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1. Introduction

In a bioreactor, chemical degradation is the process by which certain chemicals or
compounds are broken down or changed by living things in the bioreactor’s controlled
environment. Bioreactors are widely used to support biological processes, including
fermentation, enzyme manufacturing, and wastewater treatment in various industries,
including pharmaceuticals, biotechnology, wastewater treatment, and food production.

Many scientific papers have presented the isolation and work of microbial species with
higher-degradation action and abilities to degrade chemical compounds [1]. Many isolated
bacteria have been investigated in [2]. The biodegradation of one or all chemical parts
hinges on the composition of the specific mixture and the utilized microorganisms [3-6].
Fractional calculus is an influential extension of the classical derivatives. Fractional
differential equations (FDEs) have recently been implemented in different fields. Many
authors have worked on these equations, such as the KdV equation [7], advection-dispersion
equation [8], telegraph equation [9], Schrodinger equation [10], heat equation [11], convection-
diffusion equation [12], Fokker Planck equation [13], and Lambert-Beer equation [14,15].
Some of the FDEs do not have exact solutions. Therefore, it is required to work on numerical
methods to solve the mentioned equations, such as solving nonlinear fractional diffusion
wave equations with the homotopy analysis technique [16], solving PDEs of fractal order
by Adomian decomposition method [17]. In [1], the authors have given a bioreactor model
but do not consider the bacteria’s death rate and general configuration of the reactor. We
have provided the bioreactor model with the fractal-fractional operators. The model with
fractalfractional derivatives has never been analyzed so far. Our model includes the death
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rate of bacteria, which is important in the process’s environment. We also consider the
general configuration of the reactor, where our model includes a membrane and continuous
reactor. Additionally, we fractionalize the model and apply a novel numerical technique to
achieve the numerical simulations. In these simulations, we use different fractal dimensions
and fractional orders. For more details, see [18-30].

We organize our manuscript as follows. Problem formulation is performed in Section 2.
In Section 3, we discuss the model’s analysis in the classical case and present the equilibrium
and stability analysis. Next, we explore the analysis of the model with three different
kernels viz. the power-law kernel (Section 4), the exponential-decay kernel (Section 5),
and the Mittag-Leffler function (Section 6). Finally, in Section 7, we illustrate the numerical
simulations of the proposed models.

2. Preliminaries

The following definitions of fractional differentiation operator and fractal-fractional
integral operator with three different kernels are taken from [21] .

Definition 1. The fractional differentiation operator with the power-law-type kernel is described as:

1 d
FFP 1] _ a -« <
FPDYF() = 7o [ FE(E=9)ds, 0<my <1, (1)

where,
afs) . f() = £(s)

ds" t—s  th — sl

(2)

Definition 2. The fractional differentiation operator with the exponential-decay-type kernel is
described as:

[TED A1) -

1_,X dtﬂ/f eP (t—S))dS,0<zx,17§1. ©)

Definition 3. The fractional differentiation operator with the Mittag—Leffler-type kernel is described as:

FPMD'X’?f( t) = AB — dt'i / f(s) — (t—s)"‘)ds, O0<a,n<1, 4)

where AB(a) =1 —a + %{X)

Definition 4. The fractional integration operator with the power-law-type kernel is described as:

: no [ e
§PIF(0) = pay ) (6901 gs)ds. ©)
Definition 5. The fractional integration operator with the exponential-decay-type kernel is described as:
_ 1—a)t™!
FFE [ at /ocl SdS+T( - 6

Definition 6. The fractional integration operator with the Mittag—Leffler-type kernel is described as:

0‘ &n th— x— =«
§MIF() = gty ) 5O s s + B f () )

Here, we present the model to be investigated in this research. We present the model as:
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% = D(Spho - S,m) —kpn - y(sph,scr) X, ®)

djtcr = D(Ser0 — Ser) — ker - ﬂ(sphr Scr) X, o

% =-—DpX+pu (Sph, Scr) X, 10)
Ky(p) + Spn + iy + Ler/pnSer Kyer) + Ser + 125 + Lph/erSp

The model parameters and variables are detailed in [1]. The parameter j3 is presented
in the general configuration. When p = 1, we have continued the reactor. When g = 0, we
have a membrane reactor.

3. Analysis of the Model in Classical Sense

Now, we begin with analyzing the properties of the model in classical sense.
We consider the number of equilibrium solutions of the model ((8)-(10)). It is obvious
that the model has a branch of the washout given by

Eo :(Sph; Ser, X) = (Sph0/ SC?‘OrO)‘ (12)

We obtain the steady state solution of ((8)-(10)) by setting to zero the right side. From
the model ((8)-(10)), we have:

ScrOkph + kcr(Sph - SphO)
Sgr - k 7
ph
D (S0 — Spn)
kph (ﬁ D)

(13)
X =

aP‘(Sphfscr)(_kcr)X
T Gasa)X —kcrﬂ(sph/ Scr)

fo= (Rrlomsen)Xy o p

V(Sphxscr)x 5 <
% V(SphrSCr)kcr(sphrScr)
D D0 DB 0
v= ("5 - V= V1=
0 Dp 0 D
D 0

0 _kcr,u(sph/ Scr)
FVv—l=

[ 0 —,Bchr‘u(sph,scr) ]

0 Dg 0 BDu(spn, Scr)
—-A _ﬁchr,u(Sph/ Scr)

0 ,”(Sphr Scr)

det[ FV-1—AL | =0 , =0

0 ,BDy(sph,scr) —A
Thus, we obtain A1 =0, A, = .BD#(Sph/Scr) = Ry.

Lemma 1. The steady state solution E is locally asymptotically stable when D > D, and is
unstable when D < D, where

kicrkph (ScrOkph - Sphokcr) T maxey

[kicrkph (Kscrkph + ScrOkph - SphOkcr) + (Scrkph - Sphokcr)z} B

Dcr =
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Proof. We have
Ey = (Sphr Scry x) = (SphOI Scr0s 0)

i O (Spp,Ser) O (Spp,Ser) T
—D - ag;h kphx - agzh*kphx —F(Sph/ Scr)kph
9 Scr 9 1 Scr
](EO) = _kcr%x —-D — %kcrx _V(Sph/ Scr)kcr
O (SpnsScr) O (Spp.Ser)
I B X — X —Dp + plspnsser) |
-D 0 _y(sph()/ ScrO)kph
J(Eo) = 0 -D _,u(sphO/ Scr0)ker
0 0 _D:B+‘u(sph0/scr0)
where
M h)Sph Sph

sy Ser) = Ll e

Ks(Ph) + Spn + #ph) + Icr/phscr s(cr) T Ser Kitery + LpnserSpn

—-D—-A 0 —u(Spns Scr)kpn
det[J(Eg) — Al3] = 0 -D—-A —y(sph, Ser ) ker =0
0 0 ‘u(sph,scr) —DB—A
=(=D = A)(=D = A)(p(spn,Scr) = Dp— A) =0
AM=-D, Ay=-D, Az= —‘BD —i—‘u(sph,scr)
and

_ S?JhO 1

ﬂ(sph/ Ser) = MAX phSpho (ksph +Spno + Ko + Icr/phscrO)
i(ph)
S%r()

+7 maxcrscro(kser + Scro + K + Iph/crspho)i1

i(ph)
kicrkph (Scrokph - SphOkCT) Tmaxer

D¢ =
[kicrkph(Kscrkph + Scrokpn — Sphokcr) + (Scrkph - Sphokcr)ﬂ p

If D > D¢, then A3 < 0. Thus, all eigenvalues are negative. This shows that the steady
state solution Ey is locally asymptotically stable. [

4. Analysis of the Model with the Power-Law Kernel

Here, we analyze the model with fractional differentiation operator using the power-
law kernel as:

(I;FPDf,ﬂSph = D(Spho - Sph) - kph ’ V(Sph/ Scr) - X. (14)
FFPDMIS,, = D(Sero — Ser) — ker - . (s,,h, SC,> - X. (15)

FFPDMIX — _DBX + (sph, sC,) X. (16)
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We have the following relation between the classical and fractal derivative [21]:

D”f(t) — f,(t) )

et

A relation between the classical derivative and the fractal derivative gives

g){LD?Sph = 77’f17_1 <D (SphO - Sph) - kph : }l(sph, Scr) . X).
B DESer = 1771 (D(Sero = Ser) = ker - (S Ser ) - X))
§DEX = 1~ (~DBX + i (Sps Ser ) X).

For simplicity, we define

A(t, S b Ser, X) = 5171 (D (spho - sph) — ki - y(Sph,Scr) : X)
B(t, S, Ser, X) =t~ (D(SC,O — Sep) —key - y(sph,sc,) : X).
C(t, Sy Ser, X) = nt" ™ (~DBX + i Sy, Ser ) X).

Then, we obtain

gLD?Sph = A(t/ Sph/ Scrr X)
g){LD?‘SC? = B(t, Sph/ Ser, X).
KEDEX = C(t, Sy, Ser, X).

Applying the Riemann-Liouville integral yields:

Syn(t) — ,1(0) —r(la)

Scr(t) - Scr(O) —r(la) /Ot B(T, Sph/ Ser, X)(t _ T)a_ld’l’.

t
L | €SS0 ) = 0
0

t
/ A(T, iy Ser, X) (£ — T)* Ldr.
0

Discretizing the above equations at ¢, 1, we receive:

] tn+1 _
Spn(tns1) = Sp(0) :W/o A(T, Sy, Ser, X) (bn 1 — T)* " Ad,
] tn+1 a—1
Ser(tns1) = Ser(0) =p5 /0 B(T, Sy, Ser, X) (ns1 — T)* " Ad,
1

Ent1
X(taa1) = X(O) =gy [ €@ Spn,Ser, Xt —7)* e

i)

1 ti+1 _
Sun(tns1) — -y / A(T, S, Sers X) (n 1 — 7)*d.
r(“ j=0 tJ
1 < i a—1
Scr(tn+1) SCY W Z/t T Sph, SCY/ )(tn+1 — T) dT.
j=0""%
1 1 /Jrl a—1
X(tas1) = X(0) =5 y /t (T, Sphs Sers X) (g1 — 7)* Ldr.
j=0""%

(17)

(18)
(19)

(20)

(21)
(22)

(23)

(24)
(25)
(26)

(27)
(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)
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We use two-step Lagrange polynomial as:
T—1tiq T—t;
Pi(T Sps Sers X) = - — t{ A(tj, Sp Ser, X) = — t.] A(ti-1,Sph, Ser, X). (36)
] j-1 ] j-1
T— T— 1
q;(T, Sphs Ser, X) = f B(tj, Spns Ser, X) = — t.] B(ti_1,Spn Ser, X).  (37)
] j-1 ] j-1
Tt T—t
Sj(T/ Sph/ Scr, X) = 7C(t Sph/ Ser, X) - ; / C(tjfl/ Sph; Ser, X)‘ (38)

Then, we obtain

Sph<tn+1) - Sph(())
Scr(tn+1) - Scr(o)
X(tn1) — X(0) =

ti—tia tj —

B Xn: lh"‘B(t]-, Sy Sers X)

j—1

_ 1 2/”“ (T, Syp Sery X) (tns1 — T)% Ldt
= F(Dc) = : pLT, phs Ocrs n+1
n h'xA(t]', Sph/ Scr,X) ~a .
= ];) T(a12) (m+1—-))*n—j+2+a)

—(n—j)%(n—j+2+2a))]
1 hA ] 1rSph/Scrr )
I'(a+2)

=) (n=j+1+a))]

M

(CRREV IS

]:

—(n

1 it a1
r([x)];)/tj (T, Sy, Ser, X) (b — T)* " HdT

T(a+2) (m+1-j)*n—j+2+a)

—(n—j)*(n—j+2+2a))]

_2 hDCB ] 1/Sph/SCr/X)
iz T(a+2)

*(”*]) (n—j+1+a))]

j=0

(CEREis

nooe
r(la) ]g /tjml 5(T, Spis Sers X) (a1 — T)*dt
htXC(t]-, Spis Sers X)
=0 I'(a+2)

—(n—j)*(n—j+2+2a))]

Zlhac ] 1/Sph/SCr/ )

[(a+2)

1=

(n+1=j)*(n—j+2+a)

—

((n+1—j)
]

—(n—=j)"n—j+1+a))]

Thus, the numerical scheme for the model with power law kernel has been obtained.
We used this scheme and obtained Figures 1-4.
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Proposed Method Proposed Method Proposed Method
0.7 0.3 0.05
a=1.0 a=1.0
2=0.90 2=0.90
=0.80 2=0.80
a=0.70 a=0.70
054 . . . . . 022 . . . . .
0 20 40 60 80 100 120 0 20 40 60 80 100 120 120
t t

Figure 1. Solutions of (14)—(16) for B = 1, fractal dimension 1, and « = 1,0.9,0.8,0.7 with the
power-law kernel.

Proposed Method Proposed Method Proposed Method

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Figure 2. Solutions of (14)—(16) for § = 1, fractal dimension 0.8, and « = 1,0.9,0.8,0.7 with the
power-law kernel.

Proposed Method Proposed Method Proposed Method

a=1.0

0.045 * a=0.90
=0.80
2=0.70 0.04 © a=070

a=1.0

2=0.90
=0.80
2=0.70

0.035 -

120 0 20 40 60 80 100 120

Figure 3. Solutions of (14)-(16) for p = 0.5, fractal dimension 1, and « = 1,0.9,0.8,0.7 with the
power-law kernel.

Proposed Method Proposed Method Proposed Method

0.7 T T T 0.05 T T

a=1.0
0.045 + =090
© a=0.80
0.04 © a=0.70

a=1.0

2=0.90
2=0.80
2=0.70

Figure 4. Solutions of (14)—(16) for B = 0.5, fractal dimension 0.9, and « = 1,0.9,0.8,0.7 with the
power-law kernel.
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5. Analysis of the Model with the Exponential-Decay Kernel
Next we analyze the model with using the exponential-decay kernel as:
FFEp®ig D(s —5,) — ko - 1(Syp, Ser ) - X (39)
0 t Oph phO ph ph* K\ OphsScr .
(I;FED?JISN = D(SCVO - Scr) —ker - U (Sph/ Scr) - X. (40)
FFEDYIX — _DBX + (sph, scr) X. (41)

Using the relation between the classical derivative and the fractal derivative yields

SFD3S,y = 1! (D (spho - sph) — k- (sph, scr) : X). (42)
SFD?Scr = ;7t']—1 (D(Scro - Scr) —kerop (Sph/ Scr) : X) . (43)
CFDIX = ;7t’7_1<—DﬁX+y(Sph,SC,)X>. (44)

For simplicity, we define

K(t, Sph, Ser, X) =t} (D (spho - sph) — k- (sph, scr) : x). (45)
L(t, Sy Sers X) = 117" (D(Ser0 = Ser) = ker - (S Ser ) - X). (46)
M(t, Spp, Ser, X) = 7t~} (—DﬁX +u (sph, sc,)x). (47)

Then, we obtain

6 DIS = K(t, Sp, Ser, X). (48)
§EDESer = L(t, S, Sers X). (49)
6FDEX = M(t, Sy, Ser, X). (50)

Applying the CF integral yields [22]:

1—« « t
Sn(8) = Su0) = K Sy S X) o+ g /0 K(T, S, Ser, X)d.
1—«a n ¢ P
So(t) = Sar(0) = TSt S S, X) + s /0 L(T, Sy, Ser, X)dT.
1—« « t
X() = X(O) = M Syn,Sers X) + s /0 M(T, Sy, Ser, X)dT.

Discretizing the above equations at ¢, and t,,, we receive:

1—«a

n n n
M(“)K(tn/ SCWX )

n+1 _ 0
Sph = Spnt phs

& [EE]
e /0 K(T, Sy Ser, X)d

M(
i = SU s, 5, 8m, X7
cr cr M(DC) nrs phr crs

o

tn+1
W/O L(T,Sph,scr,x)dT
1—«
M(a)

& (ES]
W/O M(T, Sph, Scr,X)dT

+

+

XVI-‘rl — XO +

Mt S}y Sty X")

+
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and

—
Zh — a) (nllszhllsnlxn 1)

(
/ (T, Sphs Sers X)dt

—

S?r = Sgr ( ) (n 1’SZh1’Sn 1 , X" 1)
o tn

M(a)

11—«

M(a)

+ L(T, Spn, Ser, X)dT

M(n 1,511 1Sn 1Xn 1)

— 0
X" = X'+ ot

o

tn
i /0 M(T, Spp, Ser, X)dT

Thus, we reach

1—ua
+1 1 1 1
Szh — Szh + M( ) (K(tn, ph’ SZL}” Xﬂ) ( n—1r Szh ,Sn Xn ))

& S, S X)d
+m /tn (T/ ph/ crs ) T
1—a

Set = S?r"'m

(L(tflr ph/Ser/Xn) (l’l lrSZh 1/8” ! X" 1))

o

tn+1
— L X
M(D() /tn (T/ Sph/ SC'r‘r )dT

1—«
Xn+1 — Xn"’m(M(tnr ph/S?WXn) M( - 1’5211 1,5" 1 Xn 1))

+

o

tn+1
i /t M(T, Sy, Ser, X)dT

+M(

Using the two-step Lagrange polynomial yields, we receive:

il = (a)( (s i St X") = K(ta 1, S0, S57, X771 )
3h h
(21< bn, Sy Strs X) = 5K (b1, Sy, S5, X1 1))
— X
S?jl = S?r (DC) (L(ti’l/ Ph’ S?r/Xn) (Tl 1, Szh 1, Sn 1 Xn 1))
« 3h n n h n—1 gn—1 n—1
+M( ) < 2 L(t"' ph'scer ) 2 ( n— 1lsph ,S X )
1—«
n+l1 __ n n n n—1 cn—1 n—1
XM= X s (M(ta, St S8, X7 = Mty 1, St 807, X071
a 3h n n h n—1 gcn—1 n—1
+M([X) (2M(tnr ph’SCr’X )*EM(tnfl,Sph ,S X )

Thus, the numerical scheme for the model with exponential decay kernel has been
obtained. We used this scheme and obtained Figures 5-8.
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Proposed Method Proposed Method Proposed Method
07 03 0.05
a=1.0
068 2=0.90
2=0.80
=070
0.66
0.64
2—& 062
%
0.6
058
056
054 . . . . . 022 . . . . .
20 40 60 80 100 120 0 20 40 60 80 100 120 60 80 100 120
t t t
Figure 5. Solutions of (39)-(41) for B = 1, fractal dimension 1, and « = 1,0.9,0.8, and 0.7 with
exponential decay kernel.
Proposed Method Proposed Method Proposed Method
07 T T T T T 03 T T T T T 0.05 T T T T T
a=10 a=1.0
@=0.90 @=0.90
=080 =080
=070 2=0.70 =0.70
120 120 120

Proposed Method

Figure 6. Solutions of (39)—(41) for B = 1, fractal dimension 0.7, and « = 1,0.9,0.8, and 0.7 with

exponential decay kernel.

Proposed Method

Proposed Method

100 120 0 20

100

120

Proposed Method

* a=10
0.045 - -+ a=090
a=0.80
a=0.70

0.015

0.01

0.005

Figure 7. Solutions of (39)-(41) for B = 0.8, fractal dimension 1, and « = 1,0.9,0.8, and 0.7 with

exponential decay kernel.

Proposed Method

80

100 120 0 20

100

120

Proposed Method

Figure 8. Solutions of (39)—(41) for B = 0.8, fractal dimension 0.7, and « = 1,0.9,0.8, and 0.7 with

exponential decay kernel.
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6. Analysis of the Model with the Mittag-Leffler Kernel

Now, we analyze the model with fractional differentiation operator using the Mittag—
Leffler kernel as:

FEMDYTS,, — D(s,gh0 - s,,h) — ki y(Sph, sc,) - X. (1)
FEMDMIG = D(Ser0 — Ser) — ker - 1t (sph, scr) - X. (52)
EPMDYX = ~DBX + iy, Ser ) X. (53)
Then, we obtain
SEDES,y =t (D (spho - sph) — Ky (sph, scr) : X). (54)
ABDEG,, = 11 (D(Scro —Sey) —ker 1l (sph, scr) : X). (55)
BEDEX = yt1 = (~DBX + Sy Ser) X) (56)

For simplicity, we define

Y(t, Sy Ser, X) = nt7 ™" (D(Spio = Spi ) — K- 14 (Spis Ser ) - X). (57)
Z(t, Sy Ser, X) = t7™ (D(Sero = Ser) = ker - i (Spis Ser ) - X). (58)
T(t, Sy, Ser, X) = it~ (—DﬁX o (s,,h, SC,) X). (59)

Then, we receive

0EDES = Y (£, Sp, Ser, X). (60)
08D Ser = Z(t, Spn, Ser, X). (61)
§PDEX = T(t, Sph, Ser, X). (62)

Applying the AB integral gives:

Sl’h(t)_sph(o) = jB(;X)Y(t/Sph/SCW X) + (:()r()/t(t_p)“_ly(stph/Scr/X)dp‘
Ser(F) — Ser(0) = MZ(t,Sph,Scr, X) + ;)r / (t = P25, S Sers X
X(t) — X(0) = MT(t,Sph,sm ”W/N P (p, S 1, Ser, X)dp.

Discretizing the above equations at ¢, 1, we receive:
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1—«a

St = Syt mY(th,S;h, s, X"
14 [FEE] a—1
+W)T(W)/o (tnr1 = P)" Y (P, Spns Ser, X)dp
1—uw
S?rJrl = Sgr+mz(fn+1, Zh,S?r, X™)
w® tug1 a1
+W)T(W)/o (tnt1 = P)* " Z(p, Spn, Ser, X)dp
11—«
Xn+l — XO + MT(thA/ Zh’ S?rr Xn)

o

] ; “71T s 5 y
+W/O ("+1_p) (p/ phr Octs )dp

Then, we obtain

11—«
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I I'(a+2)
—(n—i)*(n—i+2+2u))]
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(m+1-0D)*n—i+2+a)
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AB(a)
N « i [h*Z(t;, Szh,SZ‘r, Xm)

AB(«) = T(a+2)
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(m+1-0)*n—i+24+a)

b R[PSS
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—(n=i)*(n—i+1+ua))]

1—uw nogqn yn
MT(%H, pivr Sers X)
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—(n— i) (n—i+2+2a))]
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AB(a) = I'(a+2) " l

—(n—i)*n—i+1+a)).

Thus, the numerical scheme for the model with Mittag—Leffler kernel has been
obtained. We used this scheme and obtained Figures 9-12.
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Figure 9. Solutions of (54)-(56) for B = 1, fractal dimension 1, and « = 1,0.9,0.8, and 0.7 with
Mittag—Leffler kernel.
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Figure 10. Solutions of (39)—(41) for B = 1, fractal dimension 0.5, and « = 1,0.9,0.8, and 0.7 with
Mittag—Leffler kernel.
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Figure 11. Solutions of (39)-(41) for B = 0.5, fractal dimension 1, and « = 1,0.9,0.8, and 0.7 with
Mittag-Leffler kernel.
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Figure 12. Solutions of (39)—(41) for B = 0.5, fractal dimension 0.6, and « = 1,0.9,0.8, and 0.7 with
Mittag—Leffler kernel.

Remark 1. A valuable and huge benefit of fractional differentiation operator is that we can formulate
models better defining the systems with memory effects. It is known that the use of integro-
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differential kernels of a certain type in integro-differential equations leads us to the fractional
derivative operator [31]. The kernels with degree functions in integro-differential equations of the
Voltaire type [32], allow us to describe this memory effect [33,34].

Fractal—fractional operators with different memories are related to the non-local dynamical
systems’ different types of relaxation processes. Thus, models with fractional differentiation operators
are more effective and valuable.

7. Results and Discussions

In this section, we present numerical simulations for different fractional order and
fractal dimension values. We also add the classical derivative with the integer fractal
dimension equal to 1.

We chose fractal dimension as the integer and noninteger in the figures. We discuss
the results with the three kernels described in Sections 5-7. The figures &, B, and 7 are
between zero and one. In these simulations, 8 is the parameter given on the model, 1
is the fractal dimension, and « is the fractional order. We see the effect of the fractional
order « under different kernels and values of the parameter  and the fractal dimension
1. Figures 1 and 2 show the numerical simulations for B = 1, the fractal dimensions 7 =1
and 1 = 0.8, and for different fractional order a values with the power-law kernel. We also
show how this kernel behaves for § = 0.5 and the fractal dimension# = 1and # = 0.9 in
Figures 3 and 4. We see that the convergence is faster for the case § = 1 than to the case
B = 0.5, as long as the fractal dimension is close to 1. The concentrations S, (t) and S¢,(t)
decrease as long as a decreases. In all the cases, the concentration X(t) decreases to 0.

The results for the exponential-decay kernel are shown for f = 1 in Figure 5 (with
fractal dimension r7 = 1) and Figure 6 (with fractal dimension # = 0.7). We demonstrate
the results for B = 0.8 and # = 1 (Figure 7) and 7 = 0.7 (Figure 8). Despite varying the
parameters B, «, and the fractal dimension, there are fewer differences in the concentrations
with respect to the results shown by the power-law kernel.

Finally, in Figures 9-12, we show the results for the Mittag—Leffler kernel. The numerical
simulations for B = 1 are shown in Figure 9 (y = 1) and Figure 10 (y = 0.5). We also see the
behavior of the solution for § = 0.5, = 1 in Figure 11 and B = 0.5, = 0.6 in Figure 12.

We have seen that the exponential-decay kernel is the one that converges faster to the
equilibrium, with the smaller difference among concentrations of the substances.

8. Conclusions

This work provides a mathematical model for breaking down a phenol and p-cresol
mixture in a bioreactor with continuous stirring. Three nonlinear ordinary differential
equations served as the foundation for the model. The equilibrium points of the model were
identified, and their stability was examined and shown. Additionally, we used the fractional
differentiation operator to examine the model and three distinct kernels to examine the
effects of the fractal dimension and fractional order. We developed very efficient numerical
algorithms for biomass, phenol, and p-cresol concentrations. To demonstrate the accuracy
of the suggested approach, we offered numerical simulations for different « and § values.
The right choice of model parameters would require validation with experimental data.
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