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1. Introduction

The study of nonlinear elliptic systems has a strong motivation, and important research
efforts have been made undertaken recently for these systems, aiming to apply the results
of the existence and asymptotic behavior of positive solutions in applied fields (see [1–5]).
The investigation of the following system of nonlinear elliptic equations in a bounded
domain f ⊂ RN,

4z
β
+ λFβ(zβ+1) = 0, (1)

where z
β
= 0 on ∂f and z1 = z

d+1 , β ∈ {1, 2, 3, · · · , d}, has an important application in
science and technology [6,7]. In [8], Dalmasso discussed the existence of positive solutions
to such systems for d = 2 when the F(0)′s are non-negative with at least one F(0) > 0
(positone problems). In [7], when d = 2, Ali–Ramaswamy–Shivaji discussed the existence
of multiple positive solutions to such positone problems. In particular, in cases where one
of z

F1(z)
or z

F2(z)
decreases for some range of z, they established conditions for the existence

of at least three positive solutions for a certain range of λ. In [9], Hai–Shivaji discussed
the existence of positive solutions for λ >> 1 for cases where no sign conditions are
assumed on F(0), β ∈ {1, 2} (semipositone problems). In [10], again for d = 2, Ali–Shivaji
discussed the existence of multiple positive solutions for λ >> 1 when F(0) = 0 = F′(0)
for β ∈ {1, 2}. In addition, in [11–20], relevant references to the most recent works on (1)
can be found. Next, we quote some recent works on elliptic equations.
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In [21], Padhi et al. derived sufficient conditions to the following problem in an
annular domain:

4z = λF(|ν|, z), z ∈ f = {ν ∈ RN : a1 < |ν| < a2},
z = 0, z ∈ ∂f,

for the existence of positive radial solutions, by utilizing Gustafson and Schmitt fixed-point
theorems. In [22], Chrouda and Hassine established the uniqueness of positive radial
solutions to the following Dirichlet boundary value problem for the semilinear elliptic
equation in an annulus:

4z = F(z), z ∈ f = {ν ∈ RN : a1 < |ν| < a2},
z = 0, z ∈ z ∈ ∂f,

for any dimension N ≥ 1. In [23], Dong and Wei established the existence of radial solutions
for the following nonlinear elliptic equations with gradient terms in annular domains:

4z+ g
(
|ν|, z, ν|ν| · ∇z

)
= 0 in Ωb

a,

z = 0 on ∂Ωb
a,

by using Schauder’s fixed-point theorem and contraction mapping theorem. In [24], R.
Kajikiya and E. Ko established the existence of positive radial solutions for a semipositone
elliptic equation of the form

4z+ λg(z) = 0 in Ω,

z = 0 on ∂Ω,

where Ω is a ball or an annulus in RN. Recently, Son and Wang [25] considered the following
system in an exterior ball fX:

4z
β
+ λKβ(|ν|)Fβ(zβ+1) = 0,

z
β
→ 0 as |ν| → +∞

z
β
= 0 on |ν| = r0,

where β ∈ {1, 2, 3, · · · , d}, z1 = z
d+1 , and derived sufficient conditions for the existence of

positive radial solutions. The above-mentioned works motivated us to study the following
iterative classes of nonlinear elliptic equations on an exterior domain:

4z
β
−

(N− 2)2r2N−2
0

|ν|2N−2 z
β
+ $(|ν|)Fβ(zβ+1) = 0, ν ∈ f,

lim
|ν|→∞

z
β
(ν) = 0, z

β
|∂f = 0,

 (2)

where β ∈ {1, 2, 3, · · · , n}, z1 = zn+1, ∆z = div(∇z), N > 2, f = {z ∈ RN| |z| > r0},
$ = ∏κ

i=1 $i, each $i ∈ C((r0,+∞), (0,+∞)), rN−1$ is integrable. The Guo–Krasnoselskii
cone fixed-point theorem is a key tool for obtaining single positive radial solutions, whereas
the Avery–Henderson cone fixed-point theorem is utilized to obtain the coupled solutions.
We further study the uniqueness of solutions of the problem (2) via Rus’ theorem in a
metric space.

The study of the positive solutions to the iterative classes of ordinary differential
equations with two-point boundary conditions,

z′′
β
(r̂)− r2

0zβ(r̂) + $(r̂)Fβ(zβ+1(r̂)) = 0, 0 < r̂ < 1,

z
β
(0) = 0, z

β
(1) = 0,

}
(3)
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where β ∈ {1, 2, 3, · · · , d}, z1 = z
d+1 , r0 > 0 and $(r̂) =

r2
0

(N−2)2 r̂
2(N−1)

2−N ∏κ
i=1 $i(r̂),

$i(r̂) = $i(r0 r̂
1

2−N ) by a Kelvin-type transformation [26,27] through the change of vari-

ables m = |ν| and r̂ =
(
m
r0

)2−N
, facilitates the investigation of the positive radial solutions

of (2).
We impose the below-mentioned presumptions whenever necessary:

(J1) Fβ : [0,+∞)→ [0,+∞) is continuous.
(J2) For 1 ≤ ι̇ ≤ d, $ι̇ ∈ Lpι̇ [0, 1](1 ≤ pι̇ ≤ +∞) and ∃ $?ι̇ > 0 3 $?ι̇ < $ι̇(r̂) < ∞ almost

everywhere on the interval [0, 1].

The remainder of the paper is structured as follows: The problem (3) is transformed
into an analogous integral equation involving the kernel in Section 2. Additionally, we
calculate the kernel boundaries that are crucial to our major findings. In Section 3, we
employ Guo–Krasnoselskii’s cone fixed-point theorem, to provide a criterion for the single
positive radial solution. In Section 4, the coupled solutions are established by the Avery–
Henderson cone fixed-point theorem. The final portion deals with a unique solution.
Meanwhile, some numerical examples are provided.

2. Preliminaries

The essential results are stated here, prior to proceeding to the main results in the
subsequent sections.

Lemma 1. For every ℘ ∈ C[0, 1], the BVP

−z′′
1
(r̂) + r2

0z1(r̂) = ℘(r̂), 0 < r̂ < 1,

z1(0) = z1(1) = 0,

has a unique solution

z1(r̂) =
∫ 1

0
Q(r̂, ζ)℘(ζ)dζ,

where

Q(r̂, ζ) =
1

r0 sinh(r0)

{
sinh(r0 r̂) sinh(r0(1− ζ)), 0 ≤ r̂ ≤ ζ ≤ 1,

sinh(r0ζ) sinh(r0(1− r̂)), 0 ≤ ζ ≤ r̂ ≤ 1.

Lemma 2. The kernel Q(r̂, ζ) has the subsequent characteristics:

(i) Q(r̂, ζ) ≥ 0 and continuous on [0, 1]× [0, 1];
(ii) Q(r̂, ζ) ≤ Q(ζ, ζ), r̂, ζ ∈ [0, 1];
(iii) there exists ξ ∈ (0, 1

2 ) such that σ(ξ)Q(ζ, ζ) ≤ Q(r̂, ζ), (r̂, ζ) ∈ [ξ, 1− ξ]× [0, 1], where

σ(ξ) = sinh(r0ξ)
sinh(r0)

.

Proof. (i) is evident. The following proves (ii):

Q(r̂, ζ)
Q(ζ, ζ)

=


sinh(r0 r̂)
sinh(r0ζ)

, 0 ≤ r̂ ≤ ζ ≤ 1,

sinh(r0(1− r̂))
sinh(r0(1− ζ))

, 0 ≤ ζ ≤ r̂ ≤ 1,

≤
{

1, 0 ≤ r̂ ≤ ζ ≤ 1,

1, 0 ≤ ζ ≤ r̂ ≤ 1,
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For (iii), we consider

Q(r̂, ζ)
Q(ζ, ζ)

=


sinh(r0 r̂)
sinh(r0ζ)

, 0 ≤ r̂ ≤ ζ ≤ 1,

sinh(r0(1− r̂))
sinh(r0(1− ζ))

, 0 ≤ ζ ≤ r̂ ≤ 1,

≥


sinh(r0ξ)

sinh(r0)
, 0 ≤ r̂ ≤ ζ ≤ 1, ξ ≤ r̂ ≤ 1− ξ,

sinh(r0ξ)

sinh(r0)
, 0 ≤ ζ ≤ r̂ ≤ 1, ξ ≤ r̂ ≤ 1− ξ,

=σ.

The proof is now completed.

We observe that a d-tuple (z1 , z2, · · · , zd) is a solution of BVP (3) from Lemma 1 if and
only if

z1(r̂) =
∫ 1

0
Q(r̂, ζ1)$(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)$(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)$(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·
]
dζ3

]
dζ2

]
dζ1.

In general,

z
β
(r̂) =

∫ 1

0
Q(r̂, ζ)$(ζ)Fβ

(
z
β+1(ζ)

)
dζ, β = 1, 2, 3, · · · , d,

z1(r̂) = z
d+1(r̂).

Let ℵ := C((0, 1),R) be a Banach space equipped with a norm ‖z‖ = max
r̂∈[0,1]

|z(r̂)|, and

Xξ =
{
z ∈ ℵ : z(r̂) ≥ 0 on [0, 1], min

r̂∈[ξ, 1−ξ]
z(r̂) ≥ σ(ξ)‖z‖

}
be a cone, for ξ ∈ (0, 1

2 ). For any z1 ∈ X, define an operator £ : X→ ℵ by

(£z1)(r̂) =
∫ 1

0
Q(r̂, ζ1)$(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)$(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)$(ζ3) · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·
]
dζ3

]
dζ2

]
dζ1. (4)

Lemma 3. £ is self–mapping on Xξ and £ : Xξ → Xξ is completely continuous.

Proof. As Fβ(zβ+1(r̂)) ≥ 0 and Q(r̂, ζ) ≥ 0 for r̂, ζ ∈ [0, 1], we have £(z1(r̂)) ≥ 0 for
r̂ ∈ [0, 1], z1 ∈ Xξ. Applying Lemmas 1 and 2, we obtain
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min
r̂∈[ξ,1−ξ]

(£z1)(r̂) = min
r̂∈[ξ,1−ξ]

{ ∫ 1

0
Q(r̂, ζ1)$(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)$(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)$(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·
]
dζ3

]
dζ2

]
dζ1

}

≥ σ(ξ)
{ ∫ 1

0
Q(ζ1, ζ1)$(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)$(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)$(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·
]
dζ3

]
dζ2

]
dζ1

}

≥ σ(ξ)
{ ∫ 1

0
Q(r̂, ζ1)$(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)$(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)$(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·
]
dζ3

]
dζ2

]
dζ1

}
≥ σ(ξ) max

r̂∈[0,1]
|£z1(r̂)|.

Thus, £(Xξ) ⊂ Xξ. In light of this, the operator £ is fully continuous according to the
Arzela–Ascoli theorem.

The following theorems are key tools for the existence of positive solutions:

Theorem 1 (Hölder’s [28]). For ` = 1, 2, · · · , κ, and p` > 1, let h̄ ∈ Lp` [0, 1] with ∑κ
`=1

1
p`

= 1;
then, ∏κ

`=1 h̄` ∈ L1[0, 1] and ‖∏κ
`=1 h̄`‖1 ≤ ∏κ

`=1 ‖h̄`‖p` . Furthermore, if h̄ ∈ L1[0, 1] and
ḡ ∈ L∞[0, 1] then h̄ḡ ∈ L1[0, 1] and ‖h̄ḡ‖1 ≤ ‖h̄‖1‖ḡ‖∞.

Theorem 2 (Guo–Krasnoselskii [29]). Let G be a Banach space, and let N1,N2 be bounded open
subsets of G with 0 ∈ N1 ⊂ N1 ⊂ N2 and ℵ : X ∩ (N2\N1) → X (X ⊂ G is a cone) as a
completely continuous operator, such that

(i) ‖ℵz‖ ≤ ‖z‖, z ∈ X∩ ∂N1, and ‖ℵz‖ ≥ ‖z‖, z ∈ X∩ ∂N2, or
(ii) ‖ℵz‖ ≥ ‖z‖, z ∈ X∩ ∂N1, and ‖ℵz‖ ≤ ‖z‖, z ∈ X∩ ∂N2;

then, ℵ has a fixed point in X∩ (N2\N1).

Let ψ ≥ 0 be a continuous functional on a cone X, and let f > 0 and h > 0. Define
X(ψ, h) = {z ∈ X : ψ(z) < h} and Xf = {z ∈ X : ‖z‖ < f}.

Theorem 3 (Avery–Henderson [30]). If γ1 ≥ 0, γ2 ≥ 0, γ3 ≥ 0 continuous and increasing
functionals on X, γ3(0) = 0, such that, for some positive numbers h and k, γ2(z) ≤ γ3(z) ≤ γ1(z)
and ‖z‖ ≤ kγ2(z), for all z ∈ X(γ2, h), and there exist f > 0 and g > 0 with f < g < h, such
that γ3(λz) ≤ λγ3(z), for 0 ≤ λ ≤ 1 and z ∈ ∂X(γ3, g). Furthermore, if £ : X(γ2, h) → X is a
completely continuous operator, such that

(a) γ2(£z) > h, for all z ∈ ∂X(γ2, h),
(b) γ3(£z) < g, for all z ∈ ∂X(γ3, g),
(c) X(γ1, f) 6= ∅ and γ1(£z) > f, for all ∂X(γ1, f),

then £ has at least two fixed points 1z, 2z ∈ P(γ2, h), such that f < γ1(
1z) with γ3(

1z) < g

and g < γ3(
2z) with γ2(

2z) < h.

Define the non-negative, increasing, continuous functional γ2,γ3, and γ1 by

γ2(z) = min
r̂∈[ξ,1−ξ]

z(r̂), γ3(z) = max
r̂∈[0,1]

z(r̂), γ1(z) = max
r̂∈[0,1]

z(r̂).
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It is obvious that for each z ∈ X, γ2(z) ≤ γ3(z) = γ1(z), and γ2(z) ≥ σ(ξ)‖z‖. Thus,
‖z‖ ≤ 1

σ(ξ)
γ2(z) for all z ∈ X. Furthermore, we observe that γ3(λz) = λγ3(z), for 0 ≤ λ ≤ 1,

z ∈ X.

3. Single Positive Radial Solution

In accordance with Guo–Krasnoselskii’s theorem, we demonstrate in this section that
problem (3) has a single positive radial solution.

For $i ∈ Lpi [0, 1], we have the following cases:

κ

∑
i=1

1
pi

< 1,
κ

∑
i=1

1
pi

= 1,
κ

∑
i=1

1
pi

> 1.

We discuss the positive radial solutions for
κ

∑
i=1

1
pi

< 1, in the following theorem:

Theorem 4. Suppose that (J1)–(J2) hold, and there exist positive constants a2 > a1 > 0,
such that

(J3) Fβ(z(r̂)) ≤ R2a2 for 0 ≤ r̂ ≤ 1, 0 ≤ z ≤ a2, where R2 =

[
r2

0
(N− 2)2 ‖Q̂‖q

κ

∏
i=1
‖$i‖pi

]−1

and Q̂(ζ) = Q(ζ, ζ)ζ
2(N−1)

2−N ,
(J4) Fβ(z(r̂)) ≥ R1a1 for ξ ≤ r̂ ≤ 1− ξ, σ(ξ)a1 ≤ z ≤ a1, where

R1 =

[
σ(ξ)r2

0
(N− 2)2

κ

∏
i=1

$?i

∫ 1−ξ

ξ
Q(ζ, ζ)ζ

2(N−1)
2−N dζ

]−1

,

then the BVP (3) has a solution (z1 , z2, · · · , zd), such that z
β

> 0, a1 ≤ ‖zβ‖ ≤ a2, β =
1, 2, · · · , d.

Proof. Let N1 = {z ∈ ℵ : ‖z‖ < a1} and N2 = {z ∈ ℵ : ‖z‖ < a2}. For z1 ∈ ∂N2,
0 ≤ z1 ≤ a2 for r̂ ∈ [0, 1]. For ζd−1 ∈ [0, 1], and from (J3), we obtain∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd ≤

∫ 1

0
Q(ζd, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

≤ R2a2

∫ 1

0
Q(ζd, ζd)$(ζd)dζd

≤ R2a2
r2

0
(N− 2)2

∫ 1

0
Q(ζd, ζd)ζ

2(N−1)
2−N

d

κ

∏
i=1

$i(ζd)dζd.

Now, there exists q > 1, such that
κ

∑
i=1

1
pi

+
1
q
= 1. From Theorem 1, we have

∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd ≤ R2a2

r2
0

(N− 2)2 ‖Q̂‖q
κ

∏
i=1
‖$i‖pi

≤ a2.
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Similarly, for 0 < ζd−2 < 1,

∫ 1

0
Q(ζd−2, ζd−1)$(ζd−1)Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

]
dζd−1

≤
∫ 1

0
Q(ζd−1, ζd−1)$(ζd−1)Fd−1(a2)dζd−1

≤ R2a2

∫ 1

0
Q(ζd−1, ζd−1)$(ζd−1)dζd−1

≤ R2a2
r2

0
(N− 2)2 ‖Q̂‖q

κ

∏
i=1
‖$i‖pi

≤ a2.

Following this bootstrapping reasoning, we arrive at

(£z1)(t) =
∫ 1

0
Q(r̂, ζ1)$(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)$(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)$(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·
]
dζ3

]
dζ2

]
dζ1

≤ a2.

As N2 = ‖z1‖ for z1 ∈ X∩ ∂N2, we obtain

‖£z1‖ ≤ ‖z1‖. (5)

Let r̂ ∈ [ξ, 1− ξ]; then, a1 = ‖z1‖ ≥ z1(r̂) ≥ min
r̂∈[ξ,1−ξ]

z1(t) ≥ σ(ξ) ‖z1‖ ≥ σ(ξ)a1. By

(J4) and for ζd−1 ∈ [ξ, 1− ξ], we have∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd ≥

∫ 1−ξ

ξ
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

≥ σ(ξ)
∫ 1−ξ

ξ
Q(ζd, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

≥ σ(ξ)R1a1

∫ 1−ξ

ξ
Q(ζd, ζd)$(ζd)dζd

≥ R1a1
σ(ξ)r2

0
(N− 2)2

∫ 1−ξ

ξ
Q(ζd, ζd)ζ

2(N−1)
2−d

d

κ

∏
i=1

$i(ζd)dζd

≥ R1a1
σ(ξ)r2

0
(N− 2)2

κ

∏
i=1

$?i

∫ 1−ξ

ξ
Q(ζd, ζd)ζ

2(N−1)
2−N

d dζd

≥ a1.

Similarly, for 0 < ζd−2 < 1,
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∫ 1

0
Q(ζd−2, ζd−1)$(ζd−1)Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

]
dζd−1

≥
∫ 1−ξ

ξ
Q(ζd−2, ζd−1)$(ζd−1)Fd−1(a1)dζd−1

≥ σ(ξ)
∫ 1−ξ

ξ
Q(ζd−1, ζd−1)$(ζd−1)Fd−1(a1)dζd−1

≥ σ(ξ)R1a1

∫ 1−ξ

ξ
Q(ζd−1, ζd−1)$(ζd−1)dζd−1

≥ R1a1
σ(ξ)r2

0
(N− 2)2

∫ 1−ξ

ξ
Q(ζd−1, ζd−1)ζ

2(N−1)
2−d

d−1

κ

∏
i=1

$i(ζd−1)dζd−1

≥ R1a1
σ(ξ)r2

0
(N− 2)2

κ

∏
i=1

$?i

∫ 1

0
Q(ζd−1, ζd−1)ζ

2(N−1)
2−N

d−1 dζd−1

≥ a1.

It follows that

(£z1)(r̂) =
∫ 1

0
Q(r̂, ζ1)$(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)$(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)$(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·
]
dζ3

]
dζ2

]
dζ1

≥ a1.

Thus, for z1 ∈ X∩ ∂N1, we have
‖£z1‖ ≥ ‖z1‖. (6)

It can be seen that 0 ∈ N1 ⊂ N1 ⊂ N2, and from (5), (6), and Theorem 2, the operator £ has
a fixed point z1 ∈ X ∩

(
N2\N1

)
and z1(r̂) ≥ 0 on (0, 1). Now, put z1 = z

d+1 , to obtain an
infinite number of solutions:

z
β
(r̂) =

∫ 1

0
Q(r̂, s)$(s)Fβ(zβ+1(s))ds, β = 1, 2, · · · , d− 1, d,

z
d+1(r̂) = z1(r̂), r̂ ∈ (0, 1).

For the cases
κ

∑
i=1

1
pi

= 1 and
κ

∑
i=1

1
pi

> 1, we have the following theorems:

Theorem 5. Suppose (J1)–(J2) hold, and there exist constants b2 > b1 > 0 with Fβ (β =
1, 2, · · · , d) satisfies (J4) and

(J5) Fβ(z(r̂)) ≤ N2b2 for 0 ≤ r̂ ≤ 1, 0 ≤ z ≤ b2, where N2 =

[
r2

0
(N− 2)2 ‖Q̂‖∞

κ

∏
i=1
‖$i‖pi

]−1

and Q̂(ζ) = Q(ζ, ζ)ζ
2(N−1)

2−N ;

then the BVP (3) has a solution (z1 , z2, · · · , zd), such that z
β
> 0, b1 ≤ ‖zβ‖ ≤ b2, β =

1, 2, · · · , d.

Proof. The proof is similar to the proof of Theorem 4; therefore, we omit the details
here.

Theorem 6. Suppose (J1)–(J2) hold, and there exist constants c2 > c1 > 0 with Fβ (β =
1, 2, · · · , d) satisfying (J4) and
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(J6) Fβ(z(r̂)) ≤M2c2 for all 0 ≤ r̂ ≤ 1, 0 ≤ z ≤ c2, whereM2 =

[
r2

0
(N− 2)2 ‖Q̂‖∞

κ

∏
i=1
‖$i‖1

]−1

and Q̂(ζ) = Q(ζ, ζ)ζ
2(N−1)

2−N ,

then the BVP (3) has a solution (z1 , z2, · · · , zd), such that z
β
> 0, c1 ≤ ‖zβ‖ ≤ c2, β =

1, 2, · · · , d.

Proof. The proof is similar to the proof of Theorem 4; therefore, we omit the details
here.

Example 1. Consider the problem

4z
β
−

(N− 2)2r2N−2
0

|ν|2N−2 z
β
+ $(|ν|)Fβ(zβ+1) = 0, 1 < |ν| < 3, (7)

z
β
(0) = 0, z

β
(1) = 0, (8)

where r0 = 1, N = 3, β ∈ {1, 2}, z3 = z1 , $(r̂) = 1
r̂4 ∏2

i=1 $i(r̂), $i(r̂) = $i

(
1
r̂

)
, in which

$1(t) = 2
t2+1 and $2(t) = 1√

t+2
, then $1, $2 ∈ Lp[0, 1] and ∏2

i=1 $∗i = 1√
3
. Let ξ = 1

3 , F1(z) =

F2(z) = 1 + 1
3 | sin(1 + z)|+ 1

1+z .

Q(r̂, ζ) =
1

sinh(1)

{
sinh(r̂) sinh(1− ζ), 0 ≤ r̂ ≤ ζ ≤ 1,

sinh(ζ) sinh(1− r̂), 0 ≤ ζ ≤ r̂ ≤ 1,

and σ(ξ) = sinh(ξ)
sinh(1) =

sinh( 1
3 )

sinh(1) = 0.2889212153. In addition,

R1 =

[
σ(ξ)r2

0
(N− 2)2

κ

∏
i=1

$?i

∫ 1−ξ

ξ
Q(ζ, ζ)ζ

2(N−1)
2−N dζ

]−1

≈ 2.932844681.

Let p1 = 2, p2 = 3 and q = 6, then 1
p1

+ 1
p2

+ 1
q = 1 and

R2 =

[
r2

0
(N− 2)2 ‖Q̂‖q

κ

∏
i=1
‖$i‖pi

]−1

≈ 4.284821634.

Choose a1 = 1
2 and a2 = 1. Then,

F1(z) = F2(z) = 1 +
1
3
| sin(1 + z)|+ 1

1 + z
≤ 4.284821634 = R2a2, 0 ≤ z ≤ 1,

F1(z) = F2(z) = 1 +
1
3
| sin(1 + z)|+ 1

1 + z
≥ 1.466422340 = R1a1, 0.1444606076 ≤ z ≤ 1

2
.

Thus, by Theorem 4, BVP (7) and (8) has at least one positive solution (z1 , z2), such that 1
2 ≤

‖z
β
‖ ≤ 1 for β = 1, 2.

4. Existence of Coupled Positive Radial Solutions

By utilizing the Avery–Henderson cone fixed-point theorem, we demonstrate in this
section that there are coupled positive solutions for (3). Denote

β1 =
σ(ξ)r2

0
(N− 2)2

κ

∏
i=1

$?i

∫ 1

0
Q(ζ, ζ)ζ

2(N−1)
2−N dζ,
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β2 =
r2

0
(N− 2)2 ‖Q̂‖q

κ

∏
i=1
‖$i‖pi ,

β3 =
r2

0
(N− 2)2 ‖Q̂‖∞

κ

∏
i=1
‖$i‖pi ,

β4 =
r2

0
(N− 2)2 ‖Q̂‖∞

κ

∏
i=1
‖$i‖1.

Theorem 7. Suppose that (J1)–(J2) hold, and that there exist three positive real numbers f <
g < h with Fβ(β = 1, 2, · · · , d) satisfying

(J7) Fβ(z) >
h
β1

, h ≤ z ≤ h
σ(ξ)

,

(J8) Fβ(z) <
g
β2

, 0 ≤ z ≤ g
σ(ξ)

,

(J9) Fβ(z) >
f
β1

, f ≤ z ≤ f
σ(ξ)

,

then the BVP (3) has coupled positive solutions {(1z1 , 1z2, · · · , 1zd)} and {(2z1 , 2z2, · · · ,
2zd)} satisfying

f < γ1
(1z

β

)
with γ3

(1z
β

)
< g, β = 1, 2, · · · , d

and
g < γ3

(2z
β

)
with γ2

(2z
β

)
< h, β = 1, 2, · · · , d.

Proof. It is easy to demonstrate that £ : X(γ2, h) → X and £ are completely continuous
from (4): first, we check that the condition (a) of Theorem 3 holds; for this, we choose
z1 ∈ ∂X(γ2, h); then, γ2(z1) = minr̂∈[ξ,1−ξ] z1(r̂) = h, so h ≤ z1(r̂) for r̂ ∈ [ξ, 1− ξ]. As
‖z1‖ ≤ 1

σ(ξ)
γ2(z1) =

1
σ(ξ)

h, we have h ≤ z1(r̂) ≤
h

σ(ξ)
, r̂ ∈ [ξ, 1− ξ]. Let ζd−1 ∈ [ξ, 1− ξ].

Then, by (J7), we have∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd ≥ σ(ξ)

∫ 1−ξ

ξ
Q(ζd, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

≥ σ(ξ)h

β1

∫ 1−ξ

ξ
Q(ζd, ζd)$(ζd)dζd

≥
σ(ξ)hr2

0
(N− 2)2β1

∫ 1−ξ

ξ
Q(ζd, ζd)ζ

2(N−1)
2−N

d

κ

∏
i=1

$i(ζd)dζd

≥
σ(ξ)hr2

0
(N− 2)2β1

κ

∏
i=1

$?i

∫ 1−ξ

ξ
Q(ζd, ζd)ζ

2(N−1)
2−N

d dζd

≥ h.

Following this, we arrive at

γ2(£z1) = min
r̂∈[0,1]

∫ 1

0
Q(r̂, ζ1)$(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)$(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)$(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·
]
dζ3

]
dζ2

]
dζ1

≥ h.

Condition (a) of Theorem 3 is proved. To prove (b), choose z1 ∈ ∂X(γ3, g). Then, γ3(z1) =
maxr̂∈[0,1] z1(r̂) = g, so that 0 ≤ z1(r̂) ≤ g for r̂ ∈ [0, 1]. As ‖z1‖ ≤ 1

σ(ξ)
γ2(z1) ≤
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1
σ(ξ)

γ3(z1) = g
σ(ξ)

, we have 0 ≤ z1(r̂) ≤ σ(ξ)2g, r̂ ∈ [0, 1]. Let 0 < ζd−1 < 1. Then,
by (J8), we have∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd ≤ σ(ξ)

∫ 1

0
Q(ζd, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

≤ σ(ξ)g

β2

∫ 1

0
Q(ζd, ζd)$(ζd)dζd

≤
σ(ξ)gr2

0
(N− 2)2β2

∫ 1

0
Q(ζd, ζd)ζ

2(N−1)
2−N

d

κ

∏
i=1

$i(ζd)dζd.

For some q > 1, we have
1
q
+

κ

∑
i=1

1
pi

= 1. From Theorem 1, we have

∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd ≤

σ(ξ)gr2
0

(N− 2)2β2
‖Q̂‖q

κ

∏
i=1
‖$i‖pi ≤ g.

It follows that

γ3(£z1) = max
r̂∈[0,1]

∫ 1

0
Q(r̂, ζ1)$(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)$(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)$(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·
]
dζ3

]
dζ2

]
dζ1

≤ g.

Thus, (b) holds. Finally, we also check that (c) of Theorem 3 holds. Observe that z1(r̂) =
f/4 ⊂ X(γ1, f) and f/4 < f, so that X(γ1, f) 6= ∅. Next, if z1 ∈ X(γ1, f), then f = γ1(z1) =

maxr̂∈[0,1] z1(r̂) = ‖z1‖ = 1
σ(ξ)

γ2(z1) ≤ 1
σ(ξ)

γ3(z1) =
1

σ(ξ)
γ1(z1) =

f
σ(ξ)

, i.e., f ≤ z1(r̂) ≤
f

σ(ξ)
for r̂ ∈ [0, 1]. Let 0 < ζd−1 < 1. Then, by (J9), we have

∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd ≥ σ(ξ)

∫ 1−ξ

ξ
Q(ζd, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

≥ σ(ξ)f

β1

∫ 1−ξ

ξ
Q(ζd, ζd)$(ζd)dζd

≥
σ(ξ)fr2

0
(N− 2)2β1

∫ 1−ξ

ξ
Q(ζd, ζd)ζ

2(N−1)
2−N

d

κ

∏
i=1

$i(ζd)dζd

≥
σ(ξ)fr2

0
(N− 2)2β1

κ

∏
i=1

$?i

∫ 1−ξ

ξ
Q(ζd, ζd)ζ

2(N−1)
2−N

d dζd

≥ f.

Following this bootstrapping reasoning, we arrive at
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γ1(£z1) = max
r̂∈[0,1]

∫ 1

0
Q(r̂, ζ1)$(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)$(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)$(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·
]
dζ3

]
dζ2

]
dζ1

≥ min
r̂∈[0,1]

∫ 1

0
Q(r̂, ζ1)$(ζ1)F1

[ ∫ 1

0
Q(ζ1, ζ2)$(ζ2)F2

[ ∫ 1

0
Q(ζ2, ζ3)$(ζ3)F4 · · ·

Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

]
· · ·
]
dζ3

]
dζ2

]
dζ1

≥ f.

Thus, assumption (c) of Theorem 3 holds. Hence, by Theorem 3, there exist coupled
positive solutions as mentioned in the hypothesis.

The following theorems are for the cases,
κ

∑
i=1

1
pi

= 1 and
κ

∑
i=1

1
pi

> 1, respectively:

Theorem 8. Suppose that (J1)–(J2) hold, and there exist three positive real numbers f < g < h

with Fβ(β = 1, 2, · · · , d) satisfying (J7), (J9), and

(J10)Fβ(z) <
g
β3

, 0 ≤ z ≤ g
σ(ξ)

,

then the BVP (3) has coupled positive solutions {(1z1 , 1z2, · · · , 1zd)} and {(2z1 , 2z2, · · · ,
2zd)} satisfying

f < γ1
(1z

β

)
with γ3

(1z
β

)
< g, β = 1, 2, · · · , d

and
g < γ3

(2z
β

)
with γ2

(2z
β

)
< h, β = 1, 2, · · · , d.

Proof. The proof is similar to the proof of Theorem 7; therefore, we omit the details
here.

Theorem 9. Suppose that (J1)–(J3) hold, and there exist three positive real numbers 0 < f <
g < h with Fβ(β = 1, 2, · · · , d) satisfying (J7), (J9) and

(J11)Fβ(z) <
g
β4

, 0 ≤ z ≤ g
σ(ξ)

,

then the BVP (3) has coupled positive solutions {(1z1 , 1z2, · · · , 1zd)} and {(2z1 , 2z2, · · · ,
2zd)} satisfying

f < γ1
(1z

β

)
with γ3

(1z
β

)
< g, β = 1, 2, · · · , d

and
g < γ3

(2z
β

)
with γ2

(2z
β

)
< h, β = 1, 2, · · · , d.

Proof. The proof is similar to the proof of Theorem 7; therefore, we omit the details
here.

Example 2. Consider the problem

4z
β
−

(N− 2)2r2N−2
0

|ν|2N−2 z
β
+ $(|ν|)Fβ(zβ+1) = 0, 1 < |ν| < 3, (9)

z
β
(0) = z

β
(1) = 0, (10)
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where r0 = 1, N = 3, β ∈ {1, 2}, z3 = z1 , $(r̂) = 1
r̂4 ∏2

i=1 $i(r̂), $i(r̂) = $i

(
1
r̂

)
, in which

$1(r̂) = 1
r̂+2 and $2(r̂) = 3

r̂2+1 , then $1, $2 ∈ Lp[0, 1], ∏2
i=1 $∗i = 1

2 , and σ(ξ) = sinh(ξ)
sinh(1) =

sinh( 1
3 )

sinh(1) = 0.2889212153. In addition,

β1 =
σ(ξ)r2

0
(N− 2)2

κ

∏
i=1

$?i

∫ 1−ξ

ξ
Q(ζ, ζ)ζ

2(N−1)
2−N dζ ≈ 0.1704829453.

Let p1 = 6, p2 = 3 and q = 2, then 1
p1

+ 1
p2

+ 1
q = 1 and

β2 =
r2

0
(N− 2)2 ‖Q̂‖q

κ

∏
i=1
‖$i‖pi ≈ 0.1255931381.

Let

F1(z) = F2(z) =

{
3.9, z ≤ 1.8,

3.9(z− 0.8)2 + z− 1.8, z > 1.8.

Choose f = 1
3 , g = 1

2 and h = 3
5 . Then,

F1(z) = F2(z) ≥ 3.519413622 =
h

β1
, z ∈

[
3
5

, 3.461× 3
5

]
,

F1(z) = F2(z) ≤ 3.981109220 =
g

β2
, z ∈

[
0, 3.461× 1

2

]
,

F1(z) = F2(z) ≥ 1.955229790 =
f

β1
, z ∈

[
1
3

, 3.461× 1
3

]
.

Hence, by an application of Theorem 4, the BVP (9) and (10) has coupled positive solutions
(βz1 , βz2), β = 1, 2, such that

1
3
< max

r̂∈[0,1]

βz1(r̂) with max
r̂∈[0,1]

βz1(r̂) <
1
2

, for β = 1, 2,

1
2
< max

r̂∈[0,1]

βz2(r̂) with min
r̂∈[0,1]

βz2(r̂) <
3
5

, for β = 1, 2.

5. Uniqueness of Positive Radial Solution

We use two metrics, in accordance with Rus’ theorem [31,32], in this part, to test if
there is a unique positive solution to the BVP (3). Consider the collection of continuous,
real-valued functions defined on [0, 1]: this space is symbolised by the letter X. Take into
account the below metrics on X, for functions y, z ∈ X :

d(y, z) = max
r̂∈[0,1]

|y(r̂)− z(r̂)|; (11)

ρ(y, z) =
[∫ 1

0
|y(r̂)− z(r̂)|pdr̂

] 1
p

, p > 1. (12)

The combination (X, d) creates a complete metric space for d in (11). Then, (X, ρ) constitutes
a metric space for the value of ρ in (12). The equation expressing the connection between
the two measures on X is

ρ(y, z) ≤ d(y, z) for all y, z ∈ X. (13)
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Theorem 10 (Rus [32]). Let F : X→ X be a continuous with respect to d on X and

d(Fy, Fz) ≤ α1ρ(y, z), (14)

for some α1 > 0 and for all y, z ∈ X,

ρ(Fy, Fz) ≤ α2ρ(y, z), (15)

for some 0 < α2 < 1 for all y, z ∈ X, then there is a unique y∗ ∈ X such that Fy∗ = y∗.

Denote Υ(ζ) = Q(ζ, ζ)ζ
2(N−1)

2−N ∏κ
i=1 $i(ζ).

Theorem 11. Suppose that (J1) and (J2) and the following

(J12) |Fβ(z)− Fβ(y)| ≤ K|z− y| for z, y ∈ X, for some K > 0

are satisfied. Furthermore, there are two real numbers p > 1, q > 1 satisfying 1
p +

1
q = 1, and the

following holds: [
σ(ξ)Kr2

0
(N− 2)2

]d+1[∫ 1

0
|Υ(ζ)|dζ

]d[∫ 1

0
|Υ(ζ)|qdζ

] 1
q
< 1; (16)

then the BVP (3) has a unique positive solution in X.

Proof. Let z1 , y1 ∈ X and ζn−1 ∈ [0, 1]. The Hölder’s inequality gives∣∣∣∣ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd −

∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
y1(ζd)

)
dζd

∣∣∣∣
≤
∫ 1

0
|Q(ζd−1, ζd) $(ζd)||Fd

(
z1(ζd)

)
− Fd

(
y1(ζd)

)
|dζd

≤
∫ 1

0
|Q(ζd, ζd) $(ζd)| K|z1(ζd)− y1(ζd)|dζd ≤

Kr2
0

(d− 2)2

∫ 1

0
|Υ(ζd)||z1(ζd)− y1(ζd)|dζd

≤
Kr2

0
(N− 2)2

[∫ 1

0
|Υ(ζd)|qdζd

] 1
q
[∫ 1

0
|z1(ζd)− y1(ζd)|pdζd

] 1
p

≤
Kr2

0
(N− 2)2

[∫ 1

0
|Υ(ζd)|qdζd

] 1
q

ρ(z1 , y1) ≤ α?1ρ(z1 , y1),

where

α?1 =
Kr2

0
(N− 2)2

[∫ 1

0
|Υ(ζd)|qdζ

] 1
q

.

Similarly, for 0 < ζd−2 < 1, we obtain∣∣∣∣ ∫ 1

0
Q(ζd−2, ζd−1)$(ζd−1)Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
z1(ζd)

)
dζd

]
dζd−1

−
∫ 1

0
Q(ζd−2, ζd−1)$(ζd−1)Fd−1

[ ∫ 1

0
Q(ζd−1, ζd)$(ζd)Fd

(
y1(ζd)

)
dζd

]
dζd−1

∣∣∣∣
≤

Kr2
0

(N− 2)2

∫ 1

0
|Υ(ζd−1)|α1ρ(z1 , y1)dζd−1 ≤ α̂1α?1ρ(z1 , y1),

where

α̂1 =
Kr2

0
(N− 2)2

∫ 1

0
|Υ(ζ)|dζ.

Thus, we have
|Fz1(ζ)− Fy1(ζ)| ≤ α̂d

1 α?1ρ(z1 , y1);
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that is,
d(Fz1 , Fy1) ≤ α1ρ(z1 , y1), (17)

for some α1 = α̂d1 α?1 > 0 for all z1 , y1 ∈ X, this proves (14). Next, let z1 , y1 ∈ X, and from (13)
and (17), we obtain

d(Fz1 , Fy1) ≤ α1ρ(z1 , y1) ≤ α1d(z1 , y1).

Thus, for ε > 0, select η = ε/α1, we obtain d(Fz1 , Fy1) < ε, whenever d(z1 , y1) < η, which
shows that F is continuous on X with metric d. It remains to be shown that F is contractive
on X with metric ρ. For each z1 , y1 ∈ X, and from (17), we have

[ ∫ 1

0
|(Fz1)(ζ)− (Fy1)(ζ)|pdζ

] 1
p

≤
[∫ 1

0

∣∣α̂d1 α?1ρ(z1 , y1)
∣∣pdζ] 1

p

≤
[

Kr2
0

(N− 2)2

]d+1[∫ 1

0
|Υ(ζ)|dζ

]d[∫ 1

0
|Υ(ζ)|qdζ

] 1
q
ρ(z1 , y1);

that is

ρ(Fz1 , Fy1) ≤
[

Kr2
0

(N− 2)2

]d+1[∫ 1

0
|Υ(ζ)|dζ

]d[∫ 1

0
|Υ(ζ)|qdζ

] 1
q
ρ(z1 , y1).

From assumption (16), we have

ρ(Fz1 , Fy1) ≤ α2ρ(z1 , y1)

for some α2 < 1 and all z1 , y1 ∈ X. It follows from Theorem 10 that F has a unique fixed
point in X. Moreover, from Lemma 3, F is positive. Hence, the BVP (1) has a unique
positive solution.

Example 3. Consider the problem,

4z
β
−

(N− 2)2r2N−2
0

|ν|2N−2 z
β
+ $(|ν|)Fβ(zβ+1) = 0, 1 < |ν| < 2, (18)

z
β
(0) = z

β
(1) = 0, (19)

where r0 = 1, N = 3, β ∈ {1, 2}, z3 = z1 , $(r̂) = 1
r̂4 ∏2

i=1 $i(r̂), $i(r̂) = $i

(
1
r̂

)
, in which

$1(r̂) = $2(r̂) = r̂3
√

r̂+1
. Let F1(z) =

3
2 sin(z) and F2(z) =

3
2(z+1) ; then,

|F1(z)− F1(y)| =
| sin(z)− sin(y)|

103 ≤ 3
2
|z− y|

and

|F2(z)− F2(y)| =
3
2

∣∣∣∣ 1
z+ 1

− 1
y+ 1

∣∣∣∣ ≤ 3
2
|z− y|.

Thus, K = 3
2 . Let d = 2 and p = q = 2; then,[

Kr2
0

(N− 2)2

]d+1[∫ 1

0
|Υ(ζ)|dζ

]d[∫ 1

0
|Υ(ζ)|qdζ

] 1
q
≈ 0.1508078067 < 1.

Hence, as an application of Theorem 11, the BVP (18) and (19) has a unique positive radial solution.
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6. Conclusions

In this paper, we developed a theory to study the existence of single and coupled
positive radial solutions for a certain type of iterative system of nonlinear elliptic equations,
by applying Krasnoselskii’s and Avery–Henderson’s fixed-point theorems in a Banach
space. In the future, we will study the existence of positive radial solutions for an iterative
system of elliptic equations with a logarithmic nonlinear term. In addition, we will study
global existence and ground-state solutions to the addressed problem.
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