0 − 1.2 × 10−3y0 − 4 × 10−3y0)− sin θ(0.0047x0(
1 − x0

600

)
− 2 × 10−5x0y0

)
.

• Case II.
In region I1, the slow manifold is an empty set for this case.

• Case III.
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In region I2, the slow manifold is M2 = {(x, ψ) ∈ R× (0, π) : u(x, ψ) = 0}, where

u(x, ψ) = − sin ψ

[
2 × 10−5xy0 − 1.2 × 10−3y0 − 4 × 10−3y0 −

0.003y0

2
−

0.003y0

2
φ(cot ψ)

]
. It is a curve connecting the points (x, ψ) = (260, π) and (x, ψ) =

(410, 0).
Notice that the point (260, π) is not normally hyperbolic since

∂u(x, ψ)

∂ψ

∣∣∣∣
(260,π)

= 0.

Therefore, it needs additional blow-up. First of all, we translate this point to the origin
with (x2, ψ2) = (x − 260, ψ − π). Next, the blowing up ψ2 = s sin ϑ, x2 = s cos ϑ with
s ≥ 0 and ϑ ∈ [π, 2π] is performed to this point. With new coordinates, it gives

s′ = − sin(s sin ϑ + π) sin ϑG(s, ϑ), ϑ′ = −cos ϑ sin(s sin ϑ + π)

s
G(s, ϑ),

where G(s, ϑ) = 2 × 10−5(s cos ϑ + 260)y0 − 1.2 × 10−3y0 − 4 × 10−3y0 −
0.003y0

2
−

0.003y0

2
φ(cot(s sin ϑ + π)). One verifies that G(0, ϑ) = 0 and

∂G
∂s

= 2 × 10−5y0 cos ϑ.

Thus, lims→0
ϑ′

s
= 2 × 10−5y0 cos2 ϑ sin ϑ. This means that the angle component is

decreasing for ϑ ∈ [π, 2π].
• Case IV.

In region I3, the slow manifold is an empty set.

Now, we look at the global dynamics of the regularized system of (39) as the parameter
y0 varies. The dynamics of RZ in G1, G2, G3 are defined by the dynamics of F1, F2, F3 in
the respective region. In region I1, there is no equilibrium, and the flow is continuously
connected to the flows of G1 and G3. The flow in region I3 continuously connects to the
flows of G2 and G3. Subsequently, we look at the dynamics in the other regions for the
three cases discussed in Proposition 4.

• For the case y0 < y2, considering y0 = 50 since y2 = 74.416 under the chosen
parameter values, from the analysis of case I, on the circle, the following holds:

1. When 0 < θ < π/2, θ′ = 1.00605 sin θ + 0.01 cos θ > 0;
2. When π/2 < θ < π, θ′ = 1.00605 sin θ + 0.16 cos θ. For this case, there exists

a θ0 such that θ′ = 0. Therefore, θ′ > 0 for π/2 < θ < θ0, while θ′ < 0 for
θ0 < θ < π;

3. When π < θ < 2π, θ′ = 1.00606 sin θ + 0.31 cos θ. Thus, θ′ < 0 for π < θ < 3π/2
and 3π/2 < θ < θ0, while θ′ > 0 for θ0 < θ < 2π, where θ0 has the same
definition as the previous case.

In region I2, the reduced flow goes in the positive direction of the x-axis; see Figure 7a.
• When y0 = y2 = 74.416, on the circle, the following holds:

1. When 0 < θ < π/2, θ′ = 1.28 sin θ + 0.015 cos θ > 0;
2. When π/2 < θ < π, θ′ = 0.71 sin θ + 0.23 cos θ. Then θ′ > 0 for π/2 < θ < θ0,

while θ′ < 0 for θ0 < θ < π, where θ′|θ=θ0 = 0;
3. When π < θ < 2π, θ′ = 0.71 sin θ + 0.46 cos θ. Thus, θ′ < 0 for π < θ < 3π/2

and 3π/2 < θ < θ0, while θ′ > 0 for θ0 < θ < 2π.

In region I2, the reduced problem has an equilibrium at (x, ψ) = (410, 0). The flow
goes in the positive direction of the x-axis; see Figure 7b.

• When y3 < y2 < y0 < y1, for instance, y0 = 100, then on the circle, the following
holds:

1. When 0 < θ < π/2, θ′ = 1.57 sin θ + 0.02 cos θ > 0;
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2. When π/2 < θ < π, θ′ = 1.006 sin θ + 0.32 cos θ. Then, θ′ > 0 for π/2 < θ < θ0,
while θ′ < 0 for θ0 < θ < π;

3. When π < θ < 2π, θ′ = 1.006 sin θ + 0.62 cos θ. Thus, θ′ < 0 for π < θ < 3π/2
and 3π/2 < θ < θ0, while θ′ > 0 for θ0 < θ < 2π.

In region I2, the reduced problem has an equilibrium at (x, ψ) = (344.68, ψ0), and

φ(cot ψ0) =
242

1875
, and the flow goes in the positive direction of the x-axis if ψ ∈ (ψ0, π)

and goes in the negative direction of the x-axis if ψ ∈ (0, ψ0); see Figure 7c.

(a) (b) (c)

Figure 7. Phase portraits of the regularized system RZ. Generated by (a) y0 = 50, (b) y0 = y2 = 74.416,
(c) y0 = 100.

4. Conclusions and Future Work

In this paper, we apply the regularization approach to the Filippov system with rich
discontinuity boundaries. This type of system appears in applications of various natures:
control theory, classical electromagnetism theory, and relay feedback systems. Two specific
examples of such types of systems are investigated in this work. We discuss the bifurcations
of these systems and the corresponding ones after regularization. The nonsmooth fold
bifurcation that occurs in the plant disease model becomes a saddle-node bifurcation.
The persistence bifurcation happening in the Filippov avian-only model disappears after
regularization. During the regularization process, the singular perturbation theory and the
blow-up technique play an important role.

A further extension of this work is to investigate the more complicated bifurcations
of such types of Filippov systems by regularization approach, such as the bifurcations
involving limit cycles.
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