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Abstract: This paper is devoted to the investigation of optimality conditions and saddle point
theorems for robust approximate quasi-weak efficient solutions for a nonsmooth uncertain multi-
objective fractional semi-infinite optimization problem (NUMFP). Firstly, a necessary optimality
condition is established by using the properties of the Gerstewitz’s function. Furthermore, a kind
of approximate pseudo/quasi-convex function is defined for the problem (NUMFP), and under its
assumption, a sufficient optimality condition is obtained. Finally, we introduce the notion of a robust
approximate quasi-weak saddle point to the problem (NUMFP) and prove corresponding saddle
point theorems.

Keywords: multiobjective semi-infinite optimization; approximate solution; generalized convexity;
optimality conditions; saddle point

1. Introduction

Recently, much attention had been paid to semi-infinite optimization problems;
see [1–3]. Specially, multiobjective semi-infinite optimization refers to finding values
of decision variables that give the optimum of more than one objective, and many inter-
esting results have been presented in [4] and the references therein. Moreover, fractional
optimization is a ratio of two functions, and it is widely used in the fields of information
technology, resource allocation and engineering design; see [5–8]. It is worth noting that in
many practical problems the objective or constraint functions to optimization models are
nonsmooth and are affected by various uncertain information. Therefore, it is meaningful
to investigate nonsmooth uncertain optimization problems; see [9–11]. Robust optimiza-
tion [12,13] is one of the powerful tools to deal with optimization problems with data
uncertainty. The aim of the robust optimization approach is to find the worst-case solution,
which is immunized against the data uncertainty to optimization problems. However,
most of solutions obtained by numerical algorithms are approximate solutions. In these
situations, the study of approximate solutions is very significant from both the theoret-
ical aspect and practical application. This paper intends to investigate the properties of
a problem (NUMFP) with respect to approximate quasi-weak efficient solutions by the
robust approach.

Optimality conditions and saddle point theorems are two important contents of nons-
mooth optimization problems. The subdifferential is a powerful tool to characterize opti-
mality conditions. For a nonsmooth multiobjective optimization problem, Caristi et al. [14]
and Kabgani et al. [15] investigated optimality conditions of weakly efficient solutions by
using the Michel–Penot subdifferential and convexificator, respectively. Chuong [5] ob-
tained optimality theorems for robust efficient solutions to a nonsmooth multiobjective
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fractional optimization problem based on the Mordukhovich subdifferential. It is impor-
tant to mention that the Clarke subdifferential has attracted much attention because of its
good properties [16]. Fakhar et al. [17] constructed optimality conditions and saddle point
theorems of robust efficient solutions for a nonsmooth multiobjective optimization problem
by utilizing the Clarke subdifferential. The purpose of this article is to examine optimality
conditions and saddle point theorems of robust approximate quasi-weak efficient solutions
for a problem (NUMFP) under the Clarke subdifferential. Moreover, Lee et al. [18] em-
ployed a separation theorem to established necessary conditions for approximate solutions.
Chen et al. [19] used a generalized alternative theorem to obtain necessary optimality
conditions for weakly robust efficient solutions. It is worth noting that the Gerstewitz’s
function is an important nonlinear scalar function, which plays a significant role in solving
optimization problems due to its good properties, such as convexity, positive homogeneity
and continuity; see [20,21]. This paper will use the Gerstewitz’s function to examine a
necessary optimality condition of robust approximate quasi-weak efficient solutions for a
problem (NUMFP).

In addition, convexity and its generalization play an important role in establishing suf-
ficient optimality conditions of optimization problems. In this paper, we will define a class
of approximate (pseudo quasi) convex functions for the objective and constraint functions
of a problem (NUMFP) and establish a sufficient optimality condition and saddle point
theorems for robust approximate quasi-weak efficient solutions under their assumptions.

This paper is organized as follows. Section 2 provides some basic concepts and
lemmas, which will be used in the subsequent sections. In Section 3, we establish optimality
conditions for robust approximate quasi-weak efficient solutions to a problem (NUMFP).
In Section 4, we introduce the concept of a robust approximate quasi-weak saddle point to
a problem (NUMFP) and prove corresponding saddle point theorems.

2. Preliminaries

Throughout this paper,N andRn stand for the set of natural numbers and n-dimensional
Euclidean space, respectively. B(x̄, r) denotes the open ball with center x̄ ∈ Rn and ra-
dius r > 0; B represents the closed unit ball of Rn. The inner product in Rn is denoted
by 〈x, y〉 for any x, y ∈ Rn. We set

Rn
+ = {x = (x1, · · · , xn) ∈ Rn | xi ≥ 0, i = 1, · · · , n},

Rn
++ = {x = (x1, · · · , xn) ∈ Rn | xi > 0, i = 1, · · · , n},

and utilize the following symbols to represent an order relation in Rn:

x < y⇔ y− x ∈ Rn
++,

x 5 y⇔ y− x ∈ Rn
+.

Let C ⊂ Rn be a nonempty subset and intC, clC and coC stand for the interior, the
closure, and the convex hull of C, respectively. The Clarke contingent cone and normal
cone to C at point x̄ ∈ Rn are defined, respectively, by the following (see [16]):

T(C, x̄) = {y ∈ Rn | ∀xn ∈ C, xn → x̄, ∀tn → 0, ∃yn → y, s.t. xn + tnyn ∈ C, ∀n ∈ N},

N(C, x̄) = {ξ ∈ Rn | 〈ξ, y〉 ≤ 0, ∀y ∈ T(C, x̄)}.

The conical convex hull (see [22]) of the set C is defined as

pos(C) = {y ∈ Rn | ∃l ∈ N s.t. y =
l

∑
i=1

λiyi, λi ≥ 0, yi ∈ C, i = 1, · · · , l}.
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Let F : Rn → Rm. F is said to be locally Lipschitz at x̄ ∈ Rn if there exist constant
L > 0 and r > 0 such that

‖ F(x1)− F(x2) ‖≤ L ‖ x1 − x2 ‖, ∀x1, x2 ∈ B(x̄, r).

If F is locally Lipschitz at x for any x ∈ Rn, then F is called locally Lipschitz mapping.
Particularly, for a real value locally Lipschitz function f : Rn → R (R denotes real number),
the Clarke generalized directional derivative of f at x̄ ∈ Rn in the direction d ∈ Rn is given
by (see [16])

f (x̄; d) = lim sup
y→x̄,t→0+

f (y + td)− f (y)
t

,

and the Clarke subdifferential (see [16]) of f at x̄ is denoted by

∂ f (x̄) = {ξ ∈ Rn | f (x̄; d) ≥ 〈ξ, d〉, ∀d ∈ Rn}.

Let C ⊂ Rn be a nonempty subset, and the indicator function of C is defined as

δC(x) =

{
0, x ∈ C,
+∞, x /∈ C.

It is pointed out in [16] that

∂δC(x̄) = N(C, x̄), ∀x̄ ∈ C.

The following lemmas characterize some properties of the Clarke subdifferential.

Lemma 1 ([16]). Let f , h : Rn → R be locally Lipschitz at x̄ ∈ Rn. Then, the following
applies:

(i) ∂ f (x̄) is nonempty compact convex;
(ii) for any t ∈ R, ∂ f (tx̄) = t∂ f (x̄);
(iii) ∂( f + h)(x̄) ⊂ ∂ f (x̄) + ∂h(x̄);
(iv) if f attains a local minimum at x̄, then 0 ∈ ∂ f (x̄).

Lemma 2 ([16]). Let f , h : Rn → R be locally Lipschitz at x̄ ∈ Rn, and h(x̄) 6= 0. Then, f
h is

also locally Lipschitz at x̄, and

∂(
f
h
)(x̄) ⊂ h(x̄)∂ f (x̄)− f (x̄)∂h(x̄)

(h(x̄))2 .

Lemma 3 ([16]). Let F : Rn → Rm be locally Lipschitz at x̄ ∈ Rn and f : Rm → R be locally
Lipschitz at F(x̄). Then,

∂( f ◦ F)(x̄) ⊂ cl(co(
⋃

Λ∈∂ f (F(x̄))

∂(Λ ◦ F)(x̄))).

Next, we give a scalar function, which will play an essential role in the proof of
optimality conditions in Section 3.

Definition 1 ([20]). Let C ⊂ Rn be a pointed closed convex cone, ē ∈ intC 6= ∅. The Gerstewitz’s
function Ψē : Rn → R is defined as

Ψē(y) = inf {t ∈ R | y ∈ tē− C}, y ∈ Rn.

Some properties of the Gerstewitz’s function are summarized in the following Lemma 4.
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Lemma 4 ([20]). Let C ⊂ Rn be a pointed closed convex cone, ē ∈ intC 6= ∅. Then, the
following applies:

(i) Ψē is continuous and locally a Lipschitz function;
(ii) Ψē(y) ≤ t⇔ y ∈ tē− C;
(iii) Ψē(y) ≥ t⇔ y /∈ tē− intC;
(iv) ∂Ψē(y) = {λ ∈ C∗ | 〈λ, y〉 = Ψē(y)};
(v) ∂Ψē(y) ⊂ C∗\{0},
where C∗ = {λ ∈ Rn | 〈λ, y〉 ≥ 0, ∀y ∈ C} represents the dual cone of C.

Lemma 5 ([22]). Let {Ci | i ∈ I} be an arbitrary collection of nonempty convex sets
in Rn and K be the convex cone generated by the union of the collection. Then, every
nonzero vector of K can be expressed as a nonnegative linear combination of n or fewer
linearly independent vectors, each belonging to a different Ci.

Let T be a nonempty and arbitrary index set. Considering the following nonsmooth
uncertain multiobjective fractional semi-infinite optimization problem (NUMFP)

(NUMFP)

{
min f (x)

h(x) =
( f1(x)

h1(x) , · · · , fl(x)
hl(x)

)
,

s.t. gt(x, vt) ≤ 0, ∀t ∈ T,

where vt and t ∈ T, are uncertain parameters from the uncertainty set Vt ⊂ Rp, t ∈ T. fi, hi :
Rn → R, hi(x) 6= 0, i = 1, · · · , l, gt : Rn×Vt → R, fi, hi, gt are locally Lipschitz functions,
and the uncertainty map V : T ⇒ Rp is defined as V(t) := Vt.

We consider the robust counterpart of the problem (NUMFP) as follows:

(NRMFP)

{
min f (x)

h(x) =
( f1(x)

h1(x) , · · · , fl(x)
hl(x)

)
,

s.t. gt(x, vt) ≤ 0, ∀vt ∈ Vt, t ∈ T,

where the feasible set of the problem (NRMFP) is denoted by

F := {x ∈ Rn | gt(x, vt) ≤ 0, ∀vt ∈ Vt, t ∈ T}.

Definition 2. Let ε = (ε1, · · · , ε l) ∈ Rl
+. x̄ ∈ F is called a robust quasi-weak ε-efficient solution

of the problem (NUMFP) if x̄ is a quasi-weak ε-efficient solution of the problem (NRMFP); that is,

f (x)
h(x)

− f (x̄)
h(x̄)

+ ε‖x− x̄‖ /∈ −Rl
++, ∀x ∈ F .

Remark 1. When ε = 0, the quasi-weak ε-efficient solution degrades into the weak efficient solution
in [8].

3. Optimality Conditions

In this section, we will establish necessary and sufficient optimality conditions for
the quasi-weak ε-efficient solutions to the problem (NRMFP). We begin with the following
constraint qualification.

Definition 3 ([23]). For x ∈ Rn, let Π(x) := {(t, v) ∈ gphV | gt(x, v) = 0} and

∆(x) :=
⋃

(t,v)∈Π(x)

∂xgt(x, v),

where gphV := {(t, v) ∈ T ×Rp | v ∈ V(t)}.

Definition 4 ([16]). Let x̄ ∈ F . The Basic Constraint Qualification (BCQ) holds at x̄ if N(F , x̄) ⊂
pos(∆(x̄)).
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Next, we present a necessary optimality condition for the quasi-weak ε-efficient solu-
tions to the problem (NRMFP) by using the properties of the Gerstewitz’s function.

Theorem 1. In problem (NRMFP), let ε = (ε1, · · · , ε l) ∈ Rl
+. If x̄ ∈ F is a quasi-weak ε-efficient

solution of the problem (NRMFP) and the BCQ holds at x̄, then there exist ᾱ = (ᾱ1, · · · , ᾱl) ∈
Rl
+\{0}, λ̄i = ᾱi

hi(x̄) , i = 1, · · · , l, µ̄ = (µ̄1, · · · , µ̄n) ∈ Rn
+ and (t̄j, v̄j) ∈ gphV, j =

1, · · · , n, such that

0 ∈
l

∑
i=1

λ̄i(∂ fi(x̄)− fi(x̄)
hi(x̄)

∂hi(x̄)) +
n

∑
j=1

µ̄j∂xgt̄j
(x̄, v̄j) +

l

∑
i=1

ᾱiεiB, (1)

µ̄jgt̄j
(x̄, v̄j) = 0, ∀j = 1, · · · , n. (2)

Proof. Since x̄ is a quasi-weak ε-efficient solution of the problem (NRMFP), we obtain

f (x)
h(x)

− f (x̄)
h(x̄)

+ ε‖x− x̄‖ /∈ −Rl
++, ∀x ∈ F .

Let H(x) = ( f (x)
h(x) −

f (x̄)
h(x̄) + ε‖x− x̄‖), by Lemma 4 (iii), then we obtain

Ψ(ē)(H(x)) ≥ 0, ∀x ∈ F .

As x̄ ∈ F , thus,

Ψ(ē)(H(x̄)) ≥ 0. (3)

Note that H(x̄) = 0, then H(x̄) ∈ −Rl
+, and it follows from Lemma 4 (ii) that

Ψ(ē)(H(x̄)) ≤ 0,

together with (3), and then we have

Ψ(ē)(H(x̄)) = 0.

Therefore,

Ψ(ē)(H(x)) ≥ Ψ(ē)(H(x̄)) = 0, ∀x ∈ F ,

and this means that x̄ is a local minimizer of Ψ(ē) ◦H(x) onF , and x̄ is also a local minimizer
of Ψ(ē) ◦ H(x) + δF (x) on F . By Lemma 1 (iii), we obtain

0 ∈ ∂(Ψ(ē) ◦ H + δF )(x̄) ⊂ ∂(Ψ(ē) ◦ H)(x̄) + ∂δF (x̄). (4)

Due to

∂δF (x̄) = N(F ; x̄),

combined with (4), we arrive at

0 ∈ ∂(Ψ(ē) ◦ H)(x̄) + N(F ; x̄).

Since H(x) is locally Lipschitz at x̄ and Ψ(ē) is locally Lipschitz at H(x̄), it follows from
Lemma 3 that

∂(Ψ(ē) ◦ H)(x̄) ⊂ cl(co(
⋃

Λ∈∂Ψ(ē)(H(x̄))

∂(Λ ◦ H)(x̄))).
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According to Lemma 4 (v), there exists ᾱ = (ᾱ1, · · · , ᾱl) ∈ ∂Ψ(ē)(H(x̄)) ⊂ Rl
+\{0} such that

0 ∈ cl(co(∂(ᾱ ◦ H)(x̄))) + N(F ; x̄)

= cl(co(∂(ᾱ ◦ ( f (·)
h(·) −

f (x̄)
h(x̄)

+ ε‖ · −x̄‖)(x̄))) + N(F ; x̄)

⊂ cl(co(∂(ᾱ ◦ ( f
h
))(x̄) + 〈ᾱ, ε〉B)) + N(F ; x̄).

From Lemma 1 (i), it leads to

0 ∈ ∂(ᾱ ◦ ( f
h
))(x̄) + 〈ᾱ, ε〉B+ N(F ; x̄)

=
l

∑
i=1

ᾱi∂(
fi
hi
)(x̄) +

l

∑
i=1

ᾱiεiB+ N(F ; x̄).

According to Lemma 2, we obtain

0 ∈
l

∑
i=1

ᾱi
hi(x̄)

(∂ fi(x̄)− fi(x̄)
hi(x̄)

∂hi(x̄)) +
l

∑
i=1

ᾱiεiB+ N(F ; x̄).

Since the BCQ holds, it leads to

0 ∈
l

∑
i=1

ᾱi
hi(x̄)

(∂ fi(x̄)− fi(x̄)
hi(x̄)

∂hi(x̄)) +
l

∑
i=1

ᾱiεiB+ pos(4(x̄)).

By Lemma 5, there exist p ≤ n, µ̄ = (µ̄1, · · · , µ̄p) ∈ Rp
+ and (t̄j, v̄j) ∈ Π(x̄), j =

1, · · · , p such that

0 ∈
l

∑
i=1

ᾱi
hi(x̄)

(∂ fi(x̄)− fi(x̄)
hi(x̄)

∂hi(x̄)) +
p

∑
j=1

µ̄j∂xgt̄j
(x̄, v̄j) +

l

∑
i=1

ᾱiεiB. (5)

Let ᾱi
hi(x̄) = λ̄i. If p = n, then (1) and (2) hold due to (t̄j, v̄j) ∈ Π(x̄), j = 1, · · · , p. When

p < n, we take multipliers µ̄p+1 = · · · = µ̄n = 0 in (5) to obtain the desired result and
complete the proof.

Remark 2. In studies [18,19], the necessary optimality conditions were obtained by utilizing a
separation theorem and an alternative theorem, respectively. Different from [18,19], the necessary
optimality condition of the above Theorem 1 is directly proved by using the properties of the
Gerstewitz’s function. However, if ε = 0 and T is a finite index set, then Theorem 1 of this paper
will reduce to Theorem 1 in [8].

Before we establish a sufficient optimality condition of quasi-weak ε-efficient solutions
for the problem (NRMFP), we next introduce the following two kinds of generalized
convexities for the objective and constraint functions of the problem (NRMFP).

Definition 5. In the problem (NRMFP), ( f , h, g) is called an approximate convex function at x̄ ∈
F if for any x ∈ F , ξi ∈ ∂ fi(x̄), ηi ∈ ∂hi(x̄), i = 1, · · · , l, (tj, vj) ∈ gphV, and δj ∈
∂xgtj(x̄, vj), j = 1, · · · , n, such that

fi(x)
hi(x)

− fi(x̄)
hi(x̄)

≥ 1
hi(x̄)

(〈ξi, x− x̄〉 − fi(x̄)
hi(x̄)

〈ηi, x− x̄〉), i = 1, · · · , l,

gtj(x, vj)− gtj(x̄, vj) ≥ 〈δj, x− x̄〉, j = 1, · · · , n.

Here is an example of an approximate convex function.
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Example 1. In the problem (NRMFP), let fi, hi : R → R, i = 1, 2, g : R×Vt → R, t ∈ T =
[0, 1], v ∈ Vt = [2− t, 2 + t], (t, v) ∈ gphV, and

f (x)
h(x)

= (
f1(x)
h1(x)

,
f2(x)
h2(x)

) = (
x2 + 2x

3
,

2x2

x2 + 1
),

gt(x, v) = 2tx2 − vx.

By a simple calculation, we obtain F = [0, 1
2 ]. Let x̄ = 0 ∈ F , then we have ∂ f1(x̄) =

{2}, ∂ f2(x̄) = {0}, ∂h1(x̄) = {0}, ∂h2(x̄) = {0}, and ∂xgt(x̄, v) = {−v}. For any x ∈
F , ξi ∈ ∂ fi(x̄), ηi ∈ ∂hi(x̄), i = 1, 2, δ ∈ ∂xgt(x̄, v), since

f1(x)
h1(x)

− f1(x̄)
h1(x̄)

=
x2 + 2x

3
≥ 2x

3
=

1
h1(x̄)

(〈ξ1, x− x̄〉 − f1(x̄)
h1(x̄)

〈η1, x− x̄〉),

f2(x)
h2(x)

− f2(x̄)
h2(x̄)

=
2x2

x2 + 1
≥ 0 =

1
h2(x̄)

(〈ξ2, x− x̄〉 − f2(x̄)
h2(x̄)

〈η2, x− x̄〉),

gt(x, v)− gt(x̄, v) = 2tx2 − vx ≥ −vx = 〈δ, x− x̄〉.

We obtain an approximate convex function ( f , h, g) at x̄ = 0.

Definition 6. In the problem (NRMFP), let ε = (ε1, · · · , ε l) ∈ Rl
+. ( f , h, g) is called an approx-

imate pseudo/quasi-convex function at x̄ ∈ F if for any x ∈ F , ξi ∈ ∂ fi(x̄), ηi ∈ ∂hi(x̄), i =
1, · · · , l, (tj, vj) ∈ gphV, and δj ∈ ∂xgtj(x̄, vj), j = 1, · · · , n, such that

1
hi(x̄)

(〈ξi, x− x̄〉 − fi(x̄)
hi(x̄)

〈ηi, x− x̄〉) + εi‖x− x̄‖ ≥ 0⇒ fi(x)
hi(x)

− fi(x̄)
hi(x̄)

+ εi‖x− x̄‖ ≥ 0,

gtj(x, vj)− gtj(x̄, vj) ≤ 0⇒ 〈δj, x− x̄〉 ≤ 0.

Remark 3. Clearly, if ( f , h, g) is an approximate convex function at x̄ ∈ F , then ( f , h, g) is an
approximate pseudo/quasi-convex function at x̄ ∈ F ; conversely, it is not true (see the following
Example 2).

Example 2. In problem (NRMFP), let fi, hi : R→ R, i = 1, 2,

f (x)
h(x)

= (
f1(x)
h1(x)

,
f2(x)
h2(x)

),

where
f1(x) = x4 + x, h1(x) = 2, f2(x) = x2, h2(x) = x4 + 1,

g : R×Vt → R, t ∈ T = [1, 3], v ∈ Vt = [1, 3 + t], (t, v) ∈ gphV,

gt(x, v) = −x2 − 2vt.

Through a clear calculation, we obtain F = R. Taking x̄ = 0 ∈ F , ε = (1, 2), we obtain ∂ f1(x̄) =
{1}, ∂ f2(x̄) = {0}, ∂h1(x̄) = {0}, ∂h2(x̄) = {0} and ∂xgt(x̄, v) = {0}. For any x ∈ F , ξi ∈
∂ fi(x̄), ηi ∈ ∂hi(x̄), i = 1, 2, and δ ∈ ∂xgt(x̄, v), since

1
h1(x̄)

(〈ξ1, x− x̄〉 − f1(x̄)
h1(x̄)

〈η1, x− x̄〉) + ε1‖x− x̄‖ = x
2
+ |x| ≥ 0

⇒ f1(x)
h1(x)

− f1(x̄)
h1(x̄)

+ ε1‖x− x̄‖ = x4 + x
2

+ |x| ≥ 0,
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1
h2(x̄)

(〈ξ2, x− x̄〉 − f2(x̄)
h2(x̄)

〈η2, x− x̄〉) + ε2‖x− x̄‖ = 2|x| ≥ 0

⇒ f2(x)
h2(x)

− f2(x̄)
h2(x̄)

+ ε2‖x− x̄‖ = x2

x4 + 1
+ 2|x| ≥ 0,

gt(x, v)− gt(x̄, v) = −x2 ≤ 0⇒ 〈δ, x− x̄〉 = 0 ≤ 0.

We obtain ( f , h, g), an approximate pseudo/quasi-convex function, at x̄ = 0. However, for x ∈
F\{0} and δ ∈ ∂xgt(x̄, v), one has

gt(x, v)− gt(x̄, v) = −x2 � 0 = 〈δ, x− x̄〉.

Therefore, ( f , h, g) is not an approximate convex function at x̄ = 0.

The following Theorem 2 presents a sufficient optimality condition for the quasi-weak
ε-efficient solutions to the problem (NRMFP).

Theorem 2. In problem (NRMFP), let ε = (ε1, · · · , ε l) ∈ Rl
+ and ( f , h, g) be an approxi-

mate pseudo/quasi-convex function at x̄ ∈ F . If there exist multipliers ᾱ = (ᾱ1, · · · , ᾱl) ∈
Rl
+\{0}, µ̄ = (µ̄1, · · · , µ̄n) ∈ Rn

+ and (t̄j, v̄j) ∈ gphV, such that (1) and (2) hold, then x̄ is a
quasi-weak ε-efficient solution of the problem (NRMFP).

Proof. It follows from (1) that there exist ξ̄i ∈ ∂ fi(x̄), η̄i ∈ ∂hi(x̄), δ̄j ∈ ∂xgt̄j
(x̄, v̄j) and

b̄i ∈ B, such that

0 =
l

∑
i=1

λ̄i(ξ̄i −
fi(x̄)
hi(x̄)

η̄i) +
n

∑
j=1

µ̄j δ̄j +
l

∑
i=1

ᾱiεi b̄i.

Due to b̄i ∈ B, for any x ∈ F , 〈b̄i, x− x̄〉 ≤ ‖x− x̄‖, we obtain

〈
l

∑
i=1

λ̄i(ξ̄i −
fi(x̄)
hi(x̄)

η̄i) +
n

∑
j=1

µ̄j δ̄j, x− x̄〉+
l

∑
i=1

ᾱiεi‖x− x̄‖ ≥ 0.

This is equivalent to

〈
l

∑
i=1

λ̄i(ξ̄i −
fi(x̄)
hi(x̄)

η̄i), x− x̄〉+
l

∑
i=1

ᾱiεi‖x− x̄‖ ≥ −〈
n

∑
j=1

µ̄j δ̄j, x− x̄〉. (6)

When µ̄j = 0, 〈∑n
j=1 µ̄j δ̄j, x− x̄〉 = 0. If µ̄j 6= 0, from (2), we derive

gt̄j
(x, v̄j) ≤ gt̄j

(x̄, v̄j) = 0.

Since ( f , h, g) is an approximate pseudo/quasi-convex function at x̄, for δ̄j ∈ ∂xgt̄j
(x̄, v̄j),

we have
〈δ̄j, x− x̄〉 ≤ 0. (7)

Combining with (6) and (7), we obtain

〈
l

∑
i=1

λ̄i(ξ̄i −
fi(x̄)
hi(x̄)

η̄i), x− x̄〉+
l

∑
i=1

ᾱiεi‖x− x̄‖ ≥ 0. (8)

Conversely, suppose that x̄ is not a quasi-weak ε-efficient solution of the problem (NRMFP).
Then, there exists x̂ ∈ F such that

f (x̂)
h(x̂)

− f (x̄)
h(x̄)

+ ε‖x̂− x̄‖ ∈ −Rl
++,
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which implies that

fi(x̂)
hi(x̂)

− fi(x̄)
hi(x̄)

+ εi‖x̂− x̄‖ < 0, i = 1, · · · , l.

Since ( f , h, g) is an approximate pseudo/quasi-convex at x̄, for ξ̄i ∈ ∂ fi(x̄), and η̄i ∈ ∂hi(x̄),
i = 1, · · · , l, we obtain

1
hi(x̄)

(〈ξ̄i, x̂− x̄〉 − fi(x̄)
hi(x̄)

〈η̄i, x̂− x̄〉) + εi‖x̂− x̄‖ < 0, i = 1, · · · , l.

Noticing that ᾱ ∈ Rl
+\{0},

ᾱi
hi(x̄) = λ̄i, i = 1, · · · , l, we arrive at

〈
l

∑
i=1

λ̄i(ξ̄i −
fi(x̄)
hi(x̄)

η̄i), x̂− x̄〉+
l

∑
i=1

ᾱiεi‖x̂− x̄‖ < 0,

which contradicts (8). Hence, x̄ is a quasi-weak ε-efficient solution to the problem (NRMFP).

4. Saddle Point Theorems

In this section, we establish saddle point theorems of quasi-weak ε-efficiency. We first
give the definition of a quasi ε-weak saddle point for the problem (NRMFP).

Let x̄ ∈ F , ᾱ = (ᾱ1, · · · , ᾱl) ∈ Rl
+\{0}, e = (1, · · · , 1) ∈ Rl

+, µ = (µ1, · · · µn) ∈ Rn
+

and ν = (tj, vj) ∈ gphV, j = 1, · · · , n. The Lagrangian function of the problem (NRMFP) is
defined as

L(x, ᾱ, µ, ν) = (L1(x, ᾱ, µ, ν), · · · ,Ll(x, ᾱ, µ, ν)),

where

L(x, ᾱ, µ, ν) = ᾱ(
f (x)
h(x)

− f (x̄)
h(x̄)

) +
1
l

n

∑
j=1

µjgtj(x, vj)e, (9)

Li(x, ᾱ, µ, ν) = ᾱi(
fi(x)
hi(x)

− fi(x̄)
hi(x̄)

) +
1
l

n

∑
j=1

µjgtj(x, vj), i = 1, · · · , l.

Definition 7. In the problem (NRMFP), let ε = (ε1, · · · , ε l) ∈ Rl
+. (x̄, ᾱ, µ̄, ν̄) ∈ F ×

(Rl
+\{0})×Rn

+ × gphV is said to be a quasi ε-weak saddle point if

L(x, ᾱ, µ̄, ν̄) + ε‖x− x̄‖ − L(x̄, ᾱ, µ̄, ν̄) /∈ −Rl
++, ∀x ∈ F , (10)

L(x̄, ᾱ, µ, ν)− ε‖µ− µ̄‖ 5 L(x̄, ᾱ, µ̄, ν̄), ∀µ ∈ Rn
+, ν ∈ gphV. (11)

The following example is presented to illustrate Definition 7.

Example 3. In the problem (NRMFP), let fi, hi : R → R, i = 1, 2, g : R×Vt → R, t ∈ T =
[0, 1), and v ∈ Vt = [2− t, 2 + t]. Define

f (x)
h(x)

= (
f1(x)
h1(x)

,
f2(x)
h2(x)

) = (
x2

2
,

2x
x + 1

),

gt(x, v) = −tx− vx.
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Via calculation, we obtain F = [0,+∞). For any (x, ᾱ, µ, ν) ∈ F × (R2
+\{0})×R+ × gphV,

the Lagrangian function of the problem (NRMFP) is

L(x, ᾱ, µ, ν) = (ᾱ1(
x2

2
− x̄2

2
) +

1
2

µ(−tx− vx), ᾱ2(
2x

x + 1
− 2x̄

x̄ + 1
) +

1
2

µ(−tx− vx)).

Let x̄ = 0 ∈ F , ε = (ε1, ε2) = (1, 1), ᾱ = (ᾱ1, ᾱ2) = ( 1
2 , 1

2 ), µ̄ = 1 and v̄ = 2− t. It is easy
to obtain

L(x, ᾱ, µ̄, ν̄) = (
x2

4
− x,

x
x + 1

− x), L(x̄, ᾱ, µ̄, ν̄) = (0, 0),

L(x̄, ᾱ, µ, ν) = (0, 0).

Hence,

L(x, ᾱ, µ̄, ν̄) + ε‖x− x̄‖ − L(x̄, ᾱ, µ̄, ν̄) = (
x2

4
,

x
x + 1

) /∈ −R2
++, ∀x ∈ F ,

L(x̄, ᾱ, µ, ν)− ε‖µ− µ̄‖ = −ε|µ− 1| 5 L(x̄, ᾱ, µ̄, ν̄), ∀µ ∈ R+, ν ∈ gphV.

The above result is seen in the following Figures 1 and 2. Therefore, (x̄, ᾱ, µ̄, ν̄) is a quasi ε-weak
saddle point of the problem (NRMFP).

Figure 1. The illustration of L(x, ᾱ, µ̄, ν̄) + ε‖x− x̄‖ − L(x̄, ᾱ, µ̄, ν̄).

Figure 2. The illustration of L(x̄, ᾱ, µ, ν)− ε‖µ− µ̄‖.
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Theorem 3. In the problem (NRMFP), suppose that x̄ ∈ F is a quasi-weak ε-efficient solution of
the problem (NRMFP) and Theorem 1 is satisfied. If ( f , h, g) is an approximate convex function
at x̄, then (x̄, ᾱ, µ̄, ν̄) ∈ F × (Rl

+\{0}) × Rn
+ × gphV is a quasi ᾱε-weak saddle point, where

ᾱε = (ᾱ1ε1, · · · ᾱlε l).

Proof. Firstly, we verify (10) holds. Since x̄ is a quasi-weak ε-efficient solution of the
NRMFP, it follows from Theorem 1 that

0 ∈
l

∑
i=1

λ̄i(∂ fi(x̄)− fi(x̄)
hi(x̄)

∂hi(x̄)) +
n

∑
j=1

µ̄j∂xgt̄j
(x̄, v̄j) +

l

∑
i=1

ᾱiεiB,

µ̄jgt̄j
(x̄, v̄j) = 0, ∀j = 1, · · · , n.

Therefore, there exist ξ̄i ∈ ∂ fi(x̄), η̄i ∈ ∂hi(x̄), δ̄j ∈ ∂xgt̄j
(x̄, v̄j), and b̄i ∈ B such that

0 =
l

∑
i=1

λ̄i(ξ̄i −
fi(x̄)
hi(x̄)

η̄i) +
n

∑
j=1

µ̄j δ̄j +
l

∑
i=1

ᾱiεi b̄i.

Due to b̄i ∈ B, for x ∈ F , 〈b̄i, x− x̄〉 ≤ ‖x− x̄‖, we have

〈
l

∑
i=1

λ̄i(ξ̄i −
fi(x̄)
hi(x̄)

η̄i) +
n

∑
j=1

µ̄j δ̄j, x− x̄〉+
l

∑
i=1

ᾱiεi‖x− x̄‖ ≥ 0. (12)

Suppose that (x̄, ᾱ, µ̄, ν̄) is not a quasi ε-weak saddle point of the problem (NRMFP); then,
there exists x̂ ∈ F such that

L(x̂, ᾱ, µ̄, ν̄) + ᾱε‖x̂− x̄‖ − L(x̄, ᾱ, µ̄, ν̄) ∈ −Rl
++.

From (9), we deduce

ᾱ(
f (x̂)
h(x̂)

− f (x̄)
h(x̄)

) +
1
l

n

∑
j=1

µ̄j(gt̄j
(x̂, v̄j)− gt̄j

(x̄, v̄j))e + ᾱε‖x̂− x̄‖ ∈ −Rl
++.

Thus,

ᾱi(
fi(x̂)
hi(x̂)

− fi(x̄)
hi(x̄)

) +
1
l

n

∑
j=1

µ̄j(gt̄j
(x̂, v̄j)− gt̄j

(x̄, v̄j)) + ᾱiεi‖x̂− x̄‖ < 0, i = 1, · · · , l. (13)

Since ( f , h, g) is an approximate convex function at x̄, there exist ξ̄i ∈ ∂ fi(x̄), η̄i ∈ ∂hi(x̄)
and δ̄j ∈ ∂xgt̄j

(x̄, v̄j) such that

fi(x̂)
hi(x̂)

− fi(x̄)
hi(x̄)

≥ 1
hi(x̄)

(〈ξ̄i, x̂− x̄〉 − fi(x̄)
hi(x̄)

〈η̄i, x̂− x̄〉), i = 1, · · · , l,

gt̄j
(x̂, v̄j)− gt̄j

(x̄, v̄j) ≥ 〈δ̄j, x̂− x̄〉, j = 1, · · · , n.

Let ᾱi
hi(x̄) = λ̄i, i = 1, · · · , l, and then together with (13) we have

λ̄i〈(ξ̄i −
fi(x̄)
hi(x̄)

η̄i), x̂− x̄〉+ 1
l
〈

n

∑
j=1

µ̄j δ̄j, x̂− x̄〉+ ᾱiεi‖x̂− x̄‖ < 0, i = 1, · · · , l.

Then, we obtain

〈
l

∑
i=1

λ̄i(ξ̄i −
fi(x̄)
hi(x̄)

η̄i), x̂− x̄〉+ 〈
n

∑
j=1

µ̄j δ̄j, x̂− x̄〉+
l

∑
i=1

ᾱiεi‖x̂− x̄‖ < 0,
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which contradicts (12).
Next, we prove (11) holds. Since µ̄jgt̄j

(x̄, v̄j) = 0, for any µj ≥ 0, (tj, vj) ∈ (gphV), i =
1, · · · , l, we have µjgtj(x̄, vj) ≤ 0; hence,

n

∑
j=1

µ̄jgt̄j
(x̄, v̄j)−

n

∑
j=1

µjgtj(x̄, vj) ≥ 0.

That is,

−ᾱε‖µj − µ̄j‖ 5 (0, · · · , 0) 5 ᾱ(
f (x̄)
h(x̄)

− f (x̄)
h(x̄)

) +

1
l

n

∑
j=1

µ̄jgt̄j
(x̄, v̄j)e− ᾱ(

f (x̄)
h(x̄)

− f (x̄)
h(x̄)

)− 1
l

n

∑
j=1

µjgtj(x̄, vj)e,

which implies that
L(x̄, ᾱ, µ, ν)− ᾱε‖µj − µ̄j‖ 5 L(x̄, ᾱ, µ̄, ν̄).

The next Theorem 4 shows that a quasi ᾱε-weak saddle point is a quasi-weak ε-efficient
solution of the problem (NRMFP).

Theorem 4. In the problem (NRMFP), if (x̄, ᾱ, µ̄, ν̄) ∈ F ×Rl
++ ×Rn

+ × gphV is a quasi ᾱε-
weak saddle point and x̄ is an optimal solution of the problem max ∑n

j=1 µ̄jgt̄j
(x, v̄j), then x̄ is a

quasi-weak ε-efficient solution, where ᾱε = (ᾱ1ε1, · · · ᾱlε l).

Proof. Since (x̄, ᾱ, µ̄, ν̄) is a quasi ᾱε-weak saddle point of the problem (NRMFP), it follows
from (10) that

ᾱ(
f (x)
h(x)

− f (x̄)
h(x̄)

) +
1
l

n

∑
j=1

µ̄jgt̄j
(x, v̄j)e + ᾱε‖x− x̄‖

−ᾱ(
f (x̄)
h(x̄)

− f (x̄)
h(x̄)

)− 1
l

n

∑
j=1

µ̄jgt̄j
(x̄, v̄j)e /∈ −Rl

++, ∀x ∈ F . (14)

Because x̄ is an optimal solution of the problem max ∑n
j=1 µ̄jgt̄j

(x, v̄j), it holds that

n

∑
j=1

µ̄jgt̄j
(x, v̄j)−

n

∑
j=1

µ̄jgt̄j
(x̄, v̄j) ≤ 0, ∀x ∈ F . (15)

Together with (14) and (15), we obtain

ᾱ(
f (x)
h(x)

− f (x̄)
h(x̄)

) + ᾱε‖x− x̄‖ /∈ −Rl
++, ∀x ∈ F .

Note that ᾱ ∈ Rl
++, and we obtain

(
f (x)
h(x)

− f (x̄)
h(x̄)

) + ε‖x− x̄‖ /∈ −Rl
++, ∀x ∈ F .

Hence, x̄ is a quasi-weak ε-efficient solution of the problem (NRMFP).

5. Conclusions

We have established a necessary condition for robust approximate quasi-weak efficient
solutions of a problem (NUMFP) based on the properties of the Gerstewitz’s function.
We have also introduced two kinds of generalized convex function pairs for the problem
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(NUMFP), and under their assumptions we have presented sufficient conditions and saddle
point theorems for robust approximate quasi-weak efficient solutions.

It would be meaningful to further investigate the proper efficient solutions, duality
theorems and some special applications for the problem (NUMFP), such as multiobjective
optimization problems and minimax optimization problems. Indeed, ref. [4] has discussed
duality theorems and special applications for a nonsmooth semi-infinite multiobjective
optimization problem, respectively. Therefore, the further works seem feasible.
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