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Abstract: This paper deals with a credit derivative pricing problem using the martingale approach.
We generalize the conventional reduced-form credit risk model for a credit default swap market,
assuming that the firms’ default intensities depend on the default states of counterparty firms and
that the stochastic interest rate follows a jump-diffusion Cox–Ingersoll–Ross process. First, we derive
the joint Laplace transform of the distribution of the vector process (rt, Rt) by applying piecewise
deterministic Markov process theory and martingale theory. Then, using the joint Laplace transform,
we obtain the explicit pricing of defaultable bonds and a credit default swap. Lastly, numerical exam-
ples are presented to illustrate the dynamic relationships between defaultable securities (defaultable
bonds, credit default swap) and the maturity date.
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1. Introduction

Efficient tools for the management of credit risk in portfolios are always in high
demand in financial institutions. This leads to a specialized market for credit derivatives.
Due to the initiation of the credit derivatives market in the early 1990s, credit derivatives
have maintained robust growth in the past decades. Being an enormous market that already
surpasses the debt one, it has been attracting increasing research interest. For the modeling
of credit risk in credit-risky securities markets, depending on the formulation, there are two
well-established fundamental models available at present, i.e. the so-called reduced-form
model [1–3] and the structural model [4,5]. In the reduced-form model, the influences on
the default are assumed to be dominated by exogenous factors, for example, policies from
the government; meanwhile, structural models mainly focus on endogenous factors—more
specifically, the asset allocation of firms. Compared with the structural one, the reduced-
form model is believed to be easier for constructing a tractable formula explaining the price
of credit-risky securities in terms of economic covariates, which facilitates the estimation.
In this work, we mainly focus on the reduced-form model.

There is a long history of insights into credit risk in the credit derivatives market with
the reduced-form model, going back to the 1990s. When describing dependency default
risks, bottom-up models as well as top-down models are commonly used. Bottom-up
models focus on modeling default intensities of individual reference entities to characterize
a portfolio default intensity. For more developments of bottom-up models, references [6–8]
are highly recommended. The top-down models mainly focus on modeling default at the
portfolio level; in other words, the default intensity of the entire investment portfolio is
modeled without reference to the constituent names. Some works on top-down models are
included in [9–11]. In our paper, we focus on bottom-up models.

In bottom-up models, the default intensity is generally assumed to be a stochastic
process, while the relevant randomness is built up from state variables. Moreover, a further
consideration of credit contagion is then pioneered by [12] (the so-called DL model) to
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incorporate the concentration risk in credit portfolios. In the meantime, the emergence of
certain special phenomena—for instance, the banking crisis—reveals one of the defects
of the conventional reduced-form models, which did not possess a full consideration
of credit risk sources. Accordingly, a model with the concept of counterparty risk was
brought forward by [7]. In recent years many scholars have considered this factor, for
example in [13–18]. In conjunction with the credit contagion, this model emphasizes the
so-called primary–secondary framework, which simplifies the payoff structure. The default
intensity in such a framework is assumed to be mainly decided by the default state of the
counterparty and the economy-wide state variables that follow the Vasicek process (see
e.g., [19]). In addition, [13,15,16,20,21] also involved the effects of various other factors
(such as the settlement risk, the replacement cost, credit rating, Markov Regime-Switching)
in the pricing of CDSs. However, further effects are still desired for improving these models
to better characterize the credit derivatives market.

One of the essential aspects of a fine modeling of credit risk is the proper addressing
of the dynamic changes of economy-wide state variables. Among all economy-wide state
variables, we only consider the risk-free interest rate in this work. As the mean reversion
may come from the underlying macro-economic currents, or the corrections on account of
bond market overreaction, the Cox–Ingersoll–Ross (CIR) process (for more details, see [22])
is applied to characterize the interest rate fluctuation [23–27]. This process covers the defect
of the Vasicek model that makes it possible to get negative interest rates. In the CIR process,
the volatility term θ

√
r(t) will approach zero when the interest rate gets close to zero,

which cancels the effects of the randomness. Thus, the interest rate in such a case remains
positive. Meanwhile, the volatility takes high value when the interest rate is high, which is
a desired property for modeling. Moreover, in practice, when a primary event takes place,
e.g., a change in monetary policies, there will be a positive jump in the interest rate process.
Such a jump will be suppressed by the government over time. Then, the process continues
until it is taken over by another jump caused by a new event. Therefore, to depict such a
phenomenon, we consider a jump-diffusion Cox–Ingersoll–Ross (JCIR) process.

In this paper, we propose a revised reduced-form model [28]. It incorporates the
assumption that the firms’ default intensities are related to the default states of counterparty
firms and the stochastic interest rate driven by the jump-diffusion Cox–Ingersoll–Ross
(JCIR) process. This model, to some extent, is more in accordance with the actual CDS
market than that of classical work [7]. The primary intention of this article is to derive an
explicit expression for the joint Laplace transform of the distribution of the risk-free interest
rate-related vector process (rt, Rt) by applying the piecewise deterministic Markov process
theory. The piecewise deterministic Markov process theory was developed by [29] and has
been proven to be a very powerful mathematical tool in the field of non-diffusion models.
Using the joint Laplace transform, we obtain the explicit pricing of defaultable bonds and
default swap rates. Finally, according to this explicit expression, we present the dynamic
relations between defaultable securities and the maturity date.

The rest of this paper is organized as follows. In Section 2, we present the setup
of the counterparty structure. In Section 3, we derive the joint Laplace transform of the
distribution of the vector process (rt, Rt), and the pricing formulae for defaultable bonds
are derived. Meanwhile, with several examples, we also explore the impact of counterparty
risk and spot interest rate on bond pricing. In Section 4, we extend our model to the pricing
of credit default swaps and the importance of default correlation and spot interest rate
models in pricing a default swap. In Section 5, conclusive remarks and further academic
challenges are presented.

2. Reduced-Form Model

In this section, to construct the model, a collection of doubly stochastic Poisson
processes are assumed to represent the default. Then, the primary–secondary framework is
applied to further simplify the subsequent exposition.
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2.1. Model Setup

To set up the model, the filtered probability space (Ω, F , {F}T∗
t=0,P) is used for

the uncertainty in the economy, while Xt, an Rd-valued process, and point processes Ni

(i = 1, · · · , I) are assumed to indicate the d economy-wide state variables and the default
processes of firm i, respectively. Ni is 0 initially and changes to 1 once the default takes
place. Denoting τi as the relevant default time, the default process of firm i could be
presented as Ni

t = 1{τi≤t}. Then, the filtration could be generated according to Xt and Ni
t as

Ft = F X
t ∨F 1

t ∨ · · · ∨F I
t ,

with

F X
t = σ(Xs, 0 ≤ s ≤ t) and F i

t = σ(Ni
s, 0 ≤ s ≤ t)

being the filtrations obtained from Xt and Ni
t , respectively.

In addition, we indicate the filtration generated by the default process of all firms but
the ith one as

F−i
t = F 1

t ∨ · · · ∨F i−1
t ∨F i+1

t ∨ · · · ∨F I
t .

Thus, F X
T∗ ∨F−i

T∗ embraces the full information up to time T∗ on the state variables
and the default processes of all firms other than that of the ith. We could also choose an
intensity process λi

t, for t ∈ [0, T∗], being non-negative and F X
T∗ ∨F−i

T∗ -measurable, with

∫ t

0
λi

sds < ∞,P− a.s.,

so that a Poisson process Ni can be defined.

2.2. Primary–Secondary Framework

As a typical case, in this work, we discuss the default probability of a commercial
bank. We assume that bank A owns a large amount of debt from firm B. However, it is
normally not vice versa, and thus not possible to affect B’s default probability. Thus, we
implement the constraints as follows. All I firms considered could be separated into two
incompatible types, i.e., S1 primary firms and the rest I − S1 secondary firms. The default
processes of the primary firms only depend on state variables, while those of secondary
firms depend on both the state variables and the default status of the primary firms.

To start with, under probability measure P, for the S1 primary firms, there is a sequence
of independent unit exponential random variables, {ei, 1 ≤ i ≤ S1}, being also independent
of Xt. Thus, the relevant default times can be defined as

τi = inf{t :
∫ t

0
λi

sds ≥ ei}, 1 ≤ i ≤ S1, (1)

with λi
t adapted to F X

t , while the conditional and unconditional survival probability
distributions of primary firm i are given by

P(τi > t|F X
T∗) = exp(−

∫ t
0 λi

sds), t ∈ [0, T∗], (2)

P(τi > t) = E[exp(−
∫ t

0 λi
sds)], t ∈ [0, T∗]. (3)

Since the primary firms’ default processes only depend on Xt, we denote their default
intensities by

λi
t = ai

0,t, 1 ≤ i ≤ S1. (4)
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Then, we proceed to the secondary default processes. Similarly, for the I − S1 sec-
ondary firms, there is also a sequence of relevant independent variables, {ej, S1 + 1 ≤ j ≤ I},
being independent of Xt and {τi, 1 ≤ i ≤ S1} as well. Hence, the default times can be
defined as

τ j = inf{t :
∫ t

0
λ

j
sds ≥ ej}, S1 + 1 ≤ j ≤ I, (5)

with λ
j
t adapted to F X

t ∨F 1
t ∨ · · · ∨F S1

t , while the conditional and unconditional survival
probability distributions of secondary firm j are expressed as

P(τ j > t|F X
T∗ ∨F 1

T∗ ∨ · · · ∨F S1
T∗ ) = exp(−

∫ t
0 λ

j
sds), t ∈ [0, T∗], (6)

P(τ j > t) = E[exp(−
∫ t

0 λ
j
sds)], t ∈ [0, T∗]. (7)

Since the default processes of secondary firms depend on Xt and the default processes
of primary firms, we denote the default intensities by

λ
j
t = aj

0,t +
S1

∑
k=1

aj
k,t1{τk≤t}, S1 + 1 ≤ j ≤ I, (8)

with aj
k,t adapted to F X

t . The default of firm k, according to the sign of aj
k,t, can either

increase (aj
k,t > 0) or decrease (aj

k,t < 0) the default probability of firm j. In addition, a more
general default intensity can be achieved by involving the interactions of the indicator
functions.

According to the assumptions above, we now derive the explicit pricing formulae of
defaultable bonds and default swap rates in Sections 3 and 4, respectively.

3. Defaultable Bonds

In this section, we derive the pricing formulae for defaultable bonds. First, we present
the general formulae for bonds in the primary–secondary framework that fulfills the
assumptions in the previous sections. Under the equivalent martingale measure P, the
prices of the default-free and defaultable bonds are, respectively, given by

p(t, T) = E[exp(−
∫ T

t
rsds)|Ft], (9)

Vi(t, T) = βi p(t, T) + 1{τi>t}(1− βi)E[exp(−
∫ T

t
(rs + λi

s)ds)|Ft], (10)

where βi is the recovery rate of defaultable bond i, and t ≤ T < T∗. Here, to reduce
derivation complexity, we assume the recovery rate to be a constant for obtaining a simple
martingale pricing formula. Obviously, due to (10), the prices of risky bonds consist of two
parts, i.e., the recovery rate βi and the rest factor 1− βi, both discounted to t. The first part
could be calculated explicitly, while the second one could be obtained in the absence of
default. Moreover, the second part, being discounted at the adjusted spot rate, presents
the default risk in the model. Therefore, the pricing under P depends on the expectation
in (10).

Then, in the following, we assume firm A and B to be the primary and secondary firm,
respectively. The default of firm A is independent of the default risk of others, while that of
firm B depends on the default risk of firm A. Both firm A and B’s default risk depends on
the interest rate, which could be owing to the firms’ big cash demands for debt repayments.
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In this work, we only consider the simple case, with the default intensities following the
linear relations:

λA
t = bA

0 + bA
1 rt, (11)

λB
t = bB

0 + bB
1 rt + b1{τA≤t}, (12)

where bA
0 , bA

1 , bB
0 , bB

1 , and b are positive constants. The only economy-wide state variable we
account for here is the risk-free interest rate, which, more specifically, follows an extended
CIR process with positive jumps:

drt = α(η − rt)dt + θ
√

rtdWt + dJt, (13)

where we assume that α, η, θ ≥ 0, Jt = ∑Mt
i=1 Yi. Mt is a Poisson process with frequency ρ,

which indicates the total number of jumps up to time t. {Yi, i ≥ 1} are the sizes of the jumps
and are assumed to be independent and identically distributed random variables following
a distribution function F(x)(x > 0). When the value of the CIR process approaches 0, the
behavior of such a process relies on its parameters. There are several conditions that assure
that the jump-CIR process (13) remains strictly positive. We list those conditions as follows:

1. θ2 ≤ 2αη. This condition is needed to guarantee rt > 0 with probability 1 if r0 > 0, 0
is not accessible, and the process never blows up to ∞. Since rt follows a classical CIR
process, the Feller condition θ2 ≤ 2αη assures that rt > 0. Specifically, the probability
of no jumps on a given time interval is positive, which also strengthens the importance
of θ2 ≤ 2αη. If θ2 > 2αη, the process rt will repeatedly cross zero and reflect at zero.

2. F(Yi) ∈ Ft− F(Yi) is the distribution of Yi, which ensures the Markov property of the
rt. That is, if one can predict the exact jump timing and jump-size at an instant before
a jump occurs, one can make an arbitrarily large profit with certainty.

3. EYi ∈ [0, ∞),−rt− < Yi < ∞ at Mt = 1, which preserves non-negative jump intensity
and a positive instantaneous volatility. For a more specific description about the
conditions where the jump-CIR process remains strictly positive, one can refer to [30].

Comparing with the Vasicek model, the CIR process possesses the properties of mean-
reverting and non-negativity, which is of better modeling for interest rates. When η = θ = 0,
then JCIR processes reduce to shot noise processes, which are widely used in various fields,
e.g., actuarial science, mathematical finance and electronics. Accordingly, investigating
JCIR processes has important academic value and application value.

In the following, a critical lemma is brought out to price credit securities. We can refer
to [31] for specific proof methods via martingale theory as well as piecewise deterministic
Markov process theory.

Lemma 1. Assume that µ ≥ 0, k ≥ 0, then the joint Laplace transform of the distribution of
(rt, Rt) (let Rt =

∫ t
0 rudu) is

g(µ, k, t, T) = E{e−µrT e−k(RT−Rt)|F r
t }

= exp(−Bµ,k(t, T)rt) exp
(

α2η(T − t)
θ2

)
(Cµ,k(t, T))−

2αη

θ2

× exp(−ρ
∫ T−t

0
[1− h(Bµ,k(0, u))]du), (14)

where

h(Bµ,k(0, u)) =
∫ ∞

0
e−Bµ,k(0,u)xdF(x), (15)
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Bµ,k(t, T) =
(2k− αµ) + µ

√
α2 + 2kθ2coth(

√
α2 + 2kθ2(T − t)/2)

(θ2µ + α) +
√

α2 + 2kθ2coth(
√

α2 + 2kθ2(T − t)/2)
, (16)

Cµ,k(t, T) = cosh(
√

α2 + 2kθ2(T − t)/2)

+(θ2µ + α)(α2 + 2kθ2)−
1
2 sinh(

√
α2 + 2kθ2(T − t)/2). (17)

Proof. 1. (Construct a martingale) Setting the infinitesimal generator operator A to 0,
we construct a martingale. Let f (R, r, t) = exp{−G(t)r − kR + H(t)}. By [32], letting
A f (R, r, t) = 0, we have

−G
′
(t)r + H

′
(t)− kr− α(η − r)G(t) +

1
2

θ2rG2(t) + ρ[y(G(t))− 1] = 0. (18)

Solving Equation (18), we get{
−G

′
(t)− k + αG(t) + 1

2 θ2G2(t) = 0,
H
′
(t)− αηG(t) + ρ[y(G(t))− 1] = 0.

(19)

By solving the above coupled equations, we can get the explicit expression of G(t)
and H(t). Then for l > 0 and k ≥ 0, when 0 ≤ t < l√

α2+2kθ2 , exp{−G(t)rt − kRt + ρ
∫ t

0 [1−
y(G(u))]du + αη

∫ t
0 G(u)du} is a martingale, where

y(φ) =
∫ ∞

0
e−φxdF(x), (20)

and

G(t) = − α

θ2 −
√

α2 ++2kθ2

θ2 coth
(√

α2 + 2kθ2t− l
2

)
. (21)

2. (Laplace transforms of the distributions of rt and Rt) For an arbitrary fixed time
t(0 ≤ s ≤ t < l√

α2+2kθ2 ), by the properties of martingale, we have

E{exp{−G(t)rt − kRt + ρ
∫ t

0
[1− y(G(u))]du + αη

∫ t

0
G(u)du}|F r

s }

= exp{−G(s)rs − kRs + ρ
∫ s

0
[1− y(G(u))]du + αη

∫ s

0
G(u)du}. (22)

Then,

E{exp{−G(t)rt − k(Rt − Rs)}|F r
s }

= exp{−G(s)rs} exp{−ρ
∫ t

s
[1− y(G(u))]du} exp{−αη

∫ t

s
G(u)du}. (23)

Set G(t) = µ ≥ 0. By (21), we have

l =
√

α2 + 2kθ2t− ln
µθ2 + α−

√
α2 + 2kθ2

µθ2 + α +
√

α2 + 2kθ2
. (24)

From (24), we easily get that l >
√

α2 + 2kθ2t, i.e., t < l√
α2+2kθ2 . Substituting (24) in to

G(s), we get

G(s) = Bµ,k(s, t)

=
(2k− αµ) + µ

√
α2 + 2kθ2coth(

√
α2 + 2kθ2(t− s)/2)

(θ2µ + α) +
√

α2 + 2kθ2coth(
√

α2 + 2kθ2(t− s)/2)
, (25)
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then, we have

E{exp{−G(t)rt − k(Rt − Rs)}|F r
s }

= exp{−Bµ,k(s, t)rs} exp{−ρ
∫ t

s
[1− y(Bµ,k(u, t))]du} exp{−αη

∫ t

s
Bµ,k(u, t)du}. (26)

For the right side of (26), letting v = t − u and by integral calculation, we get the
results of Lemma 1.

Until now, the closed-form solution of the Laplace transforms of rt and Rt are derived.
Setting µ = 0 and k = 0 in (14) gives the following corollaries.

Corollary 1. Assume that µ ≥ 0, k ≥ 0; then, the Laplace transforms of the distributions of rt and
Rt are, respectively,

E{e−µrT |F r
t }

= exp(−Bµ,0(t, T)rt) exp
(

α2η(T − t)
θ2

)
(Cµ,0(t, T))−

2αη

θ2

× exp(−ρ
∫ T−t

0
[1− h(Bµ,0(0, u))]du), (27)

and

E{e−k(RT−Rt)|F r
t }

= exp(−B0,k(t, T)rt) exp
(

α2η(T − t)
θ2

)
(C0,k(t, T))−

2αη

θ2

× exp(−ρ
∫ T−t

0
[1− h(B0,k(0, u))]du). (28)

For mathematical simplicity, the jump size {Yi, i ≥ 1} is assumed to be exponentially
distributed; in other words,

F(x) = 1− e−ωx(ω > 0, x > 0).

As a special case of Corollary 1, the following corollary is presented.

Corollary 2. Assume that µ ≥ 0, k ≥ 0, and the distribution of jump sizes is F(x) = 1 −
e−ωx(ω > 0, x > 0); then, the Laplace transforms of the distributions of rt and Rt are

E{e−µrT |F r
t }

= exp(−Bµ,0(t, T)rt) exp
(

α2η(T − t)
θ2

)
(Cµ,0(t, T))−

2αη

θ2

×
(

2α(ω + µ) exp(α(T − t))
ω(θ2µ + 2α) exp(α(T − t)) + (2αµ−ωθ2µ)

)− 2ρ

2α−ωθ2

, (29)

and

E{e−k(RT−Rt)|F r
t }

= exp(−B0,k(t, T)rt) exp{H1(k)(T − t) + H2(k) ln Dk(t, T)− H3 ln C0,k(t, T)}. (30)

where

Dk(t, T) = cosh(
√

α2 + 2kθ2(T − t)/2) +
ωα + 2k

α
√

α2 + 2kθ2
sinh(α2 + 2kθ2(T − t)/2),
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H1(k) =
α2η(T − t)

θ2 − 2kρ

ω(
√

α2 + 2kθ2 + α) + 2k
− ωρ

√
α2 + 2kθ2

2k + 2ωα−ω2θ2 ,

H2(k) =
2ωρ

2k + 2ωα−ω2θ2 ,

H3 =
2αη

θ2 .

Thus, from (10) and Lemma 1, we can derive the pricing formulae of defaultable bonds.
The time-t prices of the A- and B-bond with maturity date T will be shown in the following
theorem.

Theorem 1. In the primary–secondary framework, assume that firm A and firm B have the same
maturity date with 0-valued recovery rate (βA = 0, βB = 0). Suppose that intensity process λA

t
satisfies (11) and process λB

t satisfies (12); then, the time-t prices of the bonds issued by primary
firm A and secondary firm B, respectively, are

VA(t, T) = E[e−(1+bA
1 )(RT−Rt)|F r

t ]e
−bA

0 (T−t) = g(0, 1 + bA
1 , t, T)e−bA

0 (T−t), (31)

and

VB(t, T) = e−(b
B
0 +b)(T−t)g(0, 1 + bB

1 , t, T) + be−(b
B
0 +b)T+(bB

0 +bA
0 )t

×
∫ T

t
e−(b

A
0 −b)s · exp

(
α2η(T − s)

θ2

)
(C0,1+bB

1
(s, T))−

2αη

θ2

× exp(−ρ
∫ T−s

0
[1− h(B0,1+bB

1
(0, u))]du)

×g(B0,1+bB
1
(s, T), 1 + bB

1 + bA
1 , t, s)ds. (32)

Proof. Firstly, from (11) and Lemma 1, we can easily illustrate that (31) holds. Secondly,
according to (10), (12), and the property of conditional expectation, we obtain the time-t
price of the bond with maturity date T issued by firm B

VB(t, T) = E[exp(−
∫ T

t
(rs + λB

s )ds)|Ft]

= E[exp(−bB
0 (T − t)− (1 + bB

1 )(RT − Rt)− b(T − τA)1{τA≤T})|Ft]

= E[exp(−bB
0 (T − t)− (1 + bB

1 )(RT − Rt))

×E[exp(−b(T − τA)1{τA≤T})|Ft ∨F r
T∗ ]|Ft]. (33)

To calculate the time-t price of the B-bond with maturity T, we need to evaluate the
conditional expectation embedded in (33). According to (2) and the law of integration by
parts, we obtain that

E[exp(−b(T − τA)1{τA≤T})|Ft ∨F r
T∗ ]

= (
∫ T

t
+
∫ ∞

T
)e−b(T−s)1{s≤T}d(1− e−bA

0 (s−t)−bA
1 (Rs−Rt))

= e−b(T−t)(1 + b
∫ T

t
e−(b

A
0 −b)(s−t)−bA

1 (Rs−Rt)ds). (34)
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Hence, according to the expectation obtained, we get

VB(t, T) = e−(b
B
0 +b)(T−t)E[e−(1+bB

1 )(RT−Rt)|Ft] + be−(b
B
0 +b)T+(bB

0 +bA
0 )t

×
∫ T

t
e−(b

A
0 −b)sE[e−(1+bB

1 +bA
1 )(Rs−Rt)−(1+bB

1 )(RT−Rs)|Ft]ds. (35)

For the first expectation term, we easily obtain

E[e−(1+bB
1 )(RT−Rt)|Ft] = g(0, 1 + bB

1 , t, T). (36)

Furthermore, using the properties of iterated conditional expectation, we get

E[e−(1+bB
1 +bA

1 )(Rs−Rt)−(1+bB
1 )(RT−Rs)|Ft]

= E[e−(1+bB
1 +bA

1 )(Rs−Rt) ·E[e−(1+bB
1 )(RT−Rs)|Fs]|Ft]

= exp
(

α2η(T − s)
θ2

)
(C0,1+bB

1
(s, T))−

2αη

θ2

× exp(−ρ
∫ T−s

0
[1− h(B0,1+bB

1
(0, u))]du)g(B0,1+bB

1
(s, T), 1 + bB

1 + bA
1 , t, s). (37)

Now, substituting (36) and (37) into (35), (32) holds. The proof of Theorem 1 is
complete. Next, we will present the numerical results of the yield spread.

Until now, within the primary–secondary framework, we obtain the explicit pricing
of defaultable bonds. Now, we pay attention to the yield spread, which is a function of
maturity to explore the effect of counterparty risk on firm B’s bond price. In continuous-
time modeling, we define the yield spread ψ between defaultable bond v and default-free
bond p as

ψ(t, T) = − 1
T − t

ln
v(t, T)
p(t, T)

. (38)

In the following, we present an example to discuss the term structure of yield spreads
between primary firm A and secondary firm B.

Example 1. Assume that βA = βB = 0, then the yield spread of firm B’s bond is the corresponding
martingale default probability averaged over T − t. In the economy, if we ignore the counterparty
risk and the short-term interest rate, mathematically speaking, b = 0 and bB

1 = 0; then, the yield
spread will be the constant bB

0 . When b > 0 (bB
1 = 0), firm B’s default is “accelerated" by firm A’s

default with an increasing pattern in the yield spread. In contrast, a “deceleration" holds when
b < 0 (bB

1 = 0), with the yield spread being a decreasing function of maturity. These effects are
illustrated in Figure 1 with some given parameters.

In contrast with the Markov model based on the ratings of Jarrow et al. [33], in our model,
we ignore the interaction between market risk and credit risk. Usually investment-grade issuers’
credit spread curves are upward-sloping, while those of speculative-level issuers are tilted downward.
However, when the possibility of default is affected by economy-wide risk factors, there will be
additional aspects to this problem, as illustrated in Figure 1. Except for Panel (a), obviously, the
shape of the default-free term structure and the coefficient bA

1 jointly determine the term structure of
the credit spread.

When bB
1 6= 0, rt follows (13); here, we assume that the jump’s sizes follow an exponential

distribution with parameter ω > 0. Since jump process is involved in our model, Equation (32)
is far more complex for computing the yield spread compared to that of Figure 1. Futhermore, the
shape of a contemporaneous default-free term structure also affects the yield spread. However, we
expect the patterns exhibited in Figure 1 to persist. Namely, the yield spread will widen (narrow)
over time with the default risk from the long (short) position.
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In Figure 2, this results come from both economy-wide state variables and counterparty risk.
We find that jump diffusion risk and counterparty risk have caused significant changes in the effects
of different bB

1 on yield spread, while the CIR process dilutes the effect of bB
1 on yield spread, so

the impact of bB
1 on yield spread is minimal. Besides these conjectures, in Figure 3, we could also

get a way to extract information on the counterparty risk with empirical evidence. The effect of
counterparty risk has caused the distortion of the term structure of the primary firms’ credit spreads
(see Panel (d), (f) of Figure 4), which is basically the re-adjusted default-free term structure. In fact,
during estimation, counterparty risk causes the derivation between the credit spread curve and the
shape of the default-free term structure. This mainly comes from the simple one-factor term structure
model as well as the default process, which only depends on the contemporaneous level of the spot
rate. It is easy to extend our model to a multi-factor environment where other macro-economic
factors can also affect default.

In Figure 5, we also get the way to extract information on the economy-wide risk with empirical
evidence. The secondary firms’ possibility of default is affected by economy-wide risk factors, as
is illustrated in Figure 4. Compared with Figure 4, interest rate is driven by the jump-diffusion
Cox–Ingersoll–Ross (JCIR) process simultaneously in Figure 5. In addition, the default intensity is
also correlated to the default states of counterparty firms. From Figure 5, we find that the larger the
bB

1 , the larger the short-term yield spread; bB
1 is very sensitive to yield spread, and this phenomenon

is completely in line with the facts.

0 2 4 6 8 10

0

0.01

0.02

0.03

0.04

Figure 1. Secondary firm B: term structure of yield spreads with bB
0 = 0.02, bB

1 = 0, bA
0 = 0.02, bA

1 =

0. This figure characterizes the term structure of firm B’s yield spread under different parameters b =
−0.1, 0, 0.2, 0.5, 5.
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Figure 2. Secondary firm B: term structure of yield spreads with bA
0 = 0.02, bA

1 = 0.01, bB
0 = 0.02,

b = 1 and different bB
1 = 0.01, 0,−0.01. Panel (a) exhibits a flat default-free term structure. Panel

(b) assumes the risk-free interest rate follows the CIR process in which the parameters of the CIR
model are taken from Wu [31] and Jarrow and Yu [7] with α = 0.05, η = 0.5, θ = 0.4. In Panel (c), its
difference with Panel (b) is that interest rate is driven by a jump process, while the parameters are the
same, except that ω = 2.0, ρ = 0.5.
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Figure 3. Secondary firm B: term structure of yield spreads bA
0 = 0.02, bA

1 = 0, bB
0 = 0.02, bB

1 = 0.1
with different value of b = −0.05, 0.0.1. The risk-free interest rate is assumed to follow the JCIR
process in which parameters are chosen from [7,31] with α = 0.05, η = 0.5, θ = 0.4, ω = 2.0, ρ = 0.5.
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0
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Figure 4. Primary firm A: term structure of yield spreads with initial interest rate r0 = 0.05,
bA

0 = 0.02 and five different shapes of rt. The default intensity of firm A is presented in (11), where
bA

1 is chosen to be different values {0.1, 0, −0.1}. Panel (a) exhibits a flat default-free term structure. In
Panel (b), the interest rate is assumed to be a deterministic function of t with slope 0.2%. In Panel (c),
the interest rate is assumed to be a deterministic function of t with slope −0.1%. Panel (d) assumes
that the risk-free interest rate follows the CIR process in which the parameters of the CIR model are
taken from Wu [31] and Jarrow and Yu [7] with α = 0.05, η = 0.5, θ = 0.4. In Panel (e), its difference
with Panel (d) is that interest rate is driven by a jump process, while the parameters are same, except
that ω = 2.0, ρ = 0.5.



Axioms 2023, 12, 782 12 of 15

0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

Figure 5. Secondary firm B: term structure of yield spreads with bA
0 = 0.02, bA

1 = 0, bB
0 = 0.02, b =

0.1 and a different value of bB
1 = 0.01, 0.05, 0.1. The risk-free interest rate is assumed to follow the

JCIR process in which the parameters for the JCIR model are chosen from [7,31] with α = 0.05, η =

0.5, θ = 0.4, ω = 2.0, ρ = 0.5.

4. Default Swap Rates

In this section, based on the results in Section 3, we derive the swap rate in the
reduced-form model. We assume that firm C holds bonds from reference firm A, and in the
meantime, is a CDS buyer from firm B for a compensation of the possible loss induced by
firm A’s default. The maturity dates of the bond and the CDS are assumed to be T1 and
T2 (T2 ≤ T1), respectively. Here, we only consider firm A and B as being the primary and
secondary party, respectively. The recovery rate of the bond issued by firm A is assumed to
be zero, with its face value being 1 dollar. The swap rate could be obtained by the following
theorem.

Theorem 2. Assume that rt follows the stochastic differential Equation (13), while λA and λB

satisfy (11) and (12), respectively. Then, the swap rate

c =
VB(0, T2)− e−(b

B
0 +bA

0 )T2 g(0, 1 + bB
1 + bA

1 , 0, T2)∫ T2
0 VC(0, s)ds

, (39)

where g(µ, k, t, T) and VB(0, T2), VC(0, s) are given by Lemma 1 and Theorem 1, respectively.

Proof. First, the time-0 market value of buyer C’s payment to B is

E[
∫ T2

0
exp(−

∫ s

0
rudu)c1{τC>s}ds] = c

∫ T2

0
VC(0, s)ds, (40)

while that of B’s promised compensation in the case of A’s default is

E[1{τA≤T2} exp(−
∫ T2

0
rudu)1{τB>T2}]. (41)

Thus, using the principle of no-arbitrage, we obtain

c =
E[exp(−

∫ T2
0 (ru + λB

u )du)]−E[1{τA>T2} exp(−
∫ T2

0 (ru + λB
u )du)]∫ T2

0 VC(0, s)ds
. (42)

A brief inspection of the expression in (42) confirms two intuitions. First, c is equal to
zero when the reference asset A is default-free. Second, the swap rate increases with the
default probabilities of A and C, and decreases with that of B. For more details, one can



Axioms 2023, 12, 782 13 of 15

refer to Appendix F of [7]. Note that
∫ T2

0 VC(0, s)ds and the first term of the numerator of
(42), which is equal to VB(0, T2), can be derived by (31) and (32), respectively. Substituting
(12) into the expectation term above, we obtain

E[1{τA>T2} exp(−
∫ T2

0
(ru + λB

u )du)]

= E[1{τA>T2} exp(−
∫ T2

0
(bB

0 + (1 + bB
1 )ru + b1{τA≤u})du)]

= E[E[1{τA>T2}|FT∗ ] exp(−bB
0 T2 − (1 + bB

1 )RT2)]

= E[exp(−bB
0 T2 − (1 + bB

1 )RT2 −
∫ T2

0
λA

u du)], (43)

where the second equality involves the property of conditional expectation, the last one
follows (2). Substituting (11) into (43), we obtain

E[exp(−bB
0 T2 − (1 + bB

1 )RT2 −
∫ T2

0
λA

u du)]

= exp(−(bB
0 + bA

0 )T2)g(0, 1 + bA
1 + bB

1 , 0, T2). (44)

Now, substituting (44) into (42), (39) holds. The proof of Theorem 2 is complete.

In conjunction with the pricing results of defaultable bonds, we obtain the explicit
formula of default swap rates, which is an important indicator in the risk management
market. With given parameters, we can obtain the relevant prices of defaultable bonds and
swap rates. However, the method for evaluating the parameters is beyond the scope of our
article and is left for future discussion. For an insight into the improvement of the results
in our model, the numerical illustrations for swap rate are provided.

Example 2. We assume that the jump’s sizes follow an exponential distribution with parameter
ω > 0, and firm C is not defaulted in the past with VC(0, s) = E[e−Rs ] = g(0, 1, 0, s). We analyze
the dynamic relations between the default swap rate c and the maturity date T (T2 in Theorem 2) for
different forms of risk-free interest rate, different mean positive jumps ω, and different counterparty
risk levels b. The swap rate decreases with the maturity increasing by intuition.

Firstly, in panel (a) of Figure 6, in terms of the influence of risk-free interest rate forms chosen,
although the swap rate decreases with the same trends, consistent with the intuition, there is a clear
difference between the results of our model and the others. The swap rate, compared with applying
the JCIR process, is overestimated in the other cases. These results clarify the essential modification
of the swap rate when applying JCIR process for the risk-free interest rate.

Secondly, in panel (b) of Figure 6, we find that the default swap rate is notably affected by ω.
For larger ω, generally, there will be a higher jump probability in the interest rate process, leading
to a more unstable interest rate, which increases the firms’ default probability. Meanwhile, the swap
rate increases with the default probabilities of firm A, but decreases with that of firm B. Moreover,
firm B’s default intensities, empirically, play a decisive role in pricing the swap rate. Consequently,
as a function of the maturity date, the larger the ω, the slower c decreases, which agrees with the
trend obtained in panel (b). This emphasizes the necessity of considering the jump factor in the
stochastic interest rate process.

Thirdly, according to the results of different b in panel (c) of Figure 6, we find that the default
swap rate is significantly overpriced when ignoring the default correlation (b = 0). Therefore, it is
vital to consider the contagion. A successively higher b indicates an increasing default correlation
between the swap seller, B, and the reference asset A. As b becomes very large, we expect the fair
swap rate to drop to zero since the default swap is ineffective.

Finally, according to the results of different bB
1 in panel (d) of Figure 6, we discover that when

the risk-free interest rate follows the same JCIR process, the default swap rate is affected by bB
1 to a

very small extent. From a numerical perspective, in a short period of time, the larger the bB
1 value,

the greater the rate of decline of the default swap rate.
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Figure 6. Credit default swap is correlated with the spot interest rate and counterparty risk. For
the default swap rate as a function of the maturity date, see the text for detailed parameters. Panel
(a): results of the models with three forms of risk-free interest rates as indicated in the panel at
counterparty risk b=1.0. Panel (b): results of our model with different means of positive jumps ω at
b=1.0. Panel (c): results of our model at different levels of counterparty risk. Panel (d): results of our
model with different bB

1 . The basic parameters we used are α = 0.05, η = 0.5, θ = 0.4, ω = 2.0, ρ =

0.5, r0 = 0.05, bA
0 = bB

0 = 0.02, bA
1 = bB

1 = 0.01, b = 1.0, which follow [7,31]; ω, b, bB
1 are chosen to be

different values in (b–d).

5. Conclusions

In this paper, we derive the joint Laplace transform for the distribution of the vector
process (rt, Rt), and using the joint Laplace transform, we obtain explicit pricing formulae
of defaultable securities in the primary–secondary framework, where the counterparty
relationship among these firms and economy-wide state variables (risk-free interest rate)
follow the JCIR process, being able to influence their default probabilities. Such config-
uration is found to be vital for a better approach to the CDS market. We show that the
interaction of market-wide risk factors with company-specific counterparty risks lead to
various shapes of term structure for credit spreads. Within such a framework, the pricing of
the CDS is shown. In the end, numerical graphics vividly illustrate the effect of exponential
distributed jump sizes on the yield spread and CDS.

In addition, it is also of interest and is challenging to further explore other heavy-
tailed distributions of the jump sizes, for instance, the Pareto distribution, the Gumbel
distribution, and the Féchet distribution. However, the expression of the joint Laplace
transform might be implicit.
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