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Abstract: A highly relevant topic in the actuarial literature is so-called “claim reserving” or “loss
reserving”, which involves estimating reserves to be provisioned for pending claims, as they can
be deferred over various periods. This explains the proliferation of methods that aim to estimate
these reserves and their variability. Regression methods are widely used in this setting. If we model
error terms as random variables, the variability of provisions can consequently be modelled stochas-
tically. The use of fuzzy regression methods also allows modelling uncertainty for reserve values
using tools from the theory of fuzzy subsets. This study follows this second approach and proposes
projecting claim reserves using a generalization of fuzzy numbers (FNs), so-called intuitionistic fuzzy
numbers (IFNs), through the use of intuitionistic fuzzy regression. While FNs allow epistemic uncer-
tainty to be considered in variable estimation, IFNs add bipolarity to the analysis by incorporating
both positive and negative information regarding actuarial variables. Our analysis is grounded in the
ANOVA two-way framework, which is adapted to the use of intuitionistic regression. Similarly, we
compare our results with those obtained using deterministic and stochastic chain-ladder methods
and those obtained using two-way statistical ANOVA.

Keywords: nonlife insurance mathematics; claim reserving; intuitionistic fuzzy sets; intuitionistic
fuzzy numbers; intuitionistic fuzzy regression
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1. Introduction
1.1. Preliminary Considerations

The process of claim reserving is at the core of the financial management of general
insurance organizations. It determines what is held on the balance sheet for claims that are
not yet settled, affects the premiums that are charged, and impacts the capital that is held
to support the solvency of the organization [1]. For claim reserving methods, the literature
commonly differentiates between deterministic and stochastic methods [2]. Deterministic
methods provide a point estimate for reserves, i.e., the most reliable value. However,
stochastic reserving methods provide both a point estimate and a quantification of the
variability around the fair value [2].

The relevance of reliable estimations of the fair value of provisions, as well as of their
variability from available information, is of great interest in actuarial judgement, which
must determine the final value of the provisions [3]. The estimation of reserves must be
prudent and cover possible unfavourable deviations from their expected value; however, it
should not be excessive [4].

In the actuarial field, fuzzy set theory (FST) has been used to model situations that re-
quire a great deal of actuarial subjective judgement and problems for which the information
available is scarce or vague. Therefore, Refs. [5–7] proposed the use of fuzzy numbers (FNs)
to model uncertainty in actuarial parameters. This imprecision is undoubtedly present in
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the adjustment of claim provisions. Therefore, the available data may be subject to vague-
ness and imprecision [8]. Moreover, it is not advisable to use a wide database to calculate
claim reserves; data too far from the present can lead to unrealistic estimates. For example,
if claims are related to bodily injuries, future losses for the company will depend on the
growth of the wage index (which will be used to determine the amount of indemnification
due), changes in court practices, and public awareness of liability matters [9].

These reasons explain the contributions, which are indicated in Table 1, in which
reserves were calculated using FST tools. Therefore, in addition to deterministic and
stochastic claim reserving, there is a third approach that we call fuzzy claim reserving.
Fuzzy methods, such as stochastic methods, seek to quantify, apart from the most likely
value of claims provisions, possible fluctuation bands around the most reliable value of
these reserves [3]. In these studies, the imprecision of the parameters that allow for the
calculation of claim reserves is modelled through fuzzy numbers (FNs). In these contribu-
tions, FNs must be interpreted as quantifications of epistemic uncertainty, capturing vague
or incomplete information about the value of the parameter of interest [10].

In general, as shown in Table 1 and as with stochastic methods, fuzzy methods are
grounded from a deterministic framework. While in stochastic approaches, the analytical
schema adapts to the assumption of the randomness of the parameters, fuzzy approaches
adapt them to the hypothesis that the parameters governing the evolution of claims are
possibility distributions. The most commonly used groundworks in fuzzy claim reserving
are the chain ladder [11,12] and the geometric separation method [13], with examples
shown in [14,15]. The fuzzy literature has also adopted two-way ANOVA [16], two-way
ANCOVA [17], and a Poisson generalized linear model framework [18,19].

Table 1 shows that in most studies, the parameters of the reserving framework are
adjusted using fuzzy regression techniques. In this sense, two streams of fuzzy regression
methods should be differentiated: possibilistic regression, which we call the minimum
fuzziness principle (MFP), and minimization of distances, such as fuzzy least squares
(FLS) [20]. Among the MFP models, we first highlight the studies by Tanaka [21] and
Tanaka and Ishibuchi [22], which assume symmetry in the parameters and have been
applied in a claim reserving context [11,15]. Secondly, we outline the methodology of
Ishibuchi and Nii [23], which combines minimum-square regression to adjust the values of
maximum reliability and the minimum fuzziness principle. Some contributions to fuzzy
loss reserving using this approach are found in [16–18]. In terms of contributions to fuzzy
least squares in claim reserving, we can outline the studies of [14,15,19].

Table 1 shows that the most common shape of parameters in the fuzzy claim reserving
literature is triangular fuzzy numbers (TFNs). In some contributions, these methods do
not have restrictions regarding symmetry [16–19]. However, the hypothesis of symmetry is
very common [11,12,14,24,25].

1.2. Using Intuitionistic Fuzzy Numbers to Adjust Claim Reserves

In the review of fuzzy claim reserving conducted in the previous subsection, fuzzy
uncertainty was modelled using type-1 fuzzy numbers but not with higher-order fuzzy
sets such as type-2 fuzzy numbers or, as in this paper, intuitionistic fuzzy numbers (IFNs).
This kind of fuzzy modelling allows more nuances to be captured in the information than
simple FNs.

The concept of intuitionistic fuzzy numbers (IFNs) is a tool in the theory of intuition-
istic fuzzy sets [30,31] that allows the quantification of uncertain quantities by extending
the concept of FNs [32]. IFNs facilitate the inclusion of bipolar information along with
epistemic uncertainty in the quantification of parameters of interest. This involves using
both positive information about the values that the parameter of interest can take and
negative information about the values that the parameter actually cannot take [10].

Bipolarity does not introduce additional uncertainty [10] but provides new informa-
tion. In the case of IFNs, this entails adding an estimate of values that, with certainty,
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should be excluded, thus complementing information about the believed possible values
of a parameter.

Table 1. Panoramic view of fuzzy claim reserving.

Paper Focus Adjusting Method Shape

Andrés-Sánchez [4] Detrends link ratios with a fuzzy Hoerl curve MFP TFNs

Andrés-Sánchez and Terceño [11] Extends London chain ladder method to fuzzy
development factors MFP STFNs

Heberle and Thomas [12] Extends the conventional chain ladder method to
the use of fuzzy development factors Heuristically STFNs

Kim and Kim [17] Extends ANCOVA two-way framework to the
presence of possibilistic parameters MFP TFNs

Apaydin and Baser [14] Extends Taylor’s geometric separation method to
possibilistic parameters FLS STFNs

Yan et al. [15] Uses Taylor’s geometric separation method to
possibilistic parameters FLS and MFP STFNs

Andrés-Sánchez [16] Extends ANOVA two-way framework to the
presence of possibilistic parameters MFP TFNs

Woundjiagué et al. [18] Extends Poisson framework for claim reserving FLS TFNs
Woundjiagué et al. [19] Extends Poisson framework for claim reserving MFP TFNs

Heberle and Thomas [24] Extends the Bornhuetter–Ferguson method to the
use of fuzzy development factors Heuristically STFNs

Bastos et al. [25] Extends chain ladder method to the use of
Gaussian possibility distributions Heuristically GFNs

Andrés-Sánchez [26] Extends Taylor’s geometric separation method to
possibilistic parameters MFP TFNs

Baser and Apaydin, [27] Extends London chain ladder to the use of
fuzzy numbers FLS STFNs

Andrés-Sánchez [28] Obtains closed expressions for the point value
from estimated of ANOVA two way MFP TFNs

Yan et al. [29] Extends double chain ladder (number of claims
and accumulated claims) Heuristically TFNs

Note: MFP stands for the minimum fuzziness principle, and FLS stands for fuzzy least squares. TFNs stands for tri-
angular fuzzy numbers, STFNs for symmetrical triangular fuzzy numbers, and GFN for Gaussian fuzzy numbers.

1.3. Using Intuitionistic Fuzzy Numbers to Adjust Claim Reserves

The application of IFN parameters in financial and actuarial issues is significantly
scarcer than that of conventional fuzzy numbers. Relevant applications include capital
budgeting [33–36], option pricing [37], and real option pricing [38,39]. Similarly, [40] uses
intuitionistic fuzzy values to address environmental risk analysis.

Therefore, we think that the introduction of IFN in the quantification of claims provi-
sions is of interest. On the one hand, this analysis allows for expanding the applications of
intuitionistic fuzzy numbers in a scarcely explored field, such as insurance. This approach
is novel from both the perspectives of intuitionistic mathematics and actuarial mathe-
matics. Moreover, the use of IFNs allows for the introduction of more information into
the analysis than the utilization of confidence intervals or simply fuzzy numbers. While
confidence intervals and FNs only capture possible values of the parameters of interest,
the use of IFN parameters allows for using estimates of values that are deemed impossible.
If such information exists, the use of FNs does not allow for introducing it into the analysis.
In cases where information about such unreliable values does not exist, IFNs are simply
FNs. Therefore, the introduction of IFNs allows for generalizing the developments made
with FNs.

Building upon the reflections presented in this introduction, this paper makes
two contributions:

1. Parvati et al. [41] generalized the regression model [21,22], and thus modelled the
coefficients as symmetric TIFNs. Drawing inspiration from [41], our study extends
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the fuzzy regression method [23] to the use of TIFNs, which, on the other hand, are
not necessarily symmetric.

2. We apply the intuitionistic extension to the regression model [23] to adjust claim
reserves under the ANOVA two-way schema [42,43].

The remainder of this paper is organized as follows. The next section introduces the
fundamentals of intuitionistic fuzzy numbers and their arithmetic operations.
The third section introduces the intuitionistic generalization of the regression model [23].
The fourth section introduces the methodologies that will be used as benchmarks, the
chain ladder model in its deterministic and random versions, and two-way ANOVA [42,43].
This section also develops the intuitionistic version of two-way ANOVA. In the fifth
section, we compare the proposed intuitionistic methodology with benchmark methods
in a numerical application. The study concludes by highlighting the main results and
suggesting further research.

2. Intuitionistic Fuzzy Numbers
2.1. Fuzzy Numbers and Intuitionistic Fuzzy Numbers

Definition 1. A fuzzy set (FS) in a referential set X,
..
A is defined as [44]:

..
A = {⟨x, µA(x)⟩, x ∈ X},

where µA : X −→ [0, 1] is the so-called membership function.

Definition 2. The fuzzy set
..
A can be represented through level sets or α-cuts, Aα [44]:

Aα = {x|µA(x) ≥ α, 0 < α ≤ 1}.

Definition 3. A fuzzy number (FN),
..
A, is a fuzzy subset of the real line [45] such that the

membership function µA(x) is an upper semicontinuous function that accomplishes:

i. is normal, i.e., ∃x|µA(x) = 1.
ii. is convex, i.e.,

∀x1, x2 ∈ R, 0 ≤ λ ≤ 1, µA(λx1, (1 − λ)x2) ≥ min(µA(x1), µA(x2)).

Remark 1. As a consequence, the α-cuts of
..
A and Aα are confidence intervals:

Aα = {x|µA(x) ≥ α, 0 < α ≤ 1} =
[
Aα, Aα

]
,

where Aα is an increasing function of α and Aα is a decreasing function.
Remark 2. The membership function of

..
A, µA(x) is also called the distribution function.

Definition 4. A triangular fuzzy number (TFN) can be represented by the triplet
..
A = (A, lA, rA),

lA, rA ≥ 0. Then, the membership function is as follows:

µA(x) =


x−A+lA

lA
A − lA < x < A

A+rA−x
rA

A < x < A + rA

1
0

x = A
otherwise

,

being the α-cut representation:

Aα =
[
Aα, Aα

]
= [A − lA(1 − α), A + rA(1 − α)], 0 ≤ α ≤ 1.

Fuzzy set theory commonly represents imprecise quantities and parameters using
fuzzy numbers (FNs) [45]. Specifically, TFNs are very common in practical applications
within fuzzy set theory since the grading of the membership level is performed linearly,
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which is reasonable because it applies the principle of parsimony when dealing with vague
information [46].

Definition 5. The intuitionistic fuzzy set (IFS)
∼
A defined in a referential set X is [30]:

∼
A = {⟨x, µA(x), vA(x)⟩, x ∈ X},

where µA : X −→ [0, 1] measures the membership of x in
∼
A, and vA : X −→ [0, 1] is nonmem-

bership. These functions must accomplish the following:

0 ≤ µA(x) + vA(x) ≤ 1.

Remark 3. Note that µA(x) + vA(x) = 1 is not necessarily true, that is, an element x is allowed

to belong to
∼
A and its complement with a degree of hesitancy, hA(x), which is:

hA(x) = 1 − µA(x)− vA(x).

Remark 4. An IFS generalizes the concept of an FS such that if hA(x) = 0 ∀x,
∼
A is a conventional FS.

Definition 6. An IFN can be expressed using ⟨α, β⟩-levels or ⟨α, β⟩-cuts, A⟨α,β⟩, [30]:

A⟨α,β⟩ = {x|µA(x) ≥ α, vA(x) ≤ β, 0 ≤ α + β ≤ 1, α, β ∈ [0, 1]}.

Remark 5. A⟨α,β⟩ can be decoupled into two level sets [47]:

Aα = { x|µ A(x) ≥ α} and A∗
β = {x|vA(x) ≤ β},

in such a way that

A⟨α,β⟩ =
〈

Aα = { x|µ A(x) ≥ α}, A*
β = {x|vA(x) ≤ β}, 0 ≤ α+ β ≤ 1,α, β ∈ [0, 1]

〉
.

Definition 7. An intuitionistic fuzzy number (IFN) is an IFS defined for real numbers [34],
such that the membership function µA(x) and the nonmembership function vA(x) are upper
semicontinuous functions that accomplish the following:

i. It is normal, i.e., ∃x|µA(x) = 1 ⇒ vA(x) = hA(x) = 0.
ii. µA(x) is convex,

∀x1, x2 ∈ R, 0 ≤ λ ≤ 1, µA(λx1, (1 − λ)x2) ≥ min(µA(x1), µA(x2)),

iii. and vA(x) is concave:

∀x1, x2 ∈ R, 0 ≤ λ ≤ 1, vA(λx1, (1 − λ)x2) ≤ max(vA(x1), vA(x2)).

Remark 6. The ⟨α, β⟩-cuts of
∼
A and A⟨α,β⟩ can be decoupled as:

Aα = { x|µ A(x) ≥ α} =
[
Aα, Aα

]
and A∗

β = {vA(x) ≤ β} =
[

A∗
β, A∗

β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1),

where Aα

(
Aα

)
is an increasing (decreasing) function of α and A∗

β

(
A∗

β

)
decreases (increases)

with respect to β.

Remark 7. Thus, an ⟨α, β⟩-level of A⟨α,β⟩ can be represented:

A⟨α,β⟩ =
〈

Aα =
[
Aα, Aα

]
, A∗

β =
[

A∗
β, A∗

β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)

〉
.
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An IFN is an imprecise quantity that must be quantified by a real number. If nonmembership

is established as vA(x) = 1 − µA(x) ∀x, then
∼
A is an FN.

Remark 8. In an IFN, µA(x) is also known as the lower possibility distribution function of the
quantity of interest A, and µA∗(x) = 1 − vA(x) is the upper distribution function of the uncertain
quantity [32].

The membership functions µA*(x) and µA(x) can be interpreted as bipolar possibility
distribution measurements in such a way that µA*(x) accounts for the potential possibility
and µA(x) accounts for the real possibility of A being x [10].

Definition 8. A triangular intuitionistic fuzzy number (TIFN) can be denoted as
∼
A =

(
A, lA, l∗A, rA, r∗A

)
, with membership and nonmembership functions [41]:

µA(x) =


x−A+lA

lA
A − lA < x < A

A+rA−x
rA

A < x < A + rA

1
0

x = A
otherwise

, (1a)

and

υA(x) =


A−x

l∗A
A − l∗A < x < A

x−A
r∗A

A < x < A + r∗A
0
1

x = A
otherwise

, (1b)

where lA ≤ l∗A and rA ≤ r∗A. Figure 1 depicts the shape of a TIFN and the relationship between the
embedded functions, µA(x), vA(x), µA∗(x) and hA(x).
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Remark 9. The level sets A⟨α,β⟩, of a TIFN can be decoupled into:

Aα =
[
Aα, Aα

]
= [A − lA(1 − α), A + rA(1 − α)], (1c)

A∗
β =

[
A∗

β, A∗
β

]
= [A − l∗Aβ, A + r∗Aβ]. (1d)

Thus, TIFNs are an extension of TFNs, such that if lA = l∗A and rA = r∗A, we deal
with a conventional TFN [48]. Triangular uncertain parameters are commonly considered
in practical applications involving intuitionistic modelling [34,48–51]. The argument put
forward in [46], based on the application of the parsimony principle for the use of TFNs,
can be extended to the use of TIFNs.
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A TIFN adapts very naturally to the way humans make estimations by incorporating
more nuances than are necessary to fit a TFN. Thus, A represents the scenario with the
maximum reliability. Moreover, whereas A − lA and A − l∗A are two extreme lower-case
scenarios, A + rA and A + r∗A are two extreme upper-case scenarios. A − lA is considerably
lower than the central value, and A − l∗A is exceptionally low compared to the possible
values of the parameter. For example, in the context of a random variable, the first scenario
could be a reasonably small percentile (e.g., the 5th percentile), and the second could be a
virtually impossible value (e.g., the 0.1 percentile). If A − l∗A < x ≤ A − lA, µA(x) =0, we

do not assign a likelihood to parameter
∼
A taking the value x but rather express some level

of doubt about its nonmembership, hA(x) > 0, because vA(x) < 1.
Of course, A + rA, which can be assimilated to a relatively high percentile of a random

variable (e.g., the 95th percentile) must be interpreted in a similar way. In contrast, A + r∗A
is potentially an extremely high value (e.g., 99.5th percentile).

Note that TIFNs allow modelling estimations of a parameter that, while its knowledge
may also be vague and imprecise, contains more nuances than an FN. For instance, a
statement such as “An adequate interest rate to fit discounted reserves is approximately
3%, ranging from 2.5% to 4%. However, that a value must not be lower than 2% or higher
than 5%” could be quantified as the TIFN (3%, 0.5%, 0.5%, 1%, 1%).

2.2. Intuitionistic Fuzzy Number Arithmetic

In the Introduction, we reviewed various approaches that fuzzy research has provided
for estimating claim reserves using fuzzy logic. Ultimately, obtaining estimates for out-
standing claims at different time points will require the evaluation of parameter functions
whose values are fuzzy. This issue necessitates the application of Zadeh’s extension prin-
ciple with max–min operators, which are typically implemented through the functional
analysis of alpha-level sets.

The results of [52] allow the evaluation of functions with fuzzy estimates of variables
through alpha-cuts developed in [53–55] to be generalized to IFN arithmetic.
As far as we are concerned, we will evaluate continuous and differentiable functions,
y = f (x1, x2, . . . , xn), such that the values of the input variables are given the means of

IFNs
∼
A(i), i = 1, 2, . . . , n. This generates IFN

∼
B,

∼
B = f

(∼
A(1),

∼
A(2), . . . ,

∼
A(n)

)
. The use of

the generalized Zadeh’s principle by using the min–norm and max–conorm allows us to

state the membership and nonmembership of
∼
B as [41,52]:

µB(y) = max
y= f (x1,x2,...,xn)

min
{

µA(1)
(x1), µA(2)

(x2), . . . , µA(n)
(xn)

}
,

vB(y) = min
y= f (x1,x2,...,xn)

max
{

vA(1)
(x1), vA(2)

(x2), . . . , vA(n)
(xn)

}
.

Therefore, if
∼
A(i), i = 1, 2, . . . , n are FNs, it is only necessary to obtain µB(y) using the

usual max–min principle.
The evaluation of the functions of FNs such as TFNs is often performed through α-level

sets [54,55]. Similarly, the value of the intuitionistic fuzzy number
∼
B = f

(∼
A(1),

∼
A(2), . . . ,

∼
A(n)

)
is obtained by means of its ⟨α, β⟩−cuts, B⟨α,β⟩, instead of by evaluating µB(y) and vB(y).

Thus, to obtain B⟨α,β⟩, we must implement f (x1, x2, . . . , xn) from the ⟨α, β⟩−cuts of
∼
A(i),

A(i)⟨α,β⟩, i = 1, 2, . . . , n:

B⟨α,β⟩ = f
(

A(1)⟨α,β⟩, A(2)⟨α,β⟩, . . . , A(n)⟨α,β⟩

)
,
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and given that A(i)⟨α,β⟩ is decoupled in A(i)α
and A∗

(i)α
(see Remark 7) and that f is con-

tinuous, B⟨α,β⟩ can also be decoupled in Bα =
[
Bα, Bα

]
and B*

β =
[

B*
β, B*

β

]
. According

to [54,55], when f monotonically increases with respect to xi, i = 1, 2, . . . m and monotoni-
cally decreases in xi, i = m + 1, m + 2, . . . , n, m ≤ n, Bα is:

Bα = f
(

A(1)
α
, A(2)

α
, . . . , A(m)

α
, A(m+1)α

, . . . , A(n)α

)
, (2a)

Bα = f
(

A(1)α
, A(2)α

, . . . , A(m)α
, A(m+1)

α
, . . . , A(n)

α

)
. (2b)

By comparison, the β-cuts of B∗
β are

B*
β = f

(
A*
(1)

β
, A*

(2)
β
, . . . , A*

(m)
β
, A*

(m+1)β
, . . . , A*

(n)β

)
, (2c)

B*
β = f

(
A*
(1)β

, A*
(2)β

, . . . , A*
(m)β

, A*
(m+1)

β
, . . . , A*

(n)
β

)
. (2d)

The linear combination of TIFNs is also a TIFN. Therefore, let us have a linear op-

eration
∼
B =

n
∑

i=1
λi

∼
A(i), where λiϵR and

∼
A(i) =

(
A(i), lA(i)

, l*
A(i)

, r
A(i)

, r*
A(i)

)
, i = 1, 2, . . . , n.

Therefore,
∼
B =

(
B, lB, l*

B, rB, r*
B
)
, where [41]

B =
n

∑
i=1

λi A(i), (3a)

lB = ∑
i|λi≥0

λi·lA(i)
+ ∑

i|λi<0
|λi|·rA(i)

, l∗B = ∑
i|λi≥0

λi·l∗A(i)
+ ∑

i|λi<0
|λi|·r∗A(i)

, (3b)

rB = ∑
i|λi≥0

λi·rA(i)
+ ∑

i|λi<0
|λi|·lA(i)

, r∗B = ∑
i|λi≥0

λi·r∗A(i)
+ ∑

i|λi<0
|λi|·l∗A(i)

. (3c)

Given that the evaluation of nonlinear functions using TFNs does not produce a
TIFN, it can also be generalized to TIFNs. Despite this limitation, [46] argues that linear
shapes often offer an effective solution to practical issues in the majority of cases. It is
well known that there are many financial functions that, despite not being linear, when
they are evaluated, the result is accurately approximated by a TFN that conserves the
same support (the 0-cut) and core (the 1-cut). In the actuarial field, this has been proposed
for the estimation of claim reserves [11,12,17,24], the final value of a pension plan [56],
asymptotic probabilities of the number of claims in a bonus-malus system [57], or the price
of life settlements [58]. Following the same philosophy, [33] postulates that the net present
value function, when cash flows and discount rates are estimated using TIFNs, can be
approximated through a TIFN with the same <0,1>-cut and <1,0>-cut. Therefore, in this

study, when the initial data are estimated by TIFNs
∼
A(i), i = 1, 2, . . . , n, the approximate

TIFN
∼

BT ≈
∼
B = f

(∼
A(1),

∼
A(2), . . . ,

∼
A(n)

)
, is considered:

∼
BT = (B, lB, l∗B, rB, r∗B ) =

(
B1 = B1, B1 − B0, B*

1 − B*
0, B0 − B1, B*0 − B*

1

)
, (4)
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By comparison with the error measurement in the triangular approximation of fuzzy
numbers [58], the quality of the relative error measurement in the bounds of B⟨α,β⟩ calcu-
lated with (2a–d) by those of its triangular approximation, (4), BT

⟨α,β⟩ in Bα =
[
Bα, Bα

]
are:

εα =

∣∣Bα − BT
α

∣∣
Bα

, εα =

∣∣∣Bα − BT
α

∣∣∣
Bα

, ε*
β =

∣∣∣B*
β − BT*

β

∣∣∣
B*

β
, ε*

β =

∣∣∣B*
β − BT*

β

∣∣∣
B*

β

. (5)

The use of Equation (5) allows us to assess the goodness of fit of the linear approx-
imation in numerical applications, which requires only evaluating five scenarios in (4)
compared to the exact ⟨α, β⟩-cuts that require the calculation of (3a–d) for the established
⟨α, β⟩ pairs.

3. Intuitionistic Linear Regression with the Minimum Fuzziness Principle and
Asymmetric Coefficients

Within fuzzy regression models, we can identify two major families. The first group
consists of possibilistic regressions that are also referred to as minimum fuzziness principle
(MFP) regressions. Some examples are [21–23], which fit parameters by minimizing the
fuzziness of the system, subject to the condition that the adjusted function must include the
observations [20]. Secondly, we can outline the methodology based on the minimization
of the distance between observations and estimates. A clear example in this regard is the
method known as fuzzy least squares [20]. Our approach should be understood within this
first stream.

Parvati et al. [41] generalized the regression model [21,22]. Thus, given that [21,22]
modelled the coefficients as symmetric TFNs, [41] assumed that these coefficients were
symmetric TIFNs. Drawing inspiration from [41], our study extends the fuzzy regression
method [23] to the use of TIFNs. In contrast to [41], we do not require the coefficients
to be symmetrical. The advantage of this approach is that we can capture the possibility
of asymmetry in the system, as the adjusted coefficients will generally be nonsymmetric.
The disadvantage is that, while in [41], the parameters are adjusted by solving a single
minimization program, our method requires the sequential application of ordinary least
squares and the resolution of a linear program similar to that of [41].

We start with the assumption that the system is adjusted and has an outcome variable de-
pendent on m crisp input variables, xi, i = 0, 1, 2. . ., m, where x0 = 1 and xiϵR, i = 1, 2,. . ., n. The

outcome is a linear function of intuitionistic coefficients
∼
A(i) =

(
A(i), lA(i)

, l∗A(i)
, r

A(i)

, r∗A(i)

)
,

i = 0, 1, . . . , m and, therefore, a TIFN
∼
Y =

(
Y, lY, l∗Y, rY, r∗Y

)
. This is obtained by considering

that the observations of the input variables xi, i = 0, 1, . . . , n, are the scalars in (3a–c). Thus,
Equation (3) in [41] is extended to nonsymmetrical TIFNs as follows:

Y =
m

∑
j=0

A(i)xi, (6a)

lY = ∑
i|xi≥0

lA(i)
xi + ∑

i|xi<0
rA(i)

|xi|, l∗Y = ∑
i|xi≥0

l∗A(i)
xi + ∑

i|xi<0
r∗A(i)

|xi| , (6b)

rY = ∑
i|xi≥0

rA(i)
xi + ∑

i|xi<0
lA(i)

|xi|, r∗Y = ∑
i|xi≥0

r∗A(i)
xi + ∑

i|xi<0
l∗A(i)

|xi| . (6c)

Moreover, both the observations of the input and output variables are crisp. This
is a common circumstance in fuzzy regression models, and [23,41] also assume such a
situation. Thus, for the j-th observation, the outcome is the crisp number yj, generated
by the crisp incomes

(
1, x1j, x2j, . . . , xij, . . . , xim

)
. Therefore, yj is a possible value of a
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TIFN
∼
Yj =

(
Yj, lYj , l∗Yj

, r
Yj

, r∗Yj

)
, whose membership function µYj

(
yj
)

and nonmembership

function νYj

(
yj
)

in (1a) and (1b) are determined by the following:

Yj =
m

∑
i=0

A(i)xij, (7a)

lYj = ∑
i|xi≥0

lA(i)
xij + ∑

i|xi<0
rA(i)

∣∣xij
∣∣, l∗Yj

= ∑
i|xi≥0

l∗A(i)
xij + ∑

i|xi<0
r∗A(i)

∣∣xij
∣∣ , (7b)

rYj = ∑
i|xi≥0

rA(i)
xij + ∑

i|xi<0
lA(i)

∣∣xij
∣∣, r∗Yj

= ∑
i|xi≥0

r∗A(i)
xij + ∑

i|xi<0
l∗A(i)

∣∣xij
∣∣ . (7c)

The objective of MFP regression models is to obtain the parameter estimates of
∼
A(i),

i = 0, 1, 2, . . . , m, such that
∼
a (i) =

(
a(i), la(i) , l∗a(i) , r

a(i)
, r∗a(i)

)
, i = 0, 1, 2, . . . , m. In possi-

bilistic regression models, there is a dual objective: minimizing the uncertainty of the
system and maximizing the membership of the elements within it. Thus, similar to [41],
the problem of finding

∼
a (i) involves solving a multiobjective programming problem with

four cost functions.

minimize
A(i),lA(i)

,l∗A(i)
,r

A(i)

,r∗A(i)
,i=0,1,...,m

(
−α, β, z1 =

n

∑
j=1

(
lYj + rYj

)
, z2 =

n

∑
j=1

(
l∗Yj

+ r∗Yj

))
, (8a)

subject to:

µYj

(
yj
)
≥ α, νYj

(
yj
)
≤ β, j = 1, 2, . . . , n, lA(i)

, rA(i)
, l∗A(i)

, r∗A(i)
≥ 0, i = 0, 1, . . . , m. (8b)

0 ≤ α + β ≤ 1, α, β ∈ [0, 1]. (8c)

To solve (8a–c), we implement the following steps:
Step 1: Following [23], we first fit the estimates of the centres A(i), a(i), i = 0, 1,. . ., m

by using the least squares method. Therefore, the point estimates of yj are y(0)j =
m
∑

i=0
a(i)xij,

as are the residuals, ej = yj − y(0)j .
Step 2: Following [41], we must state a minimum reachable value α = g and

β = 1 − g − h for the system defined in Equation (8a,b). Note that g ∈ [0,1) scales the
total fuzziness of the estimated system. If g = 0, the uncertainty of the system is minimal;
conversely, the inclusiveness of the observations may be low. On the other hand, a higher g
causes all observations to be included with high intensity, but the system may make fewer
specific predictions [59].

The value of h ∈ [0,1 − g) reflects the level of system hesitancy. For h = 0, the actual and
potential possibility of a particular value are identical; therefore, we have a conventional
possibilistic regression. In contrast, higher h values suggest a greater degree of hesitancy,
indicating a greater discrepancy between µY(y) and 1− νY(y). Therefore, in this step, (8a–c)
are decoupled as follows:

minimize
lA(i)

,rA(i)
,i=0,1,...,m

z1 =
n

∑
j=1

(
lYj + rYj

)
(9a)

subject to
µYj

(
yj
)
≥ g, j = 1, 2, . . . , n, lA(i)

, rA(i)
,≥ 0, i = 0, 1, . . . , m. (9b)
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and

minimize
l∗A(i)

,r∗A(i)
,i=0,1,...,n

z2 =
n

∑
j=1

(
l∗Yj

+ r∗Yj

)
(9c)

subject to

νYj

(
yj
)
≤ 1 − g − h, j = 1, 2, . . . , n, l∗A(i)

, r∗A(i)
≥ 0, i = 0, 1, . . . , m. (9d)

Step 3. By following [60], we initially fit (9a–d) by considering g = h = 0. Thus, we
adjusted a possibilistic regression model [23], lA(i)

= l∗A(i)
and rA(i)

= r∗A(i)
. This leads to an

estimate of lA(i)
and rA(i)

, which we denote as l(0)a(i) and r(0)a(i) , respectively, where i = 0, 1,. . .,
m. It is easy to confirm that if h = 0, z1 = z2. Thus, we must solve:

minimize
lA(i)

,rA(i)
,i=0,1,...,m

z1 = z2 =
m

∑
i=0

lA(i)

n

∑
j=1

∣∣xij
∣∣+ m

∑
i=0

rA(i)

n

∑
j=1

∣∣xij
∣∣ (10a)

subject to
− ∑

i|xi≥0
lA(i)

xij − ∑
i|xi<0

rA(i)

∣∣xij
∣∣ ≤ ej, j = 1, 2, . . . , n (10b)

∑
i|xi≥0

rA(i)
xij + ∑

i|xi<0
lA(i)

∣∣xij
∣∣ ≥ ej, j = 1, 2, . . . , n. (10c)

lA(i)
, rA(i)

≥ 0, i = 0, 1, . . . , m. (10d)

Step 4. We establish the optimal value of g based on the criterion [60]. This value
optimizes what these authors refer to as the credibility of the system. To achieve this, we

define the estimation of
∼
Yj, obtained from the parameters adjusted in step 1 and step 3 as

∼
y
(0)
j =

(
y(0)j , l(0)yj , l(0)yj , r(0)yj , r(0)yj

)
, i.e.,

∼
y
(0)
j is a TFN where:

y(0)j =
m

∑
i=0

a(i)xij, (11a)

was obtained in step 1 and

l(0)yj = ∑
i|xi≥0

l(0)a(i)xij − ∑
i|xi<0

r(0)a(i)

∣∣xij
∣∣, (11b)

r(0)yj = ∑
i|xi≥0

r(0)a(i)xij − ∑
i|xi<0

l(0)a(i)

∣∣xij
∣∣. (11c)

Thus, [60] proposed the following for the optimum value of g:

g =

{
1
2

(
1 − γ(0)

δ(0)

)
γ(0) < δ(0)

0 otherwise
, (11d)

being:

γ(0) =
n

∑
j=1

µ
y(0)j

(
yj
)

l(0)yj + r(0)yj

, δ(0) =
n

∑
j=1

1 − µ
y(0)j

(
yj
)

l(0)yj + r(0)yj

, (11e)

Then, for la(i) and ra(i) , we state the following:

la(i) =
l(0)a(i)

1 − g
and ra(i) =

r(0)a(i)

1 − g
(11f)
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Step 5. We subsequently proceed to obtain the estimates of l∗A(i)
and r∗A(i)

. To achieve

this, we must determine the degree of hesitancy in the system, where hϵ[0, 1 − g). In
the case where h = 0, there is no hesitancy; if h = 1 − g, the level of hesitancy is at
its maximum. Thus,

l∗a(i) =
l(0)a(i)

1 − g − h
and r∗a(i) =

r(0)a(i)

1 − g − h
(11g)

4. An Intuitionistic Two-Way ANOVA for Claim Reserving
4.1. Fitting Claim Reserves with Chain Ladder and Two-Way ANOVA Methods

The historical data illustrating the evolution of claims are typically presented in a
run-off triangle format similar to that shown in Table 2 [61]. In this table, Zi,j represents the
accumulated claim cost of insurance contracts originating in the ith development period
(i = 0, 1. . ., n) during the jth claiming period (j = 0, 1. . ., n). Therefore, the accumulated
claims Zi,j, i = 1, 2. . ., n; j = n − i + 1, n − i + 2. . .,n are unknown and must be fitted.

Table 2. Run-off triangle of accumulated claims.

Development/Payment Period

i|j 0 1 . . . j = n − i . . . n − 1 n

Occurrence/
origin period

0 Z0,0 Z0,1 . . . Z0,j . . . Z0,n−1 Z0,n
1 Z1,0 Z1,1 . . . Z1,j . . . Z1,n−1
...

...
...

...
...

...
i Zi,0 Zi,1 . . . Zi,n−i . . .
...

...
...

...
n − 1 Zn−1,0 Zn−1,1 . . .

n Zn,0 . . .

An alternative way to present historical data is the run-off triangle of incremental
claims in a similar way to that shown in Table 3. Table 2 shows that Si,j is Si,j = Zi,j − Zi,j−1,
i = 0,1,2,. . .,n − 1, j = 1, 2,. . ., n − i and Si,0 = Zi,0. Therefore, the incremental claims Si,j, i =
1, 2,. . ., n; j = n − i + 1, n − i + 2,. . ., n are unknown and must be fitted.

Table 3. Run-off triangle of incremental claims.

Development/Payment Period

0 1 . . . j = n − i . . . n − 1 n

Occurrence/origin
period

0 S0,0 S0,1 . . . S0,j . . . S0,n−1 S0,n
1 S1,0 S1,1 . . . S1,j . . . S1,n−1
...

...
...

...
...

...
i Si,0 Si,1 . . . Si,n−i . . .
...

...
...

...
n − 1 Sn−1,0 Sn−1,1 . . .

n Sn,0 . . .

The run-off triangle of accumulated claims (Table 2) shows the input of several classical
methods to fit claim reserves, such as a chain ladder [61]. The key concept of the chain
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ladder is the so-called link ratio or development ratio between the payment periods j and
j + 1 ( f j):

f j =

n−j−1
∑

i=0
Zi,j+1

n−j−1
∑

i=0
Zi,j

. (12a)

Therefore, the unknown accumulated claim Zi,j, j = n − i + 1, n − i + 2,. . ., n is
approximated by zi.j as follows:

zi.j = Zi,n−i

j−1

∏
h=n−i

fh. (12b)

Therefore, from (12b), we can define the estimated incremental claims of the ith origin
year in the (j + 1)th development year, si.j+1, as:

si.j+1 = zi.j+1 − zi.j, (13a)

where zi.n−i = Zi.n−i. From incremental claims si.j+1, we can obtain the reserves of the ith
origin year i = 1, 2,. . ., n, ROi,

ROi =
n

∑
j=n−i+1

si.j. (13b)

Additionally, the reserves for the (i + j)th calendar year, i + j = n + 1, n + 2,. . ., n, RCi+j,
are as follows:

RCi+j =
n

∑
i=1

si.n−i+1, (13c)

and so, the overall provisions, R, are:

R =
n

∑
j=1

n

∑
i=n−j+1

si.j. (13d)

The pure chain ladder method is deterministic. However, this framework is sufficiently
flexible for producing probabilistic interval estimates by using bootstrapping techniques.
The application of bootstrapping in the chain ladder framework relies on the resampling of
descaled errors that arise from the difference between the observed incremental claims and
what we would have obtained by applying the link ratios backwards from the main diago-
nal [62]. Resampling B tables, such as Table 2, allow (12a,b) and (13a–d) to be implemented
B times, thus making predictions of claiming reserves by means of confidence intervals.

We extend the two-way ANOVA framework [42,43] to intuitionistic fuzzy regression,
which was adapted to the use of possibilistic regression in [16]. It uses direct run-off in
Table 3 and supposes that Si,j can be represented by the product Zi·pj,, where Zi is the total
claiming cost in the ith origin period and pj is the proportion of this cost paid in the jth
development period. Therefore, ln(Si,j) can be linearly modelled as ln(Si,j) = ln(Zi) + ln(pj).
In the original random model [42], uncertainty is introduced by using random variables in
such a way that

Sij = Zi pjεij (14a)

where εi,j is a random variable whose mean is 1. The theoretical model (14a) can be
transformed into the following linear regression equation [43]:

ln
(
Si,j
)
= A + Bi + Cj + εi,j, i = 1, 2, . . . , n; j = 1, 2, . . . , n, (14b)

where Sij must not be negative. Thus, a logical way to represent uncertainty in Sij is to
model it as a log-normal random variable. Here, εi,j, i = 0, 1,. . ., n, and j = 0, 1,. . ., n − i are
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identical and uncorrelated distributed normal random variables with mean 0 and variance
σ2. Note that, in this model, the incremental cost of claims Si,j is a log-normal random
variable because (14b) allows us to deduce the following:

Si,j = eA+Bi+Cj+εi,j (14c)

Here, eA is interpreted as the incremental claim cost in the baseline origin and de-
velopment period (i = 0, j = 0). Therefore, Bi is the growth rate of total claims during the
origin period i (i = 1, 2,. . ., n) with respect to the baseline occurrence period, and Cj is the
logarithmical growth rate of the incremental cost of claims during the development period
j (j = 1, 2,. . ., n) with respect to the development period j = 0.

The parameters A, Bi, Cj are fitted using least squares regression by their estimates
a, bi, cj. Therefore, to obtain a point estimate of Si,j, si,j, j = n – i + 1, n – i + 2,. . ., n, we
perform the following:

si,j = ea+bi+cj (14d)

The reserves for the ith origin year can be obtained from (13b), those for the (i + j)th
calendar year can be fitted to (13c), and the overall reserves can be determined from (13e).

This framework also allows estimates of reserves to be obtained with probabilistic
confidence intervals [62] by applying bootstrapping methodology to the regression errors
ei,j = ln

(
Si,j
)
−
(
a + bi + cj

)
. With B resamples from the run-off triangle in Table 3, we

obtain B estimates of ROi, RCi+j and R, from which we can adjust provisions as probabilistic
confidence intervals.

4.2. Fitting Claim Reserves with Two-Way Intuitionistic Fuzzy ANOVA
4.2.1. Adjusting Coefficients of Two-Way ANOVA with Fuzzy Regression

We extend the ANOVA two-way by supposing that the uncertainty in incremental
claims can be modelled by IFNs. Thus, the claims for the ith origin year in the jth devel-

opment period is the IFN
∼
Sij, which is defined by analogy to (14a), such as

∼
Si,j =

∼
Z(i)

∼
p(j).

In contrast to (14a), in (15a), the uncertainty in incremental claims does not come from a
random factor εi,j. It is incorporated into the overall claiming cost in the ith origin year
∼
Z(i) and the proportion paid in the jth development period

∼
p(j) with the use of IFNs.

Therefore, the value of incremental claims is modelled as a non-negative IFN, which can be
represented by comparing it with (14b) as follows:

∼
Si,j = e

∼
A+

∼
B(i)+

∼
C(j) (15a)

We suppose that, in (15a),
∼
A,

∼
B(i) and

∼
C(j) are TIFNs that, according to Definition 8, are

∼
A =

(
A, lA, l*A, rA, r*

A
)
,
∼
B(i) =

(
B(i), lB(i)

, l*B(i)
, r

B(i)
, r*

B(i)

)
and

∼
C(j) =

(
C(j), lC(j)

, l*C(j)
, r

C(j)

, r*
C(j)

)
.

So:
ln

∼
Si,j =

∼
A +

∼
B(i) +

∼
C(j), (15b)

and given that (15b) is a of TIFNs, ln
∼
Si,j

(
ln Si,j, lln Si,j

, l∗ln Si,j
, r

ln Si,j
, r∗ln Si,j

)
. From rules

(3a–c), we find:
ln Si,j = A + B(i) + C(j) (15c)

lln Si,j
= lA + lB(i)

+ lC(j)
, l∗ln Si,j

= l∗A + l∗B(i)
+ l∗C(j)

(15d)

rln Si,j
= rA + rB(i)

+ rC(j)
, r∗ln Si,j

= r∗A + r∗B(i)
+ r∗C(j)

. (15e)

Therefore, the interpretation of e
∼
A,

∼
B(i) and

∼
C(j) is analogous to ANOVA in two ways,

with the difference being that these parameters are not crisp but intuitionistic; thus, the
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uncertainty of the system is introduced in the coefficients by means of membership and
nonmembership functions instead of a random error. Likewise, the error introduced in
(14b) assumes symmetry around the observation ln Si,j and is independent of the ori-
gin and development period. In contrast, in our model, deviations from the estimates
with respect to ln Si,j are asymmetric and dependent on the origin and development pe-
riod. Thus, we extend the possibilistic two-way ANOVA [16] to intuitionistic uncertainty.
The difference lies in the fact that, while in [16], the parameters are possibility distributions
that measure possible parameter values, this paper assumed that the parameters are IFNs
that simultaneously quantify both possible and nonpossible values.

To obtain the estimates of parameters
∼
A,

∼
B(i),

∼
C(j), which we name

∼
a =

(
a, la, l*

a, ra, r*
a
)
,

∼
b (i) =

(
b(i), lb(i) , l*

b(i)
, r

b(i)
, r*

b(i)

)
and

∼
c (j) =

(
c(j), lc(j) , l*

c(j)
, r

c(j)
, r*

c(j)

)
, we follow the steps

outlined in Section 3. Therefore:
Step 1. First, the centres a, b(i) and c(i) are fit with conventional least squares regression.

The residual linked to ln Si,j is named ei,j, where i = 0, 1,. . ., n and j = 0, 1,. . ., n − i.
Step 2. Consider (9a–d) and g = h = 0.
Step 3. This supposes adjusting the spreads by using (10a–d) in our data by solving

the following:

minimize
lA , lB(i)

,lC(j)
,rA , rB(i)

,rC(j)

z1 =
(n + 1)2 + n + 1

2
(lA + rA) +

n

∑
i=1

(n + 1 − i)
(

lB(i)
+ rB(i)

)
+

n

∑
j=1

(n + 1 − j)
(

lC(j)
+ rC(j)

)
(16a)

subject to

−lA − lB(i)
− lC(j)

≤ ei,j ≤ rA + rB(i)
+ rC(j)

, i = 0, 1, . . . , n, j = 0, 1, . . . , n − i. (16b)

lA, lB(i)
, lC(j)

, rA, rB(i)
, rC(j)

≥ 0, i = 1, 2, . . . , n, j = 1, 2, . . . , n. (16c)

Note that the coefficient in the objective function of lA and rA is the overall number
of observations in the run-off triangle. The coefficients lB(i)

and rB(i)
are the numbers of

observations linked to the ith origin year. Similarly, the multipliers of lC(j)
and rC(j)

are the
numbers of observations related to the jth development year.

Therefore, the optimum of (16a–c) leads to l(0)a , l(0)b(i)
, l(0)c(j)

, r(0)a , r(0)b(i)
, r(0)c(j)

.

Step 4. Fit the spreads la, lb(i) , lc(j) , ra, rb(i) , rc(j) of the parameters by setting g with
rules (11a–f).

Step 5. Estimate the hesitancy of the system, h, and fit l∗a , l∗b(i) , l∗c(j)
, r∗a , r∗b(i) , r∗c(j)

, using (11g).

4.2.2. Fitting Claim Reserves

After fitting the estimates of parameters
∼
A,

∼
B(i),

∼
C(j),

∼
a ,

∼
b (i) and

∼
c (j), we must predict

the claiming cost of all origin periods for the development periods in which they are
unknown, similar to (14d). Given that the logarithm of incremental claim costs ln

∼
s i,j, i = 1,

2. . ., n; j ≥ n − i + 1 are the TIFNs analogous to (15c–f), ln
∼
s i,j =

∼
a +

∼
b (i) +

∼
c (j), the estimate

of the incremental claim cost
∼
s i,j is obtained by adapting (14d) to the use of triangular

∼
a ,

∼
b (i) and

∼
c (j),

∼
s i,j = eln

∼
s i,j = e

∼
a+

∼
b (i)+

∼
c (j) . Therefore, the ⟨α, β⟩−cuts of

∼
s i,j and si,j⟨α,β⟩ are

as follows:

si,j⟨α,β⟩ =

〈
si,jα =

[
si,j

α
, si,jα

]
, s*

i,jβ
=

[
s*

i,j
β
, s*

i,jβ

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)

〉
,
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and (14b) is evaluated by applying rules (2a–d):

si,jα =
[
si,j

α
, si,jα

]
=

[
e

a+bi+cj−(la+lb(i)+lc(j)
)(1−α)

, e
a+bi+cj+(ra+rb(i)

+rc(j)
)(1−α)

]
, (17a)

s*
i,jβ

=

[
s*

i,j
β
, s*

i,jβ

]
=

[
e

a+bi+cj−(l∗a+l∗b(i)
+l∗c(j)

)β
, e

a+bi+cj+(r∗a+r∗b(i)
+r∗c(j)

)β
]

. (17b)

Parameters a, bi, cj, la, lb(i) , lc(j) , ra, rb(i) and rc(j) are defined in steps 1–5 of the above

section. Therefore, the intuitionistic reserve for the ith origin period
∼

ROi comes from
evaluating (13b) with intuitionistic incremental claims,

∼
s i,j. Its ⟨α, β⟩-cuts, ROi⟨α,β⟩, are

as follows:

ROi⟨α,β⟩ =
〈

ROiα =
[

ROiα
, ROiα

]
, RO*

i β =
[

RO*
i β

, RO*
i β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)

〉
,

and by applying rules (2a–d), using (17a,b):

ROiα =
n

∑
j=n−i+1

si,jα =

[
n

∑
j=n−i+1

si,j
α
,

n

∑
j=n−i+1

si,jα

]
, (18a)

RO*
i β =

n

∑
j=n−i+1

s*
i,jβ

=

[
n

∑
j=n−i+1

s*
i,j

β
,

n

∑
j=n−i+1

s*
i,jβ

]
. (18b)

Analogously, the intuitionistic reserve for the (I + j)th development period is obtained

from the sum (13c) as
∼

RCi+j, j = n + 1, n + 2,. . ., 2n. Its ⟨α, β⟩-cut is as follows:

RCi+j⟨α,β⟩ =

〈
RCi+jα =

[
RCi+j

α
, RCi+jα

]
, RC*

i+jβ
=

[
RC*

i+j
β
, RC*

i+jβ

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)

〉
,

and by applying rules (2a–d), using (17a,b), we obtain:

RCi+jα =
n

∑
i=n−j+1

si,jα =

[
n

∑
i=n−j+1

si,j
α
,

n

∑
i=n−j+1

si,jα

]
, (18c)

RC*
i+jβ

=
n

∑
i=n−j+1

s*
i,jβ

=

[
n

∑
i=n−j+1

s*
i,j

β
,

n

∑
i=n−j+1

s*
i,jβ

]
. (18d)

The intuitionistic overall claim reserves
∼
R are obtained by implementing (13d) with

intuitionistic fuzzy numbers
∼
s i,j calculated in (17a,b) in such a way that the expressions of

its ⟨α, β⟩-cuts R⟨α,β⟩ is as follows:

R⟨α,β⟩ =
〈

Rα =
[
Rα, Rα

]
, R∗

β =
[

R∗
β, R∗

β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)

〉
,

are obtained by applying rules (2a–d) on (13d) with (17a,b):

Rα =
n

∑
j=1

n

∑
i=n−j+1

si,jα =

[
n

∑
j=1

n

∑
i=n−j+1

s*
i,j

β
,

n

∑
j=1

n

∑
i=n−j+1

si,jα

]
, (19a)

R∗
β =

n

∑
j=1

n

∑
i=n−j+1

s*
i,jβ

=

[
n

∑
j=1

n

∑
i=n−j+1

s*
i,j

β
,

n

∑
j=1

n

∑
i=n−j+1

s*
i,jβ

]
. (19b)
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Note that
∼
s i,j is an exponential function of a TIFN. Although it is not a linear intu-

itionistic fuzzy number, it may admit a good triangular approximation (4),
∼
s i,j ≈

∼
s

T
i,j =(

si.j, lsi.j , l∗si.j
, r

si.j
, r∗si.j

)
. Therefore, we can state the reserves for the ith origin year,

∼
ROi ≈

∼
RO

T

i =
(

ROi, lROi , l*
ROi

, r
ROi

, r*
ROi

)
, by implementing (13b) with

∼
s

T
i,j. Analogously, for the

reserves of the jth development year,
∼

RCi+j ≈
∼

RC
T

i+j =

(
RCi+j, lRCi+j , l*

RCi+j
, r

RCi+j
, r*

Ri+j

)
,

through evaluating (13c) with
∼
s

T
i,j. Finally, the overall reserve can be expressed as

∼
R ≈

∼
R

T
=
(

R, lR, l∗R, rR, r∗R
)

by
∼
R

T
=

n
∑

j=1

n
∑

i=n−j+1

∼
s

T
i,j.

5. Empirical Application

This section develops an empirical application to test the intuitionistic methodology
proposed in the above section. The data come from the run-off triangle of accumulated
claims and its associated triangle of incremental claims, as shown in Table 4, which have
been utilized in studies such as [3,62,63]. To complete the run-off triangles, we implement
the chain ladder methodology (12a,b) two-way ANOVA (14a–d). The results from the
deterministic chain ladder method are provided in Table 5. With respect to two-way
ANOVA, the coefficient estimates from (14b) are provided in Table 6, and the complete
run-off triangle of incremental claims is provided in Table 7.

Table 4. Run-off triangles of accumulated claims and incremental claims used in this paper.

i|j 0 1 2 3 4 5 i|j 0 1 2 3 4 5

0 1001 1855 2423 2988 3335 3403 0 1001 854 568 565 347 68
1 1113 2103 2774 3422 3844 1 1113 990 671 648 422
2 1265 2433 3233 3977 2 1265 1168 800 744
3 1490 2873 3883 3 1490 1383 1010
4 1725 3261 4 1725 1536
5 1889 5 1889

Source: The Faculty and Institute of Actuaries [63].

Table 5. Prediction of accumulated claims and reserves with a deterministic chain ladder.

i|j 0 1 2 3 4 5

0 1001 1855 2423 2988 3335 3403
1 1113 2103 2774 3422 3844 3922.38
2 1265 2433 3233 3977 4454.12 4544.93
3 1490 2873 3883 4784.43 5358.41 5467.67
4 1725 3261 4334.27 5340.46 5981.15 6103.10
5 1889 3588.07 4768.99 5876.09 6581.04 6715.23

f j 1.899 1.329 1.232 1.112 1.020

RO5 = 4826.23, RC6 = 4229.26 and R = 9899.31
Note: Predicted accumulated claims are expressed in italics.

Table 6. Estimated coefficients for model (14b).

Coefficient Students’ t p Value

a 6.860 339.900 <0.001
b1 0.151 7.412 <0.001
b2 0.297 13.403 <0.001
b3 0.489 19.866 <0.001
b4 0.590 20.584 <0.001



Axioms 2024, 13, 184 18 of 28

Table 6. Cont.

Coefficient Students’ t p Value

b5 0.684 18.019 <0.001
c1 −0.109 −5.376 <0.001
c2 −0.481 −21.708 <0.001
c3 −0.535 −21.744 <0.001
c4 −0.988 −34.500 <0.001
c5 −2.641 −69.584 <0.001

Table 7. Prediction of incremental claims and claim reserves with an ANOVA two-way model.

i|j 0 1 2 3 4 5

0 1001 854 568 565 347 68
1 1113 990 671 648 422 79.06
2 1265 1168 800 744 477.56 91.50
3 1490 1383 1010 910.35 578.58 110.86
4 1725 1536 1062.96 1006.92 639.96 122.62
5 1889 1693.49 1167.97 1106.40 703.19 134.73

RO5 = 4805.78, RC6 = 4223.41, R = 9886.15
Note: Predicted incremental claims are expressed in italics.

In both cases, using Equation (13a–d), we can obtain the point estimate of the reserves,
as shown in Table 5 for the chain-ladder methodology and in Table 7 for the log-normal
model. The empirical application is focused on fitting total reserves (R) and those associated
with the origin year 5 (RO5) and the calendar year 6 (RC6).

Subsequently, in Table 8, we apply the bootstrapping methodology [62] to make
interval predictions, both with the scheme provided by the chain ladder and that provided
by two-way ANOVA. In both cases, we present confidence intervals for significance levels
of 0.5%, 5%, 10%, and 50%, which is simply the median.

Table 8. Confidence intervals of reserves for the origin year 5, calendar year 6 and the overall reserves
with the application of bootstrapping using a chain ladder and two-way ANOVA methods.

Reserves from Chain Ladder Method

Significance
level RO5 RC6 R

50% [4826.87, 4826.87] [4229.11, 4229.11] [9895.46, 9895.46]
10% [4612.92, 5042.88] [4103.55, 4355.91] [9569.18, 10240.75]
5% [4569.27, 5087.49] [4076.81, 4383.30] [9497.69, 10307.24]

0.1% [4445.45, 5283.89] [4001.10, 4489.41] [9316.30, 10576.78]

Reserves from two-way ANOVA

Significance
level RO5 RC6 R

50% [4804.81, 4804.81] [4222.01, 4222.01] [9888.24, 9888.24]
10% [4720.37, 4902.54] [4148.23, 4316.34] [9777.90, 10014.75]
5% [4703.62, 4928.09] [4133.14, 4335.87] [9755.24, 10042.19]

0.1% [4649.74, 4967.94] [4082.22, 4372.25] [9690.68, 10150.23]

Next, we adjust the intuitionistic model proposed in Section 4.2. To achieve this, we
need the coefficients and errors from fitting the log-normal model in Tables 6 and 9. First,
we must solve the linear program (16a–c), which, in our case, is:

minz1 = 25·(lA + rA) +
5

∑
i=1

(5 + 1 − i)
(

lB(i)
+ rB(i)

)
+

5

∑
j=1

(5 + 1 − j)
(

lC(j)
+ rC(j)

)
,
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subject to:
−lA ≤ 0.0487 ≤ rA

−
(

lA + lC(1)

)
≤ −0.0008 ≤ rA + rC(1)

−
(

lA + lC(2)

)
≤ −0.0371 ≤ rA + rC(2)

. . .

−
(

lA + lC(5)

)
≤ 0 ≤ rA + rC(5)

−
(

lA + lB(1)

)
≤ 0.0041 ≤ rA + rB(1)

−
(

lA + lB(1)
+ lC(1)

)
≤ −0.0037 ≤ rA + rB(1)

+ rC(1)

. . .

−
(

lA + lB(2)

)
≤ −0.0140 ≤ rA + rB(2)

−
(

lA + lB(3)
+ lC(1)

)
≤ −0.0154 ≤ rA + rB(3)

+ rC(1)

. . .

−
(

lA + lB(3)
+ lC(3)

)
≤ 0.0225 ≤ rA + rB(3)

+ rC(3)

. . .

−
(

lA + lB(5)

)
≤ −0.0140 ≤ rA + rB(5)

lA, rA, lB(i)
, rB(i)

, lC(j)
, rC(j)

≥ 0, i = 1, 2, . . . , 5; j = 1, 2, . . . , 5.

Table 9. ANOVA two-way regression residuals.

0 1 2 3 4 5

0 0.0487 −0.0008 −0.0371 0.0117 −0.0225 0.000
1 0.0041 −0.0037 −0.0211 −0.0018 0.0225
2 −0.0140 0.0154 0.0085 −0.0099
3 −0.0422 −0.0075 0.0497
4 0.0034 −0.0034
5 0.000

Table 10 displays the argmax of z1 and z2 for g = h = 0, l(0)a , l(0)b(i)
, l(0)c(j)

, r(0)a , r(0)b(i)
, l(0)c(j)

.

From these values, using (11a–e), we must obtain the value g, which allows la, lb(i) , lc(j) , ra,
rb(i) , lc(j) to be fitted with (11f). We found that g = 0.103; thus, the spreads of the mem-
bership coefficients are those shown in Table 10. We must subsequently determine the
hesitancy level of the system, which must be h∈[0, 0.897]. In this numerical application, we
have stated that h = 0.2. Using (11g), we finally fitted the spreads l∗a , l∗b(i) , l∗c(j)

, r∗a , r∗b(i) , l∗c(j)
,

as shown in Table 10. Figure 2 displays the shape of the parameter
∼
a ,, while Figure 3

displays
∼
b (1) and

∼
c (1).

Table 10. Estimates of spreads of the membership and nonmembership functions of the fuzzy ANOVA
two-way model.

Centre l(0)
(·) r(0)

(·) l(·) r(·) l*
(·) r*

(·)
∼
a 6.860 0.000 0.049 0.000 0.054 0.000 0.070

∼
b (1) 0.151 0.002 0.000 0.002 0.000 0.003 0.000
∼
b (2) 0.297 0.014 0.000 0.016 0.000 0.020 0.000



Axioms 2024, 13, 184 20 of 28

Table 10. Cont.

Centre l(0)
(·) r(0)

(·) l(·) r(·) l*
(·) r*

(·)
∼
b (3) 0.489 0.042 0.001 0.047 0.001 0.061 0.001
∼
b (4) 0.590 0.002 0.000 0.002 0.000 0.002 0.000
∼
b (5) 0.684 0.000 0.000 0.000 0.000 0.000 0.000
∼
c (1) −0.109 0.002 0.000 0.002 0.000 0.003 0.000
∼
c (2) −0.481 0.037 0.000 0.041 0.000 0.053 0.000
∼
c (3) −0.535 0.000 0.000 0.000 0.000 0.000 0.000
∼
c (4) −0.988 0.023 0.000 0.025 0.000 0.032 0.000
∼
c (5) −2.641 0.000 0.000 0.000 0.000 0.000 0.000

Note: To obtain spreads, we used g = 0.103 and h = 0.2.
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Figure 3. Intuitionistic fuzzy number estimate of the growth rate of claims for the origin year i = 1

(
∼
b (1)) and for the development year j = 1 (

∼
c (1)).

The fact that the parameters governing the evolution of incremental claims are TIFNs
allows for their interpretation as a structured sensitivity analysis of the values that can
be reached and not reached. Thus, in Figure 2, we can observe that the logarithm of the
baseline incremental claims (

∼
a) has a maximum likelihood value of 6.86. However, a value

of 6.914 is estimated to be possible, and values greater than 6.930 are deemed impossible.
Values below 6.860 are not considered unattainable.

Using Figure 3, we can similarly interpret the growth rates of claims for origin year 1
and development year 1. For example, the most likely value for

∼
c (1) is −0.109. However,
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deviations below this value up to −0.111 are estimated as much as possible, and values
less than −0.112 are unavailable. Analogous considerations can be made for the remaining
TIFN parameters shown in Table 10. Thus, while the most sensitive parameters, that is,

those with larger radii, are
∼
a ,

∼
b (3) and

∼
c (2) (in order of sensitivity), the least sensitive

growth rates are
∼
b (5) and

∼
c (3) since their radii are zero.

Table 11 shows the ⟨α, β⟩-cuts of the estimates for the reserves associated with the

fifth year of origin
∼

RO5 and the sixth calendar year
∼

RC6. Table 12 shows those for the total

reserves
∼
R. In all the cases, we considered ⟨α, 1 − α⟩, α = 0, 0.25, 0.5, 0.75, 1. The ⟨α, β⟩-cuts

of their triangular approximations
∼

RO
T

5 , the calendar year
∼

RC
T

6 , and the total reserves
∼

RT

are also provided. We can observe that the linear approximation for all three reserves is
practically perfect. The largest errors (5) are never greater than 0.06% and always in the
β-cuts.

Table 11. ⟨α, β⟩-cuts of the claim intuitionistic fuzzy reserves and the triangular approximations for
the fifth origin year and sixth calendar year.

α β RO5α
RO5α RO*

5β
, RO*

5β
RC6α

RC6α RC*
6β

RC*
6β

1 0 4805.78 4805.78 4805.78 4805.78 4223.41 4223.41 4223.41 4223.41
0.75 0.25 4788.48 4871.51 4783.54 4890.53 4195.61 4281.43 4187.68 4298.22
0.5 0.5 4771.33 4938.13 4761.56 4976.78 4168.10 4340.24 4152.44 4374.36
0.25 0.75 4754.33 5005.66 4739.82 5064.54 4140.88 4399.86 4117.68 4451.84

0 1 4737.48 5074.12 4718.32 5153.86 4113.96 4460.29 4083.40 4530.69

∼
RO

T

5 = (4805.78, 68.30, 87.46, 268.34, 348.07)
∼

RC
T

6 = (4223.41, 109.46, 140.01, 236.88, 307.28)

α β ROT
5 α

ROT
5 α

ROT∗
5 β

ROT∗
5 β

RCT
6 α

RCT
6 α

RCT∗
6 β

RCT∗
6 β

1 0 4805.78 4805.78 4805.78 4805.78 4223.41 4223.41 4223.41 4223.41
0.75 0.25 4788.71 4872.87 4783.92 4892.80 4196.05 4282.63 4188.41 4300.23
0.5 0.5 4771.63 4939.95 4762.05 4979.82 4168.68 4341.85 4153.41 4377.05
0.25 0.75 4754.56 5007.04 4740.19 5066.84 4141.32 4401.07 4118.40 4453.87

0 1 4737.48 5074.12 4718.32 5153.86 4113.96 4460.29 4083.40 4530.69

α β εα εα ε*
β ε*

β εα εα ε*
β ε*

β

1 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.75 0.25 0.00% 0.03% 0.01% 0.05% 0.01% 0.03% 0.02% 0.05%
0.5 0.5 0.01% 0.04% 0.01% 0.06% 0.01% 0.04% 0.02% 0.06%
0.25 0.75 0.00% 0.03% 0.01% 0.05% 0.01% 0.03% 0.02% 0.05%

0 1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

The set of ⟨α, β⟩-cuts of
∼

RO5,
∼

RC6 and
∼
R in Tables 11 and 12 can be interpreted as

sensitivity assessments regarding the variability of reserves. The ability to include all
reserves is maximal at α = 0 and β = 1 (i.e., in the <0,1>-cut). However, the reserves
estimated in this <0,1>-cut exhibit very low specificity. In contrast, in the <1,0>-cut, the
specificity of the prediction is maximal, but it does not provide any estimation of possible
deviations from the most plausible value. The interval between comprehensiveness and
specificity may be the <0.5,0.5>-cut.

While Figures 4 and 5 illustrate the shape of the intuitionistic fuzzy number that
quantifies partial reserves and their triangular approximations, Figure 6 does so for the
overall reserves. The information provided by the TIFN estimation of reserves is very
intuitive for identifying an actuarial judgement and can also be interpreted as a structured
sensitivity analysis of the adequate value for a set of five scenarios. The overall reserve with
the highest reliability is 9886.15. The estimated deviations for these reserves are presented
in the form of bipolar information, foreseeing possible maximum upper deviations of
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553.87; in other words, the reserve to be allocated would be 10,443.02. Regardless, such
fluctuations can never exceed 718.48, resulting in reserves of 10,604.62.

Table 12. ⟨α, β⟩-cuts of the overall claim intuitionistic fuzzy reserve and its triangular approximation.

α β Rα Rα R∗
β R∗

β

1 0 9886.15 9886.15 9886.15 9886.15
0.75 0.25 9825.16 10,021.80 9807.79 10,061.07
0.5 0.5 9764.85 10,159.31 9730.54 10,239.09

0.25 0.75 9705.22 10,298.71 9654.40 10,420.25
0 1 9646.24 10,440.02 9579.34 10,604.62

∼
R
′
= (9886.15, 239.91, 306.81, 553.87, 718.48)

α β RT
α RT

α RT*
β RT*

β

1 0 9886.15 9886.15 9886.15 9886.15
0.75 0.25 9826.17 10,024.62 9809.45 10,065.77
0.5 0.5 9766.19 10,163.09 9732.75 10,245.39

0.25 0.75 9706.22 10,301.55 9656.04 10,425.01
0 1 9646.24 10,440.02 9579.34 10,604.62

α β εα εα ε*
β ε*

β

1 0 0.00% 0.00% 0.00% 0.00%
0.75 0.25 0.01% 0.03% 0.02% 0.05%
0.5 0.5 0.01% 0.04% 0.02% 0.06

0.25 0.75 0.01% 0.03% 0.02% 0.05%
0 1 0.00% 0.00% 0.00% 0.00%

Axioms 2024, 13, x FOR PEER REVIEW 22 of 28 
 

0.5 0.5 9766.19 10,163.09 9732.75 10,245.39 
0.25 0.75 9706.22 10,301.55 9656.04 10,425.01 

0 1 9646.24 10,440.02 9579.34 10,604.62 

α > }� }� }∗?  }∗? 

1 0 0.00% 0.00% 0.00% 0.00% 
0.75 0.25 0.01% 0.03% 0.02% 0.05% 
0.5 0.5 0.01% 0.04% 0.02% 0.06 

0.25 0.75 0.01% 0.03% 0.02% 0.05% 
0 1 0.00% 0.00% 0.00% 0.00% 

 

Figure 4. Intuitionistic fuzzy number estimation of the reserves of development year i = 5 (��{ ¼� and 
its triangular approximate ���{ ¼z�. 

 

Figure 5. Intuitionistic fuzzy number estimation of the reserves of calendar year i + j = 6 (��{ ½� and 
its triangular approximation ���{ ½z�. 

Figure 4. Intuitionistic fuzzy number estimation of the reserves of development year i = 5 (
∼

RO5) and

its triangular approximate (
∼

RO
T

5 ).

Axioms 2024, 13, x FOR PEER REVIEW 22 of 28 
 

0.5 0.5 9766.19 10,163.09 9732.75 10,245.39 
0.25 0.75 9706.22 10,301.55 9656.04 10,425.01 

0 1 9646.24 10,440.02 9579.34 10,604.62 

α > }� }� }∗?  }∗? 

1 0 0.00% 0.00% 0.00% 0.00% 
0.75 0.25 0.01% 0.03% 0.02% 0.05% 
0.5 0.5 0.01% 0.04% 0.02% 0.06 

0.25 0.75 0.01% 0.03% 0.02% 0.05% 
0 1 0.00% 0.00% 0.00% 0.00% 

 

Figure 4. Intuitionistic fuzzy number estimation of the reserves of development year i = 5 (��{ ¼� and 
its triangular approximate ���{ ¼z�. 

 

Figure 5. Intuitionistic fuzzy number estimation of the reserves of calendar year i + j = 6 (��{ ½� and 
its triangular approximation ���{ ½z�. 

Figure 5. Intuitionistic fuzzy number estimation of the reserves of calendar year i + j = 6 (
∼

RC6) and

its triangular approximation (
∼

RC
T

6 ).



Axioms 2024, 13, 184 23 of 28
Axioms 2024, 13, x FOR PEER REVIEW 23 of 28 
 

 

Figure 6. Intuitionistic fuzzy number estimation of overall reserves (�\� and its triangular approxi-
mation (�z{ ). 

We can interpret the 〈�, >〉-cuts of reserves (Tables 11 and 12) as similar to probabil-
istic intervals (Table 8). The equivalence between the α-cuts of possibility distributions 
and probabilistic confidence intervals has been extensively documented in the literature 
on probability–possibility transformations [64–67]. In this regard, it should be emphasized 
that the >-cut of the nonmembership function of an IFN can be interpreted as the (1 − >) 
of the upper possibility function [32]. Thus, the 0-cut of the membership function could 
be likened to probabilistic confidence intervals that include a majority of possible out-
comes but not the most extreme ones. We refer, for example, to significance levels of 10% 
or 5%. Similarly, the 1-cut of the nonmembership function can be interpreted as a proba-
bilistic confidence interval whose goal is to include practically all outcomes, which could 
be positioned at 0.5% or lower. 

On the other hand, as shown in Table 13, we can observe that the adjusted IFN reports 
the expressed level of reliability, from an intuitional point of view, regarding possible re-
alizations of reserves. The tested values come from the point estimation and bootstrap 
estimates that accumulate 50%, 95%, 97.5%, and 99.95% probability. As we could expect, 
the point predictions and those associated with the 50th percentile have an almost total or 
total level of membership and an almost negligible level of nonmembership, with a degree 
of hesitancy that is almost nonexistent. The levels of membership, nonmembership, and 
hesitancy provide complementary measures to the accumulated probability levels that 
can be very useful for the decision maker in determining the final level of reserves, which 
should be prudent but not extremely unrealistic, thus unnecessarily burdening the in-
surer’s financial statements. 

Table 13. Evaluation of bootstrapping estimates of provisions on the intuitionistic estimate�z{ =�9886.15, 239.91, 306.81, 553.87, 718.48�. 

Intuitionistic Fuzzy Evaluation of Reserves from a Bootstrapping Chain Ladder 

Final value of reserves 	¸Ï��� �¸Ï��� ℎ¸Ï��� 
 Point estimate 9899.31 0.976 0.018 0.005 
50% percentile 9895.46 0.983 0.013 0.004 
95% percentile 10,240.75 0.360 0.494 0.147 

97.5% percentile 10,307.24 0.240 0.586 0.174 
99.95% percentile 10,464.10 0.000 0.804 0.196 

Intuitionistic fuzzy evaluation of reserves from bootstrapping two-way ANOVA 
Final value of reserves 	¸Ï��� �¸Ï��� ℎ¸Ï��� 

Point estimate 9886.15 1.000 0.000 0.000 

Figure 6. Intuitionistic fuzzy number estimation of overall reserves (
∼
R) and its triangular approxima-

tion (
∼

RT).

We can interpret the ⟨α, β⟩-cuts of reserves (Tables 11 and 12) as similar to probabilistic
intervals (Table 8). The equivalence between the α-cuts of possibility distributions and
probabilistic confidence intervals has been extensively documented in the literature on
probability–possibility transformations [64–67]. In this regard, it should be emphasized that
the β-cut of the nonmembership function of an IFN can be interpreted as the (1 − β) of the
upper possibility function [32]. Thus, the 0-cut of the membership function could be likened
to probabilistic confidence intervals that include a majority of possible outcomes but not
the most extreme ones. We refer, for example, to significance levels of 10% or 5%. Similarly,
the 1-cut of the nonmembership function can be interpreted as a probabilistic confidence
interval whose goal is to include practically all outcomes, which could be positioned at
0.5% or lower.

On the other hand, as shown in Table 13, we can observe that the adjusted IFN reports
the expressed level of reliability, from an intuitional point of view, regarding possible
realizations of reserves. The tested values come from the point estimation and bootstrap
estimates that accumulate 50%, 95%, 97.5%, and 99.95% probability. As we could expect,
the point predictions and those associated with the 50th percentile have an almost total
or total level of membership and an almost negligible level of nonmembership, with a
degree of hesitancy that is almost nonexistent. The levels of membership, nonmembership,
and hesitancy provide complementary measures to the accumulated probability levels
that can be very useful for the decision maker in determining the final level of reserves,
which should be prudent but not extremely unrealistic, thus unnecessarily burdening the
insurer’s financial statements.

Table 13. Evaluation of bootstrapping estimates of provisions on the intuitionistic estimat
∼

RT = (9886.15, 239.91, 306.81, 553.87, 718.48).

Intuitionistic Fuzzy Evaluation of Reserves from a Bootstrapping Chain Ladder

Final value of reserves µRT (x) νRT (x) hRT (x)

Point estimate 9899.31 0.976 0.018 0.005
50% percentile 9895.46 0.983 0.013 0.004
95% percentile 10,240.75 0.360 0.494 0.147

97.5% percentile 10,307.24 0.240 0.586 0.174
99.95% percentile 10,464.10 0.000 0.804 0.196

Intuitionistic fuzzy evaluation of reserves from bootstrapping two-way ANOVA

Final value of reserves µRT (x) νRT (x) hRT (x)

Point estimate 9886.15 1.000 0.000 0.000
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Table 13. Cont.

Intuitionistic Fuzzy Evaluation of Reserves from a Bootstrapping Chain Ladder

50% percentile 9888.24 0.996 0.003 0.001
95% percentile 10,014.75 0.768 0.179 0.053

97.5% percentile 10,042.19 0.718 0.217 0.065
99.95% percentile 10,150.23 0.523 0.368 0.109

6. Discussion

A robust quantification of provisions for pending claims requires establishing a value
with maximum reliability but also allowing for a margin of variability. While deterministic
methods provide reliable values, stochastic methods can additionally estimate variability
margins [2]. A third stream of methods, encompassing this work, involves modelling
claims provisions through fuzzy quantities [10], which also entails predicting a reliable
value and the variability of reserves.

The evolution of claims over time can be deterministically modelled, for example, with
methods such as the chain ladder. However, the final determination of loss values is subject
to deviations from deterministic predictions. Stochastic methods model these deviations by
generalizing deterministic models through the random modelling of deviations [2]. Simi-
larly, possibilistic models generalize these schemes under the assumption that the parame-
ters governing claiming processes are fuzzy numbers (FNs). These include schemes such as
the chain ladder [12,29], London chain ladder [11,27], Bornhuetter–Ferguson scheme [24],
Taylor’s geometric separation method [14], and two-way models [16–19].

All the reviewed studies on loss reserving methods model uncertainty using type-1
fuzzy numbers, which are typically triangular and often symmetric. Our work extends
these results by modelling parameters that govern claim processes with intuitionistic fuzzy
numbers (IFNs). Notably, to the best of our knowledge, the application of intuitionistic
logic to finance and actuarial issues is novel. In this regard, we can highlight applications
in capital budgeting [33–36,38,39] and risk assessment [40].

The use of FNs in the context of actuarial and financial pricing allows for the intro-
duction of epistemic uncertainty, that is, the perceived reliability of the possible values
of the parameters of interest [10]. Therefore, FNs only allow the introduction of positive
information about the feasible values of the parameter. On the other hand, intuitionistic
fuzzy numbers (IFNs) permit bipolarity to be added by introducing both positive and
negative information regarding variables of interest. In other words, it involves not only
using estimated reliable values of the variables but also using unfeasible values [10].

The introduction of IFNs in determining loss reserves is carried out by generalizing
the two-way ANOVA schema [42,43] and its possible extension [16], employing intuition-
istic regression. The results of the comparison of the intuitionistic fuzzy method with
two deterministic methods and their stochastic extensions suggest that it is able to produce
useful results. Moreover, intuitionistic fuzzy quantifications can be interpreted as similar to
the results obtained with stochastic methods. Furthermore, our method provides the possi-
bility of assessing the membership and nonmembership of a possible final quantification in
financial statements of loss provisions. Therefore, the results enrich the tools available to
the actuary to exercise professional judgement, which is a fundamental step in the process
of estimating claim reserves [3].

This study also contributes to the field of intuitionistic mathematics, specifically in
a regression setting with a minimum fuzziness focus. While [41] generalizes possibilistic
regression models [21,22], this work adapts the model from [23] to obtain IFN parameters.
Thus, the estimates of the parameters governing the claiming process over time in our
model are triangular IFNs (TIFNs) that are not necessarily symmetric. Our extension of
intuitionistic regression can be applied in other financial and actuarial contexts where
possibilistic regression has already been used, such as estimating the fuzzy temporal
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structure of interest rates [11], estimating mortality evolution [68], or estimating the implicit
moments of options [69,70].

We focused on the use of input variables estimated by triangular IFNs and the ap-
proximation of the results obtained with linear shapes. Linear shapes often provide an
effective resolution for practical applications of fuzzy set theory [46]. The interpretability
of results by end users who may not necessarily have knowledge of fuzzy logic [46,58]
is a desirable property of using TIFNs. The value of the reserves with TIFN parameters
governing the two-way ANOVA system can be implemented with a very low error by
evaluating five scenarios: one considered the maximum reliability scenario and two pairs
of extreme positive and negative scenarios. Although the actuarial functions are nonlinear,
they admit a good triangular approximation in accordance with the literature on fuzzy
actuarial mathematics [11,12,14,58].

The extreme scenarios of intuitionistic fuzzy estimates can be interpreted within the
concept of bipolar possibility [10]. The extreme scenarios associated with the values consid-
ered in the membership function can be understood as reasonable; those originating from
the nonmembership measure potential extreme situations. Since the final determination
of the provision value requires actuarial judgement, the intuitive interpretation of TIFNs
favours their application.

The information that should be used in estimating pending claims is subject to various
sources of vagueness, such as the scarcity of usable data, which tends to be current [9] and
often imprecise [7]. The tools of fuzzy subset theory allow this kind of data to be handled.
Therefore, generalizing our results to the case where observations of the run-off triangle
are vague and modelled by fuzzy numbers or intuitionistic fuzzy numbers is feasible.

In recent years, other emerging techniques, such as neural networks (NNs) [71,72]
and machine learning (ML) [73], have been applied to fit claim reserves in claim reserve
calculations. Fuzzy and stochastic methods are implemented on the basis of classical
schemes such as chain ladder. As an advantage of these novel approaches, [71–73] reported
that they are capable of providing more accurate point estimates than classical methods.
Therefore, they likely provide better estimates of the maximum likelihood value than the
intuitionistic–fuzzy method proposed in this paper since the latter constructs the <1,0>-cut
with the value of the classical method [42].

However, our method has two strengths compared to the methods of [71–73].
The first is that the adjusted parameters continue to have an economic interpretation,
unlike those from deep learning techniques, where the adjusted parameters are more
difficult to interpret. On the other hand, our intuitionistic fuzzy method fits bands of
variability of reserves that incorporate bipolar information and are parameterized in a very
natural way. In contrast, neural networks and machine learning techniques produce point
estimates. In any case, deep learning methods and our intuitionistic fuzzy methods are not
competitive but complementary. Whereas point estimates from NNs and ML techniques
can be used as a reference for the maximum reliability values, intuitionistic fuzzy estimates
provide a complete estimate of the uncertainty of these values.

7. Conclusions and Further Research

The uncertainty in the calculation of claim reserves has traditionally been caused by
the introduction of stochastic variability into well-known calculation schemes such as the
chain ladder or ANOVA two-way incremental claims. More recently, this uncertainty has
been introduced by interpreting these schemes using possibilistic parameters in such a way
that epistemic uncertainty is measured. This paper expands on the last stream of modelling
uncertainty in calculations of claim reserves by introducing intuitionistic fuzzy parameters
into the ANOVA two-way incremental claims schema. This methodology generalizes
the possibilistic method [16], allowing the introduction of bipolar information about the
value of parameters. This enhancement provides the actuary with more information to
determine the final value of reserves than considering only epistemic uncertainty modelled
stochastically or with fuzzy numbers.
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A natural extension of this study involves introducing intuitionistic uncertainty in
the analysis of nonlife insurance, as well as expanding the results obtained with fuzzy
numbers to calculate discounted reserves [28], the discounted value of nonlife insurance lia-
bilities [74], and the terminal value of an insurance company [75,76], using IFN parameters
instead of FNs.
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