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1. Introduction and Preliminaries

Fixed point theory is a vital branch of nonlinear analysis. It has also been used
extensively in the study of all kinds of scientific problems, such as fractional differen-
tial equations, stochastic operator theory, engineering mathematics, dynamical systems,
physics, computer science, models in economy and related areas (see [1,2]). One of the
most important results in fixed point theory is the Banach contraction principle [3], which
is used in metric spaces. Nowadays, with the indefatigable efforts of several generations,
it has been generalized to many other spaces, such as fuzzy metric space, Menger space,
b-metric space, probabilistic metric space and so on (see [2,4–12]). It is worth mentioning
that a generalization of this principle in the context of probabilistic metric spaces was per-
formed by Ćirić [13], where quasi-contractive mappings were introduced and the triangle
norm τm was used. In recent years, the pioneering fixed point theorem of Sehgal and
Bharucha-Reid [14,15] is a strong incentive and motivation for the further development
of the principle on probabilistic metric spaces. There are plenty of papers (see [12,16–21])
motivated by the above results. On the other hand, the theory of probabilistic metric spaces
is the first area where the triangular norm plays a significant role. Therein, the concept
of triangle norm was first introduced by Menger in [22] by initiating it from the basic
triangle inequality. The original set of axioms is the content and core known today as
triangle conorms, and it is necessary to make some changes. Schweeizer and Sklar [23]
gave the final definition of triangular norms. In modern society, triangular norms have
been affirmed to be an important operation in several fields as well, such as fuzzy logic
theory, general measure theory, differential equation theory and so on.

Generally speaking, fixed point theorems in the framework of probabilistic metric
spaces are interesting for two reasons: how much we can “relax” the contractive condition
without “narrowing” the class of triangular norms too much, and vice versa. It is well-
known that when using the minimum triangular norm, the contractive condition is the
most “relaxed”. However, because the minimum triangular norm is the strongest, fixed
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point theorem with such a strong condition on the triangular norm is the least interesting.
In addition, most fixed point theorems that have been proven in metric spaces can be
“translated” to probabilistic metric spaces if the triangular norm minimum is used. That is
why it is a huge challenge for finding the “optimal relationship” between the contractive
condition and the choice of the triangular norm with a potential additional condition on
the probabilistic distribution function itself.

Based on the above statements, in this paper, we propose an additional condition
both on the metric itself and on the triangular norm in probabilistic metric spaces. Many
corollaries, examples and applications are also shown.

First of all, for the sake of readers, in what follows we recall some notions and
known results.

Definition 1 ([24]). The mapping τ : [0, 1]2 → [0, 1] is a triangular norm if, for all a, b, c, d ∈
[0, 1], the following conditions are satisfied:

(τ1) τ(a, 1) = a;
(τ2) τ(a, b) = τ(b, a);
(τ3) a ≥ c, b ≥ d⇒ τ(a, b) ≥ τ(c, d).

Basic examples of triangular norms are as follows:

τm(a, b) = min{a, b}, τp(a, b) = a · b, τl(a, b) = max{a + b− 1, 0}.
In 1983, Schweizer and Sklar introduced the concept of triangular conorm as dual

operations to the triangular norm.

Definition 2 ([23]). The mapping ζ : [0, 1]2 → [0, 1] is a triangular conorm if, for all a, b, c ∈
[0, 1], the following conditions are satisfied:

(ζ1) ζ(a, b) = ζ(b, a);
(ζ2) ζ(a, ζ(b, c)) = ζ(ζ(a, b), c);
(ζ3) ζ(a, b) ≤ ζ(a, c) for b ≤ c.

The connection between triangular norm and triangular conorm is given by the
following result.

Proposition 1 ([24]). The function ζ : [0, 1]2 → [0, 1] is a triangular conorm if and only if there
is a triangular norm τ such that for each (a, b) ∈ [0, 1]2, ζ(a, b) = 1− τ(1− a, 1− b).

The opposite statement is also true. Basic examples of triangular conorms are the
following ones:

ζm(a, b) = max{a, b}, ζp(a, b) = a + b− ab, ζl(a, b) = min{a + b, 1}.
Triangular norms of h-type (see [5]) represent a very important class, especially in the

theory of fixed point.

Definition 3. Let τ be a triangular norm and τn : [0, 1] → [0, 1] a mapping defined in the
following way:

τ1(a) = τ(a, a), τn+1(a) = τ(τn(a), a), n ∈ N, a ∈ [0, 1].

A triangular norm τ is h-type if the family {τn(a)}n∈N is equi-continuous at the point
a = 1, that is, if for every θ ∈ (0, 1) there exists ρ(θ) ∈ (0, 1) such that a > 1− ρ(θ) implies
τn(a) > 1− θ for every n ∈ N.

Using Definition 3, for every (a1, a2, . . . , an) ∈ [0, 1]n, we have

τ1
i=1ai = a1, τn

i=1ai = τ(τn−1
i=1 ai, an) = τ(a1, . . . , an).



Axioms 2023, 12, 660 3 of 16

Because the sequence {τn
i=1ai}n∈N is non-decreasing and bounded from below, we

obtain
τ∞

i=1ai = lim
n→∞

τn
i=1ai

for every {ai}i∈N ∈ [0, 1]. The analogous case could be applied to triangular conorms.

Proposition 2 ([11]). Let {an}n∈N be a sequence in [0, 1] such that lim
n→∞

an = 1 and let the
triangular norm τ be h-type. Then,

lim
n→∞

τ∞
i=nai = lim

n→∞
τ∞

i=1an+i = 1.

For some families of triangular norms τ, there exists a sequence {an}n∈N such that
lim

n→∞
an = 1 and lim

n→∞
τ∞

i=nai = 1.

Definition 4 ([11]). The triangular norm τ is called geometrically convergent if for some
a0 ∈ (0, 1), it satisfies

lim
n→∞

τ∞
i=n(1− ai

0) = 1. (1)

It is proved from [2] that (1) implies lim
n→∞

τ∞
i=n(1− ai) = 1 for every a ∈ (0, 1).

Proposition 3 ([11]). Let τ be a triangular norm and ψ : (0, 1]→ [0, ∞) a mapping. If, for some
δ ∈ (0, 1) and all a ∈ [0, 1], b ∈ [1− δ, 1], the following is satisfied,

|τ(a, b)− τ(a, 1)| ≤ ψ(b),

then for every sequence {an}n∈N in [0, 1] such that lim
n→∞

an = 1, the following implication is valid:

∞

∑
n=1

ψ(an) < ∞⇒ lim
n→∞

τ∞
i=n(ai − an) = 0.

Definition 5 ([11]). The triangular norm τ is strict if it is continuous and strictly monotone, i.e., if
τ(a, b) < τ(a, c) whenever a, b, c ∈ (0, 1) and b < c.

A simple example of a strict triangle norm is τ = τp.

Example 1. The Dombi, Aczél–Alsina and Sugeno–Weber families of triangular norms are defined
as follows:

(i) τD
λ (a, b) =


τd(a, b), λ = 0;
τm(a, b), λ = ∞;

1

1+
((

1−a
a

)λ
+
(

1−b
b

)λ
)1/λ , λ ∈ (0, ∞).

(ii) τAA
λ (a, b) =


τd(a, b), λ = 0;
τm(a, b), λ = ∞;
e−((− log a)λ+(− log b)λ)1/λ

, λ ∈ (0, ∞).

(iii) τSW
λ (a, b) =


τd(a, b), λ = −1;
τp(a, b), λ = ∞;
max(0, a+b−1+λab

1+λ ), λ ∈ (−1, ∞).

where τd(a, b) = τm(a, b) if max(a, b) = 1 and τd(a, b) = 0, otherwise.

The following proposition is given in [11].
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Proposition 4. Let (τD
λ )λ∈(0, ∞), (τ

AA
λ )λ∈(0, ∞) and (τSW

λ )λ∈(−1, ∞] be Dombi, Aczél–Alsina and
Sugeno–Weber families of triangular norms, respectively, and {an}n∈N a sequence in (0, 1] such
that lim

n→∞
an = 1. Then, the following equivalences hold:

(a)
∞
∑

i=1
(1− ai)

λ < ∞⇐⇒ lim
n→∞

(τ?
λ)

∞
i=nai = 1, where ? ∈ {D, AA};

(b)
∞
∑

i=1
(1− ai) < ∞⇐⇒ lim

n→∞
(τSW

λ )∞
i=nai = 1.

Definition 6 ([5]). The continuous triangular norm τ : [0, 1]2 → [0, 1] is said to be an
Archimedean triangle norm if τ(a, a) < a, for every a ∈ (0, 1).

Theorem 1 ([11]). (a) The function τ : [0, 1]2 → [0, 1] is a continuous Archimedean triangular
norm if and only if there exists a continuous and strictly decreasing function a :[0, 1]→ [0, ∞)
called an additive generator of τ with a(1) = 0 and τ(a, b) = a−1(min{a(a) + a(b), a(0)}),
for any a, b ∈ [0, 1].

(b) The function τ : [0, 1]2 → [0, 1] is a continuous Archimedean triangular norm if and
only if there exists a continuous and strictly increasing function m :[0, 1] → [0, 1] called a
multiplicative generator of τ with m(1) = 1 and τ(a, b) = m−1(max{m(a) ·m(b), m(0)}),
for any a, b ∈ [0, 1].

Remark 1. Triangular norm τ is strict if and only if m(0) = 0.

Proposition 5 ([11]). Let τ be a strict triangular norm with an additive generator a and the
corresponding multiplicative generator θ. Let {an}n∈N be a sequence in (0, 1) such that lim

n→∞
an = 1.

Then,

(a) lim
n→∞

∑∞
i=n a(ai) = 0,

(b) lim
n→∞

∏∞
i=n m(ai) = 1

hold if and only if lim
n→∞

τ∞
i=nai = 1.

Definition 7 ([23]). Let Ω be a nonempty set and ∆+ be the set of all distribution functions.
Suppose that Fpm : Ω × Ω → ∆+ is a mapping and Fpm(p, q) = fp,q for each (p, q) ∈
Ω×Ω. The ordered pair (Ω, Fpm) is called a probabilistic metric space if the following conditions
are satisfied:

(pm0) fp,q(0) = 0, for all p, q ∈ Ω;
(pm1) fp,q(t) = fq,p(t), for all p, q ∈ Ω, t > 0;
(pm2) fp,q(t) = 1 if and only if p = q for all p, q ∈ Ω, t > 0;
(pm3) fp,q(t) = 1 and fq,r(s) = 1 imply fp,r(t + s) = 1, for all p, q, r ∈ Ω and all t, s > 0.

Definition 8. Let (Ω, Fpm) be a probabilistic metric space. The sequence {pn}n∈N from Ω is
called a Cauchy sequence if for every t > 0 and ω ∈ (0, 1), there exists n0(t, ω) ∈ N such that
fpn+m , pn(t) > 1−ω, for each n ≥ n0(t, ω) and each m ∈ N.

If the probabilistic metric space (Ω, Fpm) is such that every Cauchy sequence in Ω converges
to Ω, then (Ω, Fpm) is called a complete space.

Definition 9. Let (Ω, Fpm) be a probabilistic metric space and τ a triangular norm. The or-
dered triple (Ω, Fpm, τ) is called a generalized Menger probabilistic metric space if the following
inequality is satisfied:

(pm4) fp,r(t + s) ≥ τ( fp,q(t), fq,r(s)) for all p, q, r ∈ Ω and all t, s > 0.



Axioms 2023, 12, 660 5 of 16

Definition 10. If (Ω, Fpm, τ) is a complete Menger probabilistic metric space with a continuous
triangular norm τ, then Ω is called a Hausdorff topological space with topology induced by the
family (ε, λ)-environment

O = {Op(ε, λ) : p ∈ Ω, ε > 0, λ ∈ (0, 1)},

wherein
Op(ε, λ) = {x ∈ S : fx,p(ε) > 1− λ}.

Remark 2. If sup
a<1

τ(a, a) = 1, then the family {O} defined on Ω is a metrizable topology.

One of the most important generalizations of probabilistic metric spaces is represented
by fuzzy metric space which was introduced by Kramosil and Michalek [25]. They defined
the notion of fuzzy metric space using the notion of a fuzzy number and gave a connection
between probabilistic metric spaces and fuzzy metric spaces.

The fuzzy number u is the mapping of u : R→ [0, 1]. We say that the fuzzy number u
is normal if there exists t0 ∈ R such that u(t0) = 1, and it is convex if for each t1, t2 ∈ R
and for each µ ∈ [0, 1] the following is satisfied:

u(µt1 + (1− µ)t2) ≥ min(u(t1), u(t2)).

By E , we denote all fuzzy numbers that satisfy the condition that they are semi-
continuous, normal and convex from above, where

E+ = {u : u ∈ E , u(t) = 0, for all t < 0}.
For the fuzzy number u, the α-cutting level is defined as follows, [u]α = {t : t ∈

R, u(t) ≥ α} (α ∈ (0, 1]), where [aα, bα] is a nonempty closed interval if aα, bα ∈ R and
semi-open interval (−∞, bα], [aα, ∞) if aα = −∞ or bα = +∞.

Let L, R : [0, 1] × [0, 1] → [0, 1] be symmetric, non-decreasing in both argument
functions, satisfying L(0, 0) = 0 and R(1, 1) = 1. Let Ω be a nonempty set, d : Ω2 → E+ a
mapping satisfying for each α ∈ (0, 1], and for (k, i) ∈ Ω2, one has

[d(k, i)]α = [λα(k, i), ρα(k, i)] , α ∈ (0, 1].

Fuzzy metric space is defined as an ordered quadruple (Ω, d, L, R) where d is the fuzzy
metric if the following conditions are satisfied:

( f1) d(k, i) = I{0} ⇐⇒ k = i, for each k, i ∈ Ω;
( f2) d(k, i) = d(i, k), for each k, i ∈ Ω;
( f2a) d(k, z)(s + t) ≥ L(d(k, i)(s), d(i, z)(t)), whenever s ≤ λ1(k, i), t ≤ λ1(i, z) and
s + t ≤ λ1(k, , z), for each k, i, z ∈ Ω;
( f2b) d(k, z)(s + t) ≤ R(d(k, i)(s), d(i, z)(t)), whenever s ≥ λ1(k, i), t ≥ λ1(i, z) and
s + t ≥ λ1(k, z), for each k, i, z ∈ Ω.

Every general Menger space (Ω, Fpm, τ) is also a fuzzy metric space (Ω, d, L, R) if

d(k, i)(u) =
{

0, u < sup{s : Fk,i(s) = 0} = uk,i,
1− Fk,i(u), u ≥ uk,i.

The functions R and L are defined as follows:

L ≡ 0, R(a, b) = 1− τ(1− a, 1− b) (a, b ∈ [0, 1]).

If
lim

u→∞
d(k, i)(u) = 0 for every k, i ∈ Ω,

then (Ω, Fpm, τ) is a Menger space, where τ(a, b) = 1− R(1− a, 1− b), for each a, b ∈
[0, 1], and the mapping Fpm is defined by

fk,i(s) =
{

0, s < λ1(k, i),
1− d(k, i)(s), s ≥ λ1(k, i),

where k, i ∈ Ω, s ∈ R.
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The following lemma from [10] gives the connection between fuzzy metric spaces and
probabilistic metric spaces.

Lemma 1. Let (Ω, d, L, R) be a fuzzy metric space, ν : [0, 1]→ [0, 1] a continuous, monotonically
decreasing function such that ν(1) = 0 and ν(0) = 1 and d and R satisfy the following conditions:

(a) lim
s→∞

d(k, i)(s) = 0, for each k, i ∈ Ω;

(b) R(a, 1) = 1, R(a, 0) = a, for each a ∈ [0, 1];
(c) R is associative.

Then, (Ω, Fpm, τ) is a generalized Menger space, where Fpm and τ are defined as follows:

f (k, i)(s) =

{
0, if s < λ1(k, i),
ν−1[d(k, i)(s)], if s ≥ λ1(k, i),

τ(a, b) = ν−1[R( f (a), f (b))], (a, b ∈ [0, 1]).

As we know, one of the most important results from fixed point theory is Banach’s
contraction principle in metric spaces:

Each Banach q-contraction ξ :M→M in the complete metric space (M, dm) has a
unique fixed point.

Sehgal and Bharucha-Reid generalized the concept of the Banach q-contraction in the
framework of probabilistic metric spaces.

Definition 11 ([15]). Let (Ω, Fpm) be a probabilistic metric space. The mapping ξ : Ω → Ω is
said to be a probabilistic Banach q-contraction if there exists q ∈ (0, 1) such that

fξ p,ξq(t) ≥ fp,q

( t
q

)
(2)

for each p, q ∈ Ω and t > 0.

2. Main Results

Once more, we emphasize the fixed point theorem of Sehgal and Bharucha-Reid [15]
and its importance for fixed point investigations in the framework of probabilistic metric
spaces. In the rest of this paper, it is not necessary to suppose that a triangle norm is
Archimedean. It is a big challenge even today to find a weaker condition for the triangular
norm than the triangular norm minimum, so that the Banach q-contraction, as well as its
generalizations, are valid. In the following theorems, we give an additional condition that
enables this statement.

Theorem 2. Let (Ω, Fpm, τ) be a complete generalized Menger probabilistic metric space such
that supa<1 τ(a, a) = 1 and ξ : Ω→ Ω be a probabilistic Banach q-contraction such that for some
p0 ∈ Ω and some k > 0, it satisfies

ψ ◦ fp0,ξ p0(t) = O
( 1

tk

)
, t > 1, (3)

where ψ : [0, 1]→ [0, s] is a continuous, decreasing function such that ψ(1) = 0. If the triangular
norm τ satisfies the condition

lim
n→∞

τ∞
i=nψ−1((ςi)k) = 1, (4)

where ς ∈ (0, 1), then there is a unique fixed point z such that z = lim
n→∞

ξn p0.

Proof. Let p0 ∈ Ω satisfy condition (3) and define a sequence pn+1 = ξ pn, n ∈ N0. Then,
by (2), we have

fpn+1,pn(t) ≥ fpn ,pn−1

( t
q

)
≥ · · · ≥ fξ p0,p0

( t
qn

)
, t > 0, n ∈ N.
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Next, it is necessary to prove that {ξn p0}n∈N is a Cauchy sequence. Let δ ∈ (q, 1).

Because the series
∞
∑

i=1
δi is convergent, it follows that there exists n1(ε) ∈ N such that

∞
∑

i=n1

δi ≤ ε. Then, for each n ≥ n1 and m ∈ N, one has

fξn p0,ξn+m p0
(ε) ≥ fξn p0,ξn+m p0

( ∞

∑
i=n

δi
)

≥ fξn p0,ξn+m p0

( n+m−1

∑
i=n

δi
)

≥ τ(τ(. . . τ︸ ︷︷ ︸
(m−1)−times

( fξn p0,ξn+1 p0
(δn), . . . , fξn+m−1 p0,ξn+m p0

(δn+m−1))

≥ τ
(

τ
(

. . . τ︸ ︷︷ ︸
(m−1)−times

(
fp0,ξ p0

( δn

qn

)
, . . . , fp0,ξ p0

( δn+m−1

qn+m−1

))
.

Let ς =
q
δ
∈ (0, 1), and then

fξn p0,ξn+m p0
(ε) ≥ τ

(
τ
(

. . . τ︸ ︷︷ ︸
(m−1)−times

(
fp0,ξ p0

( 1
ςn

)
, . . . fp0,ξ p0

( 1
ςn+m−1

))
, n ≥ n1, m ∈ N. (5)

By (3), there is G > 0 and k > 0 such that ψ( fp0,ξ p0(t)) ≤ G · 1
tk , t > 1, i.e., fp0,ξ p0(t) ≥

ψ−1(G · 1
tk ), t > 1. Concretely, for t = 1

ςn > 1, we have

fp0,ξ p0

( 1
ςn

)
≥ ψ−1(G(ςn)k), n ∈ N. (6)

Choose n2 ∈ N such that Gςn ∈ [0, s), n ≥ n2. Using (5) and (6) for n ≥ max{n1, n2}
and m ∈ N, it follows that

fξn p0,ξn+m p0
(ε) ≥ τ(τ(. . . (τ︸ ︷︷ ︸

(m−1)−times

(ψ−1(Gςkn), ψ−1(Gςk(n+1)), . . . , ψ−1(Gςk(n+m−1)))).

Let s0 be a constant such that Gςk·s0 < ς. Then, using (5) for n ≥ max{n1, n2} and
m ∈ N, we have

fξn+s0 p0,ξn+s0+m p0
(ε) ≥ τ(τ(. . . (τ︸ ︷︷ ︸

(m−1)−times

(ψ−1(G ςk(n+s0))), (ψ−1(G ςk(n+s0+1))), . . . , (ψ−1(G ςk(n+s0+m−1)))

≥ τ∞
i=n+1ψ−1((ςi)k).

Based on the condition (4), we conclude that {ξn p0}n∈N is a Cauchy sequence.
Let z = lim

n→∞
ξn p0. We want to show that z = ξz. Using (2), we have

fξ pn ,ξz(t) ≥ fpn ,z

( t
q

)
.

Letting n→ ∞, we conclude that fz,ξz(t) ≥ fξz,z(
t
q ), and so z = ξz.
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Finally, we prove the uniqueness of fixed point. Indeed, suppose that there exists
v 6= z such that v = ξv. Then, from (2), we have

fz,v(t) = fξz,ξv(t) ≥ fz,v

( t
q

)
,

which follows that z = v.

Remark 3. In [26], the following statement was made: if condition (4) holds for some ς0 ∈ (0, 1),
then it holds for every ς ∈ (0, 1).

Remark 4. Theorem 2 follows via the following condition (which treats triangular norms and
distribution functions mutually),

lim
n→∞

τ∞
i=n fp,r(tn) = 1,

for every s-increasing sequence {tn} and every p, r ∈ Ω, instead of conditions (3) and (4). It seems
that condition (4) is more appropriate to deal with different types of triangular norms which is one
of the main goals of the current paper.

Let ψ(x) = 1− x. It is easy to check that condition (3) holds for distribution functions of
half-normally or exponentially distributed random variables.

Example 2. Let Ω = [0, 1], ξ(p) =
p
a

, a > 1, fp,r(t) =
t

t + |p− r| , p, r ∈ Ω, t > 0, τ = τp

and ψ(x) = 1− x. In view of

fξ p,ξr(t) =
t

t + 1
a |p− r|

≥ t
t + q|p− r| = fp,r

( t
q

)
, p, r ∈ Ω, t > 0,

it follows that ξ is a probabilistic Banach q-contraction with q ∈ [ 1
a , 1).

Condition (3) is fulfilled because of

ψ( fp,ξ p(t)) =
p

a
a−1 tk + p

≤ 1
tk , t > 1, k > 0.

Let ai = ψ−1((ςi)k) = 1 − (ςi)k. Then,
∞
∑

i=1
(1 − ai) < ∞, and because the following

equivalence holds,

∞

∏
i=1

ai > 0⇐⇒ lim
n→∞

∞

∏
i=n

ai = 1⇐⇒
∞

∑
i=1

(1− ai) < ∞,

we conclude that all conditions of the previous theorem are satisfied and hence p = 0 is the unique
fixed point of ξ.

Corollary 1. Let (Ω, Fpm, τ) be a complete generalized Menger probabilistic metric space such
that supa<1 τ(a, a) = 1. Let ξ : Ω→ Ω be a probabilistic Banach q-contraction such that for some
p0 ∈ Ω and some k > 0, it satisfies

ψ ◦ fp0,ξ p0(t) = O
( 1

tk

)
, t > 1,

where ψ : [0, 1]→ [0, s] is a continuous, decreasing function such that ψ(1) = 0. If φ : (0, 1]→
[0, ∞) is a function such that for some δ ∈ (0, 1) the following is satisfied,

|τ(a, b)− τ(a, 1)| ≤ φ(b), a ∈ [0, 1], b ∈ [1− δ, 1],
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and
∞
∑

n=1
φ(ψ−1((ςi)k)) < ∞, for some ς ∈ (0, 1), then there is a unique fixed point z of mapping ξ

and z = lim
n→∞

ξn p0.

Proof. Based on Proposition 3, condition
∞
∑

n=1
φ(ψ−1((ςi)k)) < ∞ implies lim

n→∞
τ∞

i=nψ−1((ςi)k) =

1, and hence all conditions of the previous theorem are satisfied.

The following corollary is a fuzzy metric version of Theorem 2.

Corollary 2. Let (Ω, d, L, R) be a complete fuzzy metric space such that lim
t→∞

d(p, r)(t) =

0, p, r ∈ Ω, R(a, 1) = 1, a ∈ [0, 1], R(a, 0) = a, a ∈ [0, 1], and R is continuous at (0, 0).
Let ξ : Ω→ X be a probabilistic Banach q-contraction such that for some p0 ∈ Ω and some k > 0,
it satisfies

d(p0, ξ p0)(t) = O
( 1

tk

)
, t > 1.

If lim
n→∞

R∞
i=n((ς

k)i) = 0 for ς ∈ (0, 1), then there exists a unique fixed point z of ξ and
z = lim

n→∞
ξn p0.

Proof. If we choose ψ(x) = 1− x, together with Lemma 1, then all conditions of Theorem 2
are satisfied. The proof is completed.

As it is pointed out, we deal with triangular norms via condition (4) and, therefore, in
the following corollaries it will be relaxed (or omitted). By Theorem 2 and Proposition 2, it
follows the subsequent corollary where the triangular norms of h-type are used.

Corollary 3. Let (Ω, Fpm, τ) be a complete generalized Menger probabilistic metric space such
that supa<1 τ(a, a) = 1 and ξ : Ω→ Ω be a probabilistic Banach q-contraction such that for some
p0 ∈ Ω and some k > 0, it satisfies

ψ ◦ fp0,ξ p0(t) = O
( 1

tk

)
, t > 1,

where ψ : [0, 1]→ [0, s] is a continuous, decreasing function such that ψ(1) = 0. If the triangular
norm τ is of h-type, then there is a unique fixed point z of ξ and z = lim

n→∞
ξn p0.

So, in the previous corollary we deal with a triangular norm of h-type, while in the
next one τ is a strict triangular norm. Note that, for example, τm is not strict, while τp, τl
and τSW are strict triangular norms.

Corollary 4. Let (Ω, Fpm, τ) be a complete generalized Menger probabilistic metric space such
that supa<1 τ(a, a) = 1 and the triangular norm τ is strict with additive generator a (multiplicative
generator m). Let ξ : Ω → Ω be a probabilistic Banach q-contraction and ψ : [0, 1] → [0, s] be
a continuous, decreasing function with ψ(1) = 0 such that for some p0 ∈ Ω and some k > 0, it
satisfies

ψ ◦ fp0,ξ p0(t) = O
( 1

tk

)
, t > 1.

If there exits ς ∈ (0, 1) such that

lim
n→∞

∞

∑
i=n

a(ψ−1((ςi)k) = 0 ( lim
n→∞

∞

∏
i=n

m(ψ−1((ςi)k)) = 1),

then there is a unique fixed point z of ξ and z = lim
n→∞

ξn p0.

Proof. Using Proposition 5, we conclude that all conditions of Theorem 2 are satisfied.
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Further, different contractive conditions are suggested instead of the Banach q-contraction
under the same class of triangular norms. The following conditions introduced in Theorem 2
are used, with the contractive condition in the spirit of one suggested in [27].

Theorem 3. Let (Ω, Fpm, τ) be a complete generalized Menger probabilistic metric space such
that supa<1 τ(a, a) = 1 and the mapping ξ : Ω→ Ω satisfy the following contractive condition

fξ p,ξr(t) ≥ min
{

fp,r

( t
q

)
, fξ p,p

( t
q

)
, fξr,r

( t
q

)}
, p, r ∈ Ω, t > 0, (7)

for some q ∈ (0, 1). Suppose that for some p0 ∈ Ω and some k > 0, condition (3) is satisfied, where
ψ : [0, 1]→ [0, s] is a continuous, decreasing function such that ψ(1) = 0. If the triangular norm
τ satisfies condition (4), then there is a unique fixed point z of mapping ξ and z = lim

n→∞
ξn p0.

Proof. Take p0 ∈ Ω determined in (3) and define a sequence pn+1 = ξ pn, n ∈ N. Then,
by (7), we have

fpn+1,pn(t) ≥ min
{

fpn ,pn−1

( t
q

)
, fpn+1,pn

( t
q

)
, fpn ,pn−1

( t
q

)}
, n ∈ N, t > 0.

Since fpn+1,pn(t) ≥ fpn+1,pn

( t
q
)
> fpn+1,pn(t) leads to a contradiction, then we conclude that

fpn+1,pn(t) ≥ fpn ,pn−1

( t
q

)
≥ · · · ≥ fp0,ξ p0

( t
qn

)
, n ∈ N, t > 0.

Further, the proof that {ξn p0}n∈N is a Cauchy sequence is analogous as in Theorem 2
due to the conditions (3) and (4).

Let z = lim
n→∞

ξn p0. Suppose that z 6= ξz. Using (7), we have

fξ pn ,ξz(t) ≥ min
{

fpn ,z

( t
q

)
, fpn+1,pn

( t
q

)
, fξz,z

( t
q

)}
, n ∈ N, t > 0.

Letting n → ∞, we obtain a contradiction on account of fz,ξz(t) ≥ fξz,z(
t
q ) > fz,ξz(t)

and so z = ξz.
Finally, we prove the uniqueness of fixed point. To this end, suppose that there exists

v 6= z such that v = ξv. Then, from (7), we have

fz,v(t) = fξz,ξv(t) ≥ min
{

fz,v

( t
q

)
, fz,z

( t
q

)
, fv,v

( t
q

)}
, t > 0,

i.e., fz,v(t) ≥ fz,v(
t
q ) and so z = v.

Example 3. Let Ω = [0, 1], ξ(p) =
p
2

, fp,r(t) = e−
|p−r|

t , p, r ∈ Ω, t > 0, τ = τp and

ψ(x) = 1− x. We need to check condition (7), i.e., the relation is written as

e−
|p−r|

2t ≥ min
{

e−
q|p−r|

t , e−
qp
2t , e−

qr
2t

}
, p, r ∈ Ω, t > 0.

Due to the symmetric role of p and r without loss of generality, we suppose that p > r and
split the discussion into two cases, p ≥ 2r and r < p < 2r. If p ≥ 2r, we have

e−
|p−r|

2t ≥ e−
q|p−r|

t , t > 0,

while for r < p < 2r, it follows that

e−
|p−r|

2t ≥ e−
qp
2t , t > 0,

and both inequalities are correct when q ∈ [ 1
2 , 1).

Condition (3) is fulfilled because for arbitrary p0 ∈ (0, 1) and k > 0, one has

ψ( fp0,ξ p0(t)) = 1− e−
p0
2tk ≤ 1

tk , t > 1.
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Let ai = ψ−1((ςi)k) = 1 − (ςi)k. Then,
∞
∑

i=1
(1 − ai) < ∞, and because the following

equivalence holds,

∞

∏
i=1

ai > 0⇐⇒ lim
n→∞

∞

∏
i=n

ai = 1⇐⇒
∞

∑
i=1

(1− ai) < ∞,

we conclude that all conditions of Theorem 3 are satisfied and p = 0 is the unique fixed point of ξ.

Remark 5. Condition (7) could be extended with term fp,ξr
( t

q
)

without changing the triangular
norm, but if we want to add the symmetric term fξ p,r

( t
q
)

too, then the class of triangular norm
must be narrowed.

Theorem 4. Let (Ω, Fpm, τm) be a complete Menger probabilistic metric space such that
supa<1 τ(a, a) = 1 and ξ : Ω→ Ω be a mapping satisfying

fξ p,ξr(t) ≥ min
{

fp,r

( t
q

)
, fξ p,p

( t
q

)
, fξr,r

( t
q

)
, fξ p,r

(2t
q

)
, fp,ξr

( t
q

)}
, (8)

for some q ∈ (0, 1) and every p, r ∈ Ω, t > 0. Suppose that for some p0 ∈ Ω and some k > 0
condition (3) is satisfied, where ψ : [0, 1]→ [0, s] is a continuous, decreasing function such that
ψ(1) = 0. Then, there is a unique fixed point z of ξ and z = lim

n→∞
ξn p0.

Theorem 5. Let (Ω, Fpm, τp) be a complete Menger probabilistic metric space such that
supa<1 τ(a, a) = 1 and ξ : Ω → Ω be a mapping satisfying the following contractive condition,

fξ p,ξr(t) ≥ min

{
fp,r

( t
q

)
, fξ p,p

( t
q

)
, fξr,r

( t
q

)
, fp,ξr

( t
q

)
,

√
fr,ξ p

(2t
q

)}
, (9)

for some q ∈ (0, 1) and every p, r ∈ Ω, t > 0. Suppose that for some p0 ∈ Ω and some k > 0
condition (3) is satisfied where ψ : [0, 1] → [0, s] is a continuous, decreasing function such that
ψ(1) = 0. If the triangular norm τ satisfies

lim
n→∞

∞

∑
i=n

(1− ψ−1((ςi)k)) < ∞,

where ς ∈ (0, 1), then there is a unique fixed point z of ξ and z = lim
n→∞

ξn p0.

Theorem 6. Let (Ω, Fpm, τ) be a complete Menger probabilistic metric space such that
supa<1 τ(a, a) = 1 and ξ : Ω→ Ω be a mapping satisfying

fξ p,ξr(t) ≥ min

{
fp,r

( t
q

)
, fξ p,p

( t
q

)
, fξr,r

( t
q

)
, fp,ξr

( t
q

)
,

1− fξ p,r
( t

q
)
+ fp,ξr

( t
q
)

fξ p,r
( t

q
)
· fp,ξr

( t
q
) }

, (10)

for some q ∈ (0, 1) and every p, r ∈ Ω, t > 0. Suppose that for some p0 ∈ Ω and some k > 0
condition (3) is satisfied, where ψ : [0, 1]→ [0, s] is a continuous, decreasing function such that
ψ(1) = 0. If the triangular norm τ satisfies (4), then there is a unique fixed point z of ξ and
z = lim

n→∞
ξn p0.

Proof. Let p0 ∈ Ω satisfy condition (3) and let pn+1 = ξ pn, n ∈ N. By (10), for n ∈ N, t > 0,
we have

fpn+1,pn(t) ≥ min

{
fpn ,pn−1

( t
q

)
, fpn+1,pn

( t
q

)
, fpn ,pn−1

( t
q

)
, fpn ,pn

( t
q

)
,

2− fpn+1,pn−1

( t
q
)

fpn+1,pn−1

( t
q
) }

,

which implies that
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fpn+1,pn t ≥ fpn ,pn−1

( t
q

)
≥ · · · ≥ fp0,ξ p0

( t
qn

)
, n ∈ N, t > 0.

Using conditions (3) and (4) as in Theorem 2, one could prove that {ξn p0}n∈N is a
Cauchy sequence.

Let z = lim
n→∞

ξn p0 and suppose that z 6= ξz. By (10), we arrive at

fξ pn ,ξz(t) ≥ min

{
fpn ,z

( t
q

)
, fpn+1,pn

( t
q

)
, fξz,z

( t
q

)
, fpn ,ξz

( t
q

)
,

1− fpn+1,z
( t

q
)
+ fpn ,ξz

( t
q
)

fpn+1,z
( t

q
)
· fpn ,ξz

( t
q
) }

,

for every n ∈ N and t > 0. If we take n→ ∞ in the last inequality, it follows that

fz,ξz(t) ≥ min
{

1, 1, fξz,z

( t
q

)
, fz,ξz

( t
q

)
, 1
}

= fξz,z

( t
q

)
> fz,ξz(t),

that is, z = ξz.
Finally, we start to prove the uniqueness of fixed point. As a matter of fact, suppose

that there exists v 6= z such that v = ξv. By (7), we obtain

fz,v(t) = fξz,ξv(t) ≥ min
{

fz,v

( t
q

)
, fz,z

( t
q

)
, fv,v

( t
q

)
, fz,v

( t
q

)
,

1
f 2
z,v
( t

q
)} = fz,v

( t
q

)
, t > 0,

which means that z = v.

Corollary 5. Let (Ω, Fpm, (τ?
λ)λ∈(0, ∞)) be a complete Menger probabilistic metric space such that

supa<1 τ?
λ(a, a) = 1 and ξ : Ω→ Ω be a probabilistic Banach q-contraction, where ? ∈ {D, AA}.

Suppose that, for some p0 ∈ Ω and some k > 0, condition (3) is satisfied, where ψ : [0, 1]→ [0, s]

is a continuous, decreasing function such that ψ(1) = 0. If
∞
∑

i=1
(1− ψ−1((ςk)i))λ converges for

ς ∈ (0, 1), then there is a unique fixed point z of ξ such that z = lim
n→∞

ξn p0.

Proof. Let ς ∈ (0, 1) and λ ∈ (0, ∞). By Proposition 4,
∞
∑

i=1
(1− ψ−1((ςk)i))λ < ∞ and

lim
n→∞

(τ?
λ)

∞
i=1ψ−1((ςk)i) = 1 are equivalent, and then the assertion holds by Theorem 2.

Remark 6. If ψ(x) = ψ−1(x) = 1− x, then the series
∞
∑

i=1
(1− ψ−1(ςi))λ =

∞
∑

i=1
(ςi)λ converges

to ς ∈ (0, 1) and the condition could be omitted by Corollary 5.

Theorem 7. Let (Ω, Fpm, τ) be a complete Menger probabilistic metric space such that
supa<1 τ(a, a) = 1 and ξ : Ω → Ω be a probabilistic Banach q-contraction such that for some
p0 ∈ Ω and some k > 0, it satisfies

ψ ◦ fp0,ξ p0(t) = O
( 1
(g(t))k

)
, t > 1, (11)

where ψ : [0, 1] → [0, s] is a continuous, decreasing function such that ψ(1) = 0, and g :
(0, ∞) → R is a function such that g(x) + g(y) = g(x · y). If, for some Q > 0, the triangular
norm τ satisfies

lim
n→∞

τ∞
i=n ψ−1

(Q
ik

)
= 1, (12)

then there is a unique fixed point z of ξ such that z = lim
n→∞

ξn p0.

Proof. Let µ ∈ (q, 1) and δ = q
µ . Then, δ ∈ (q, 1) and

∞
∑

i=1
δi < ∞. So, for some n1 = n1(ε) ∈

N, we obtain
∞
∑

i=n1

δi ≤ ε.
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Take p0 ∈ Ω such that (11) is fulfilled and, similar as in the proof of Theorem 2, for
n ≥ n1, m ∈ N, one has

fξn p0,ξn+m p0
(ε) ≥ fξn p0,ξn+m p0

( ∞

∑
i=n

δi
)

≥ fξn p0,ξn+m p0

( n+m−1

∑
i=n

δi
)

≥ τ(τ(. . . τ︸ ︷︷ ︸
(m−1)−times

( fξn p0,ξn+1 p0
(δn), fξn+1 p0,ξn+2 p0

(δn+1), . . . , fξn+m−1 p0, f n+m p0
(δn+m−1))

≥ τ
(

τ
(

. . . τ︸ ︷︷ ︸
(m−1)−times

(
fp0,ξ p0

( 1
µn

)
, fp0,ξ p0

( 1
µn+1

)
, . . . fp0,ξ p0

( 1
µn+m−1

))
.

By (11), there exists M > 0 such that

fp0,ξ p0(t) ≥ ψ−1
( M
(g(t))k

)
, t > 1,

Let t =
1

µn > 1. Because g(tn) = ng(t), n ∈ N, for Q =
M

(g( 1
µ ))

k
> 0, we have that

fp0,ξ p0

( 1
µn

)
≥ ψ−1

( M
nk(g( 1

µ ))
k

)
= ψ−1

( Q
nk

)
, n ∈ N.

Now,

fξn p0,ξn+m p0
(ε) ≥ τ

(
τ
(

. . .
(

τ︸ ︷︷ ︸
(m−1)−times

(
ψ−1

( Q
nk

)
, ψ−1

( Q
(n + 1)k

)
, · · · , ψ−1

( Q
(n + m− 1)k

))

≥ τ∞
i=n

(
ψ−1

(Q
ik

))
> 1− λ,

for n ≥ n0(ε, λ). So, {ξn p0}n∈N is a Cauchy sequence.
Because ξ is a probabilistic Banach q-contraction (and consequently it is a continuous

mapping), analogous as in the proof of Theorem 2, it follows that ξ exists a unique fixed
point z = lim

n→∞
ξn p0.

Remark 7. If we take that g(x) = ln x, then by Theorem 7 we obtain Theorem 3 from [26].

Corollary 6. Let (Ω, Fpm, (TSW
λ )λ∈(−1,∞]) be a complete Menger probabilistic metric space such

that supa<1 τ?
λ(a, a) = 1 and ξ : Ω → Ω be a probabilistic Banach q-contraction such that, for

some p0 ∈ Ω and some k > 0, it satisfies

ψ( fp0,ξ p0(t)) = O
( 1
(loga t)k

)
, a > 1, t > 1,

where ψ : [0, 1] → [0, s] is a continuous, decreasing function such that ψ(1) = 0. If
∞
∑

i=1
(1−

ψ−1(Q
ik )) converges for some Q > 0, then there is a unique fixed point z of ξ such that

z = lim
n→∞

ξn p0.
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Proof. Let T = TSW
λ . By Proposition 4,

∞
∑

i=1
(1 − ψ−1(Q

ik )) is equivalent to

lim
n→∞

(TSW
λ )∞

i=n(ψ
−1(Q

ik )) = 1, and hence the assertion follows by Theorem 7.

Remark 8. If ψ(x) = 1− x, then the series
∞
∑

i=1
(1− ψ−1(Q

ik )) =
∞
∑

i=1

Q
ik converges when k > 1, so

it is unnecessary to impose the condition in the previous corollary.

3. Applications to Decomposable Measures

The following definitions are given in [11]. Let A be the σ-algebra of subsets of the
given set Ω. The classical measure is a set function m : A → [0,+∞] such that m(∅) = 0 and

m

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

m(Ai),

for each sequence {Ai}i∈N of mutually disjoint sets from A. In the special case when
m : A → [0, 1] and m(Ω) = 1, m is a probability measure and is marked with P.

Definition 12. Let ζ be a triangular conorm. We say that the ζ-decomposable measure m is a set
function m : A → [0, 1] such that m(∅) = 0 and m(A ∪ B) = ζ(m(A), m(B)), where A, B ∈ A
and A ∩ B = ∅.

Definition 13. Let ζ be a left continuous triangular conorm. The collective function m : A → [0, 1]
is a ζ-decomposable measure if m(∅) = 0 and

m

(
∞⋃

i=1

Ai

)
= ζ∞

i=1m(Ai),

for each sequence{Ai}i∈N from A whose elements are mutually disjoint gatherings.

The set function from the previous example is a σ-ζl-decomposable measure. We say
that a ζ-decomposable measure m is monotone if for A, B ∈ A, A ⊆ B implies
m(A) < m(B). A measure m is an (NSA)-type if and only if s ◦ m is a finite additive
measure, where s is an additive generator for the triangular conorm ζ, which is continuous,
not strict, Archimedean and in relation to which m is decomposable (s(l) = 1).

Proposition 6 ([11]). Let (Ω,A, m) be a measurable space, where m is a continuous, ζ-decomposable
measure (NSA)-type with a monotonically increasing generator s. Then, (ζ,Fpm, τ) is a Menger
space, where Fpm and the triangular norm τ are defined as follows:

(Fpm(X̂, Ŷ) = fX̂,Ŷ : fX̂,Ŷ(u) = m{ω, ω ∈ Ω, d(X(ω), Y(ω)) < u}, X̂, Ŷ ∈ ζ, u ∈ R,

and τ(a, b) = s−1(max(0, s(a) + s(b)− 1)), a, b ∈ [0, 1].

The following is a straightforward application of Theorem 2 to a decomposable
measure.

Corollary 7. Let (Ω, A, m) be a measurable space, where m is a continuous, s-decomposable
measure (NSA)-type with monotone increasing additive generator s. Let (M, d) be a complete,
separable metric space and ξ : Ω×M→M be a continuous random operator such that for some
q ∈ (0, 1), it satisfies

m({ω |ω ∈ Ω, d( f̂ X̂(ω), f̂ Ŷ(ω)) < u}) ≥ m({ω |ω ∈ Ω, d(X(ω), Y(ω)) <
u
q
})
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for all measurable mappings X, Y : Ω → M and each u > 0. If there is a measurable mapping
U : Ω→M such that for some k > 0, it satisfies

ψ(m(d(Û, ξÛ) < t)) = O
( 1

tk

)
, t > 1,

where ψ : [0, 1]→ [0, b] (b > 0) is a continuous, decreasing function such that ψ(1) = 0 and the
triangular norm τ defined by

τ(u, v) = s−1(max(0, s(u) + s(v)− 1)), u, v ∈ [0, 1]

satisfies the condition lim
n→∞

τ∞
i=nψ−1((ςk)i) =1, ς ∈ (0, 1), then there is a random fixed point for

the operator ξ.

Remark 9. Let (Ω, A, m), (M, d) and ξ be the same as in Corollary 7 for some t-conorm σSW
λ ,

λ ∈ (−1, ∞), where σSW
λ is a Sugeno–Weber family of t-conorms as follows:

σSW
λ (a, b) = σm(a, b), if λ = ∞ and σSW

λ (a, b) = min(1, a + b + λab), if λ ∈ (−1, ∞).

Put ξ(x) = 1− x. Because the triangular norm τSW
λ , λ ∈ (−1, ∞) is geometrically convergent, it

implies the existence of the random fixed point of the random operator ξ : Ω×M→M.

4. Conclusions

For more than a century, fixed point theory has widespread and significant applications
in many fields at the core of many branches of pure and applied mathematics, including
convex analysis, variational analysis, nonlinear ordinary and partial differential equations,
critical point theory, nonlinear optimization, fractional calculus and so on. It is known
that plenty of problems caused by the real world are often due to seeking to find a fixed
point and then using different mathematical techniques. In this work, a technique is
furnished, based on nontrivial results in generalized Menger probabilistic metric spaces.
We establish several fixed point theorems with illustrative examples in the framework of
such spaces. We make a conclusion that our results in this paper generalize and improve
many known results in the existing literature. Additionally, we apply our results to cope
with the decomposable measures. We make sure that the idea of further elaborating our
method, which is presented throughout this paper, is quite important and can be applied to
probability theory and nonlinear fractional differential equations in the upcoming future.
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[CrossRef]
18. Liu, Y.; Li, Z. Coincidence point theorems in probabilistic and fuzzy metric spaces. Fuzzy Sets Syst. 2007, 158, 58–70. [CrossRef]
19. Mihet, D. On the existence and the uniqueness of fixed points of Sehgal contractions. Fuzzy Sets Syst. 2005, 156, 135–141.

[CrossRef]
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