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Abstract: In the present work, we aim to introduce and investigate a novel comprehensive subclass of
normalized analytic bi-univalent functions involving Gegenbauer polynomials and the zero-truncated
Poisson distribution. For functions in the aforementioned class, we find upper estimates of the second
and third Taylor–Maclaurin coefficients, and then we solve the Fekete–Szegö functional problem.
Moreover, by setting the values of the parameters included in our main results, we obtain several
links to some of the earlier known findings.
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1. Introduction

Let f be an analytic function defined on the open unit disk U = {z ∈ C : |z| < 1} such
that f (0) = f ′(0)− 1 = 0. Thus, f can be written as the following series expansion:

f (z) = z +
∞

∑
n=2

anzn, (z ∈ U). (1)

The class of all f functions given by (1) is denoted by A and the class of all f functions
in A, which are univalent, is denoted by S (for more details, see [1]; see also some of the
recent studies [2–4]). It is well known that every f function in the class S has an inverse
map f−1 given by

f−1(w) = w− a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + . . . . (2)

Given a univalent function f ∈ A. If the inverse map f−1 is also univalent, then f
is called a bi-univalent function in U. Let Σ denote the class of all bi-univalent functions
in U given by (1). For a characterization of the class Σ and some interesting examples of
subclasses of the class Σ, see [5–11].

For any two analytic functions f and g in the class A, we say f (z) ≺ g(z) in U (read
f is subordinate to g) if there exists an analytic function ω(z), satisfying ω(0) = 0 and
|ω(z)| < 1 for all z ∈ U, such that f (z) = g(ω(z)) for all z ∈ U. For more details, we refer
the reader to [12–15].

The orthogonal polynomials play a central and important role in many applications in
mathematics, physics, and engineering. The set of Gegenbauer polynomials is a general
subclass of Jacobi polynomials. For fundamental definitions and some important properties,
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the readers are referred to [16–19], and for neoteric investigations that connect geometric
function theory with the classical orthogonal polynomials, see [20–29].

Given α > − 1
2 . The Gegenbauer polynomials Cα

n(x) for n = 2, 3, . . . are constructed
by the next recurrence relation.

Cα
0 (x) = 1;

Cα
1 (x) = 2αx; (3)

Cα
n(x) =

1
n
[
2x(α + n− 1)Cα

n−1(x)− (2α + n− 2)Cα
n−2(x)

]
.

Herein, we will use the following Gegenbauer polynomials:

Cα
0 (x) = 1;

Cα
1 (x) = 2αx; (4)

Cα
2 (x) = 2α(1 + α)x2 − α.

Special cases of Gegenbauer polynomials are Legendre polynomials Pn(x) = C
1
2
n (x)

(α = 1
2 ) and Chebyshev polynomials of the second kind Un(x) = C1

n(x) (α = 1).
Gegenbauer polynomials can be generated by

Gα(x, z) =
1

(1− 2xz + z2)
α ,

where x ∈ [−1, 1] and z ∈ U. Note that, when x is fixed, the generating function Gα

is an analytic function in U, and hence, it can be written in the form of the following
Taylor–Maclaurin series:

Gα(x, z) =
∞

∑
n=0

Cα
n(x)zn, z ∈ U. (5)

The zero-truncated Poisson distribution has found widespread use in modeling many
real-life phenomena that deal only with positive enumeration. Let X be a discrete random
variable that obeys the zero-truncated Poisson distribution. The probability density function
of X can be written as

Pm(X = s) =
ms

(em − 1)s!
, s = 1, 2, 3, . . . ,

where m is a positive real number representing the parameter mean.
Recently, Yousef et al. [30] introduced the following power series expansion:

F(m, z) := z +
∞

∑
n=2

mn−1

(em − 1)(n− 1)!
zn, z ∈ U, m > 0.

Consider the analytic function f given by (1). The problem of finding the best upper
estimate of the absolute value of the coefficient functional

∆η( f ) = a3 − ηa2
2 =

1
6

(
f ′′′(0)− 3η

2
(

f ′′(0)
)2
)

(6)

is called the Fekete–Szegö problem [31]. The solution of this problem is of great interest in
the geometric function theory. In the literature, there is a huge amount of results for several
classes of functions that deal with the solution of the Fekete–Szegö problem (see, [32–39]).
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2. The Class Gα
Σ(x, µ, λ, δ)

The aim of this section is to introduce our new comprehensive subclass of normalized
analytic bi-univalent functions. Recently, Yousef et al. [40] have introduced a comprehen-
sive subclass Mβ

Σ(µ, λ, δ) of normalized analytic bi-univalent functions, which is defined
as follows.

Definition 1. For µ, δ ≥ 0, λ ≥ 1 and 0 ≤ β < 1, a function f ∈ Σ given by (1) belongs to the
class Mβ

Σ(µ, λ, δ) if the following inequalities hold true for all z, w ∈ U.

Re

(
(1− µ)

(
f (z)

z

)λ

+ µ f ′(z)
(

f (z)
z

)λ−1

+ δζz f ′′(z)

)
> β

and

Re

(
(1− µ)

(
g(w)

w

)λ

+ µg′(w)

(
g(w)

w

)λ−1

+ δζwg′′(w)

)
> β,

where the function g(w) = f−1(w) is defined by (2) and ζ = 2µ+λ
2µ+1 .

Consider the following linear operator

Ψm : A → A

defined by

Ψm f (z) := F(m, z) ∗ f (z) = z +
∞

∑
n=2

mn−1

(em − 1)(n− 1)!
anzn, z ∈ U, (7)

where the character “∗” stands for the Hadamard product of two series.
In the sequel, assume f ∈ Σ given by (1), g = f−1 given by (2), Gα given by (5), Ψm

defined by (7), x ∈ ( 1
2 , 1], µ, δ ≥ 0, λ ≥ 1, and α, m > 0.

Motivated essentially by the class in Definition 1, we aim in this work to define a
novel comprehensive subclass of normalized analytic bi-univalent functions Gα

Σ(x, µ, λ, δ)
governed by Gegenbauer polynomials and the zero-truncated Poisson distribution series.

Definition 2. We say that f ∈ Gα
Σ(x, µ, λ, δ), if the next conditions are verified.

(1− µ)

(
Ψm f (z)

z

)λ

+ µ(Ψm f (z))′
(

Ψm f (z)
z

)λ−1

+ δζz(Ψm f (z))′′ ≺ Gα(x, z)

and

(1− µ)

(
Ψmg(w)

w

)λ

+ µ(Ψmg(w))′
(

Ψmg(w)

w

)λ−1

+ δζw(Ψmg(w))′′ ≺ Gα(x, w),

where ζ = 2µ+λ
2µ+1 .

By setting the values of the parameters λ, µ and δ, we establish many new subclasses
of the class Gα

Σ(x, µ, λ, δ), as shown below.
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Subclass 1. We say that f ∈ 1Gα
Σ(x, µ, λ) := Gα

Σ(x, µ, λ, 0), if the next conditions are verified.

(1− µ)

(
Ψm f (z)

z

)λ

+ µ(Ψm f (z))′
(

Ψm f (z)
z

)λ−1

≺ Gα(x, z)

and

(1− µ)

(
Ψmg(w)

w

)λ

+ µ(Ψmg(w))′
(

Ψmg(w)

w

)λ−1

≺ Gα(x, w),

where ζ = 2µ+λ
2µ+1 .

Subclass 2. We say that f ∈ 2Gα
Σ(x, µ, δ) := Gα

Σ(x, µ, 1, δ), if the next conditions are verified.

(1− µ)
Ψm f (z)

z
+ µ(Ψm f (z))′ + δz(Ψm f (z))′′ ≺ Gα(x, z)

and

(1− µ)
Ψmg(w)

w
+ µ(Ψmg(w))′ + δw(Ψmg(w))′′ ≺ Gα(x, w).

The above subclass was introduced and studied by Yousef et al. [30].

Subclass 3. We say that f ∈ 3Gα
Σ(x, µ) := Gα

Σ(x, µ, 1, 0), if the next conditions are verified.

(1− µ)
Ψm f (z)

z
+ µ(Ψm f (z))′ ≺ Gα(x, z)

and

(1− µ)
Ψmg(w)

w
+ µ(Ψmg(w))′ ≺ Gα(x, w).

The above subclass was introduced and studied by Amourah et al. [41].

Subclass 4. We say that f ∈ 4Gα
Σ(x) := Gα

Σ(x, 1, 1, 0), if the next conditions are verified.

(Ψm f (z))′ ≺ Gα(x, z)

and
(Ψmg(w))′ ≺ Gα(x, w).

This work is concerned with finding the upper estimates of the initial Taylor–Maclaurin
coefficients (|a2| and |a3|) and the absolute value of the coefficient functional a3 − ηa2

2
of functions belonging to the subclass Gα

Σ(x, µ, λ, δ). To prove our results, we use the
next lemma.

Lemma 1 ([42], p. 172). Given ω(z) =
∞
∑

n=1
ωnzn. If for all z ∈ U we have |ω(z)| < 1, then

|ω1| ≤ 1 and |ωn| ≤ 1− |ω1|2, for n = 2, 3, . . . .

3. Main Results

Theorem 1. If f ∈ Gα
Σ(x, µ, λ, δ), then

|a2| ≤
2αx(em − 1)

√
2x

m
√∣∣∣[2α(2µ + λ)(λ− 1) + 2α(2µ + λ + 6δζ)(em − 1)− 2(1 + α)(µ + λ + 2δζ)2

]
x2 + (µ + λ + 2δζ)2

∣∣∣ , (8)

and

|a3| ≤
4α2x2(em − 1)2

m2(µ + λ + 2δζ)2 +
4αx(em − 1)

m2(2µ + λ + 6δζ)
.
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Proof. If f belongs to the class Gα
Σ(x, µ, λ, δ), then Definition 2 asserts that we can find

two analytic functions in U, namely ω and v, satisfy ω(0) = 0 = v(0) and for all z, w ∈ U:
|ω(z)| < 1, |v(w)| < 1, and

(1− µ)

(
Ψm f (z)

z

)λ

+ µ(Ψm f (z))′
(

Ψm f (z)
z

)λ−1

+ δζz(Ψm f (z))′′ = Gα(x, ω(z)), (9)

and

(1− µ)

(
Ψmg(w)

w

)λ

+ µ(Ψmg(w))′
(

Ψmg(w)

w

)λ−1

+ δζw(Ψmg(w))′′ = Gα(x, v(w)). (10)

From the equalities (9) and (10), for z, w ∈ U we obtain

(1− µ)

(
Ψm f (z)

z

)λ

+ µ(Ψm f (z))′
(

Ψm f (z)
z

)λ−1

+ δζz(Ψm f (z))′′

= 1 + Cα
1 (x)c1z +

[
Cα

1 (x)c2 + Cα
2 (x)c2

1

]
z2 + . . . , (11)

and

(1− µ)

(
Ψmg(w)

w

)λ

+ µ(Ψmg(w))′
(

Ψmg(w)

w

)λ−1

+ δζw(Ψmg(w))′′

= 1 + Cα
1 (x)d1w +

[
Cα

1 (x)d2 + Cα
2 (x)d2

1

]
w2 + . . . , (12)

where

ω(z) =
∞

∑
j=1

cjzj, and v(w) =
∞

∑
j=1

djwj. (13)

Referring to Lemma 1, we have

|cj| ≤ 1 and |dj| ≤ 1 for all j ∈ N. (14)

So, from Equations (11) and (12), we obtain

m(µ + λ + 2δζ)

em − 1
a2 = Cα

1 (x)c1, (15)

m2(λ− 1)(2µ + λ)

2(em − 1)2 a2
2 +

m2(2µ + λ + 6δζ)

2(em − 1)
a3 = Cα

1 (x)c2 + Cα
2 (x)c2

1, (16)

−m(µ + λ + 2δζ)

em − 1
a2 = Cα

1 (x)d1, (17)

and

m2[(2µ + λ)(2em + λ− 3) + 12δζ(em − 1)]

2(em − 1)2 a2
2 −

m2(2µ + λ + 6δζ)

2(em − 1)
a3 = Cα

1 (x)d2 + Cα
2 (x)d2

1. (18)

It follows from (15) and (17) that

c1 = −d1, (19)

and
2m2(µ + λ + 2δζ)2

(em − 1)2 a2
2 = [Cα

1 (x)]2
(

c2
1 + d2

1

)
. (20)
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Adding (16) and (18) yields

m2[(2µ + λ)(λ + em − 2) + 6δζ(em − 1)]

(em − 1)2 a2
2 = Cα

1 (x)(c2 + d2) + Cα
2 (x)

(
c2

1 + d2
1

)
. (21)

Substituting the value of
(
c2

1 + d2
1
)

from (20) in the right hand side of (21), we de-
duce that[

λ− 1 + (em − 1)
(

1 +
6δζ

(2µ + λ)

)
−

2(µ + λ + 2δζ)2Cα
2 (x)

(2µ + λ)
[
Cα

1 (x)
]2

]
m2(2µ + λ)

(em − 1)2 a2
2 = Cα

1 (x)(c2 + d2). (22)

Now, using (4), (14) and (22), we find that (8) holds.
Moreover, if we subtract (18) from (16), we have

m2(2µ + λ + 6δζ)

(em − 1)

(
a3 − a2

2

)
= Cα

1 (x)(c2 − d2) + Cα
2 (x)

(
c2

1 − d2
1

)
. (23)

Then, in view of (19) and (20), the Equation (23) becomes

a3 =
(em − 1)2[Cα

1 (x)
]2

2m2(µ + λ + 2δζ)2

(
c2

1 + d2
1

)
+

(em − 1)Cα
1 (x)

m2(2µ + λ + 6δζ)
(c2 − d2).

Thus, applying (4), we conclude that

|a3| ≤
4α2x2(em − 1)2

m2(µ + λ + 2δζ)2 +
4αx(em − 1)

m2(2µ + λ + 6δζ)
,

and the proof of the theorem is complete.

The next result regards the Fekete–Szegö functional problem for functions in the class
Gα

Σ(x, µ, λ, δ).

Theorem 2. If f ∈ Gα
Σ(x, µ, λ, δ), then

∣∣∣a3 − ηa2
2

∣∣∣ ≤


4αx(em−1)
m2(2µ+λ+6δζ)

, if |η − 1| ≤ M,

8α2x3(em−1)2|1−η|∣∣∣∣m2

{
(2α[(2µ+λ)(λ−1)+(2µ+λ+6δζ)(em−1)]−2(1+α)(µ+λ+2δζ)2)x2+(µ+λ+2δζ)2

}∣∣∣∣ , if |η − 1| ≥ M,

where

M :=

∣∣∣∣∣1 + 2αx2(2µ + λ)(λ− 1)− (2(1 + α)x2 − 1)(µ + λ + 2δζ)2

2αx2(em − 1)(2µ + λ + 6δζ)

∣∣∣∣∣.
Proof. If f lies in the class Gα

Σ(x, µ, λ, δ), then from (22) and (23) we have

a3 − ηa2
2 = (1− η)

(em − 1)2[Cα
1 (x)

]3
(c2 + d2)

m2
{(

Cα
1 (x)

)2
[(2µ + λ)(λ− 1) + (2µ + λ + 6δζ)(em − 1)]− 2Cα

2 (x)(µ + λ + 2δζ)2
}

+
(em − 1)Cα

1 (x)
m2(2µ + λ + 6δζ)

(c2 − d2)

= Cα
1 (x)

[(
h(η) +

(em − 1)
m2(2µ + λ + 6δζ)

)
c2 +

(
h(η)− (em − 1)

m2(2µ + λ + 6δζ)

)
d2

]
,
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and

h(η) =
(em − 1)2[Cα

1 (x)
]2
(1− η)

m2
{(

Cα
1 (x)

)2
[(2µ + λ)(λ− 1) + (2µ + λ + 6δζ)(em − 1)]− 2Cα

2 (x)(µ + λ + 2δζ)2
} ,

Then, in view of (4), we conclude that

∣∣∣a3 − ηa2
2

∣∣∣ ≤


4αx(em−1)
m2(2µ+λ+6δζ)

, if 0 ≤ |h(η)| ≤ (em−1)
m2(2µ+λ+6δζ)

,

4αx|h(η)|, if |h(η)| ≥ (em−1)
m2(2µ+λ+6δζ)

,

which completes the proof of Theorem 2.

4. Consequences and Corollaries

By referring to the Subclass 1 (considering δ = 0), Subclass 2 (considering λ = 1),
Subclass 3 (considering λ = 1 and δ = 0), and Subclass 4 (considering λ = 1, δ = 0 and
µ = 1), and from Theorems 1 and 2, we deduce the next consequences, respectively.

Setting δ = 0, we obtain the following corollary.

Corollary 1. If f∈ 1Gα
Σ(x, µ, λ), then

|a2| ≤
2αx(em − 1)

√
2x

m
√∣∣∣[2α(2µ + λ)(λ− 1) + 2α(2µ + λ)(em − 1)− 2(1 + α)(µ + λ)2

]
x2 + (µ + λ)2

∣∣∣ ,
|a3| ≤

4α2x2(em − 1)2

m2(µ + λ)2 +
4αx(em − 1)
m2(2µ + λ)

,

and

∣∣∣a3 − ηa2
2

∣∣∣ ≤


4αx(em−1)
m2(2µ+λ)

, if |η − 1| ≤ K,

8α2x3(em−1)2|1−η|∣∣∣∣m2

{
(2α(2µ+λ)[(λ−1)+(em−1)]−2(1+α)(µ+λ)2)x2+(µ+λ)2

}∣∣∣∣ , if |η − 1| ≥ K,

where

K :=

∣∣∣∣∣1 + 2αx2(2µ + λ)(λ− 1)− (2(1 + α)x2 − 1)(µ + λ)2

2αx2(em − 1)(2µ + λ)

∣∣∣∣∣.
Next, setting λ = 1 yields the following consequence.

Corollary 2 ([30]). If f ∈ 2Gα
Σ(x, µ, δ), then

|a2| ≤
2αx(em − 1)

√
2x

m
√∣∣∣[2α(1 + 2µ + 6δ)(em − 1)− 2(1 + α)(1 + µ + 2δ)2

]
x2 + (1 + µ + 2δ)2

∣∣∣ ,
|a3| ≤

4α2x2(em − 1)2

m2(1 + µ + 2δ)2 +
4αx(em − 1)

m2(1 + 2µ + 6δ)
,
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and

∣∣∣a3 − ηa2
2

∣∣∣ ≤


4αx(em−1)
m2(1+2µ+6δ)

, if |η − 1| ≤ L,

8α2x3(em−1)2|1−η|∣∣∣∣m2

{
[2α(1+2µ+6δ)(em−1)−2(1+α)(1+µ+2δ)2]x2+(1+µ+2δ)2

}∣∣∣∣ , if |η − 1| ≥ L,

where

L :=

∣∣∣∣∣1− (1 + µ + 2δ)2[2(1 + α)x2 − 1
]

2αx2(em − 1)(1 + 2µ + 6δ)

∣∣∣∣∣.
Now, setting λ = 1 and δ = 0, we have the following consequence.

Corollary 3 ([41]). If f ∈ 3Gα
Σ(x, µ), then

|a2| ≤
2αx(em − 1)

√
2x

m
√∣∣∣[2α(1 + 2µ)(em − 1)− 2(1 + α)(1 + µ)2

]
x2 + (1 + µ)2

∣∣∣ ,
|a3| ≤

4α2x2(em − 1)2

m2(1 + µ)2 +
4αx(em − 1)
m2(1 + 2µ)

,

and

∣∣∣a3 − ηa2
2

∣∣∣ ≤


4αx(em−1)
m2(1+2µ)

, if |η − 1| ≤ M,

8α2x3(em−1)2|1−η|∣∣∣∣m2

{
[2α(1+2µ)(em−1)−2(1+α))(1+µ)2]x2+(1+µ)2

}∣∣∣∣ , if |η − 1| ≥ M,

where

M :=

∣∣∣∣∣1− (1 + µ)2[2(1 + α)x2 − 1
]

2αx2(em − 1)(1 + 2µ)

∣∣∣∣∣.
Finally, sitting λ = 1, δ = 0, and µ = 1, we obtain our last consequence.

Corollary 4. If f ∈ 4Gα
Σ(x), then

|a2| ≤
2αx(em − 1)

√
2x

m
√
|[6α(em − 1)− 8(1 + α)]x2 + 4|

,

|a3| ≤
α2x2(em − 1)2

m2 +
4αx(em − 1)

3m2 ,

and

∣∣∣a3 − ηa2
2

∣∣∣ ≤


4αx(em−1)
3m2 , if |η − 1| ≤ N,

8α2x3(em−1)2|1−η|∣∣∣∣m2

{
[6α(em−1)−8(1+α)]x2+4

}∣∣∣∣ , if |η − 1| ≥ N,

where

N :=

∣∣∣∣∣1− 2
[
2(1 + α)x2 − 1

]
3αx2(em − 1)

∣∣∣∣∣.
5. Conclusions

In the current investigation, we have established a new comprehensive subclass
Gα

Σ(x, µ, λ, δ) of normalized analytic bi-univalent functions that involve Gegenbauer poly-
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nomials and the zero-truncated Poisson distribution series. First, we have provided the
best estimates for the first initial Taylor–Maclaurin coefficients, |a2| and |a3|, and then we
solved the Fekete–Szegö inequality problem. Moreover, by setting the appropriate values
of the parameters δ, λ, and µ, we obtain similar findings for the subclasses 1Gα

Σ(x, µ, λ),
2Gα

Σ(x, µ, δ), 3Gα
Σ(x, µ), and 4Gα

Σ(x).
The results presented in the present work will lead to many different results for the

subclasses of Legendre polynomials G1/2
Σ (x, µ, λ, δ) and Chebyshev polynomials of the

second kind G1
Σ(x, µ, λ, δ).
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31. Fekete, M.; Szegö, G. Eine Bemerkung űber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 1, 85–89. [CrossRef]
32. Srivastava, H.M.; Mishra, A.K.; Das, M.K. The Fekete-Szegö Problem for a Subclass of Close-to-Convex Functions. Complex Var.

Theory Appl. 2001, 44.2, 145–163. [CrossRef]
33. Illafe, M.; Amourah, A.; Haji Mohd, M. Coefficient Estimates and Fekete-Szegö Functional Inequalities for a Certain Subclass of

Analytic and Bi-Univalent Functions. Axioms 2022, 11, 147. [CrossRef]
34. Yousef, F.; Al-Hawary, T.; Murugusundaramoorthy, G. Fekete-Szegö Functional Problems for Some Subclasses of Bi-Univalent

Functions Defined by Frasin Differential Operator. Afr. Mat. 2019, 30, 495–503. [CrossRef]
35. Tang, H.; Srivastava, H.M.; Sivasubramanian, S.; Gurusamy, P. The Fekete-Szegö Functional Problems for Some Subclasses of

m-Fold Symmetric Bi-Univalent Functions. J. Math. Inequal. 2016, 10, 1063–1092. [CrossRef]
36. Karthikeyan, K.R.; Murugusundaramoorthy, G. Unified Solution of Initial Coefficients and Fekete-Szegö Problem for Subclasses

of Analytic Functions Related to a Conic Region. Afr. Mat. 2022, 33, 44. [CrossRef]
37. Swamy, S.R.; Sailaja, Y. On the Fekete-Szegö Coefficient Functional for Quasi-Subordination Class. Palas. J. Math. 2021, 10,

666–672.
38. Seoudy, T.; Aouf, M.K. Fekete-Szegö Problem for Certain Subclass of Analytic Functions with Complex Order Defined by

q-Analogue of Ruscheweyh Operator. Constr. Math. Anal. 2020, 3, 36–44. [CrossRef]
39. Mohd, M.H.; Darus, M. Fekete-Szegö problems for quasi-subordination classes. Abstr. Appl. Anal. 2012, 2022, 192956.
40. Yousef, F.; Alroud, S.; Illafe, M. New Subclasses of Analytic and Bi-Univalent Functions Endowed with Coefficient Estimate

Problems. Anal. Math. Phys. 2021, 11, 58. [CrossRef]
41. Amourah, A.; Alomari, M.; Yousef, F.; Alsoboh, A. Consolidation of a Certain Discrete Probability Distribution with a Subclass of

Bi-Univalent Functions Involving Gegenbauer Polynomials. Math. Probl. Eng. 2022, 2022, 6354994. [CrossRef]
42. Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.34198/ejms.7221.403427
http://dx.doi.org/10.1007/s13370-020-00835-9
http://dx.doi.org/10.1155/2022/2705203
http://dx.doi.org/10.3390/axioms11030092
http://dx.doi.org/10.1007/978-981-16-3807-7_6
http://dx.doi.org/10.22771/nfaa.2022.27.01.06
http://dx.doi.org/10.7153/jca-11-06
http://dx.doi.org/10.1007/s40590-019-00245-3
http://dx.doi.org/10.3390/math10244693
http://dx.doi.org/10.3390/axioms11060267
http://dx.doi.org/10.1112/jlms/s1-8.2.85
http://dx.doi.org/10.1080/17476930108815351
http://dx.doi.org/10.3390/axioms11040147
http://dx.doi.org/10.1007/s13370-019-00662-7
http://dx.doi.org/10.7153/jmi-10-85
http://dx.doi.org/10.1007/s13370-022-00981-2
http://dx.doi.org/10.33205/cma.648478
http://dx.doi.org/10.1007/s13324-021-00491-7
http://dx.doi.org/10.1155/2022/6354994

	Introduction
	The Class G(x,,,)
	Main Results
	Consequences and Corollaries
	Conclusions
	References

