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Abstract: In this paper, a numerical solution of the modified regularized long wave (MRLW) equation
is obtained using the Sinc-collocation method. This approach approximates the space dimension of
the solution with a cardinal expansion of Sinc functions. First, discretizing the time derivative of the
MRLW equation by a classic finite difference formula, while the space derivatives are approximated by
a θ−weighted scheme. For comparison purposes, we also find a soliton solution using the Adomian
decomposition method (ADM). The Sinc-collocation method was were found to be more accurate and
efficient than the ADM schemes. Furthermore, we show that the number of solitons generated can
be approximated using the Maxwellian initial condition. The proposed methods’ results, analytical
solutions, and numerical methods are compared. Finally, a variety of graphical representations for the
obtained solutions makes the dynamics of the MRLW equation visible and provides the mathematical
foundation for physical and engineering applications.

Keywords: MRLW equation; soliton solutions; sinc-collocation method; Adomian decomposition
method
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1. Introduction

Partial differential equations, especially non-linear ones, are used in the study of many
natural phenomena that often arise in the physical sciences and engineering applications.
For nonlinear equations, there is a difficulty, if not an impossibility, in finding exact solutions
to the equation, and researchers often resort to finding a solution with approximate methods.
Here, we will use two different schemes to solve the modified equation for the long wave
known as MRLW equation (see, [1–3]).

∂u
∂t

+
∂u
∂x

+ εup ∂u
∂x
− µ

∂

∂t

(∂2u
∂x2

)
= 0 (1)

With the following boundary and initial conditions

u(a, t) = α1(t), u(b, t) = α2(t) (2)

u(x, 0) = f (x), x ∈ [a, b] ⊂ IR. (3)

where ε and µ in Equation (1) are positive constants that describe the undular bore’s
behavior, and p is a positive integer greater than or equal to 1, while the function f (x) is
a localized disturbance inside the interval [a, b] subject to physical boundary conditions
u → ∞ as x → ∓∞. The functions that appeared on both sides in Equation (2) are
also continuous. Equation (1), which we will abbreviate with MRLW, was originally a
mathematical model to describe a physical phenomenon with weak scattering waves, and
in another application it describes the movement of transverse waves in shallow water.
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There are many previous studies that dealt with the use of numerical methods to find
approximate solutions to the equation under consideration, the MRLW equation. In the
paper [4], the collocation method was used to find an approximate solution to the MRLW
equation. The method relied mainly on the use of the Sinc function as a basis. The B-splines
finite element method of order 3 was used in [5] to solve the MRLW equation numerically,
the numerical results proved the accuracy of the used method. In [6], two different bases
are used to solve numerically the MRLW equation, in which the finite difference method is
used along the time derivatives, while the delta-shaped basis was used to discretize the
space direction. It should be noted here that there are many previous studies in which the
Sinc method was used or those that dealt with approximate solutions to the equation under
study, among which we mention [7–9]. Recently published papers in [10–14] dealt with the
use of different methods to find numerical solutions to various forms of the generalized
RLW equation. For more knowledge, there are other previous studies that discussed the
same ideas presented in this paper, but in different ways, such as [1,15,16].

The Sinc methodology is one of the most powerful tools for solving various types of
equations that model various physical phenomena. This method is used to solve integral
equations, partial differential equations, and integro-differential equations. The most im-
portant motive of this research work is the use of the Sinc method because the convergence
of the approximate solution is of exponential type. For some positive constants c, h the Sinc
method yields an iterative scheme with an error of order O(exp(−c/h), which is much
faster than other traditional methods.

The main objective of this paper is to find an approximate solution to the MRLW
equation in (1)–(3), where the basis of the Sinc function on the variable x will be used, while
we will use the regular finite difference method when talking about the time variable t.
Moreover, the Adomian decomposition method will be used for comparison purposes.

The main idea of using the Sinc function is that in the process of replacing the partial
derivatives that appeared in (1), in terms of the variable x, with the corresponding formulas
that have been proven in both references Stenger [17] and by Lund [18], followed by the use
of the Sinc quadrature formula for integration with some simple manipulations, we end
up with a discrete system of the general form Ax = b that can be solved iteratively via the
use of iterative techniques, such as Newton’s method. What encourages us to use the Sinc
function is its ease of use, and most importantly, the fast exponential convergence property
when using the Sinc function as a basis. For the purpose of comparing the solution that
will be obtained by the Sinc methodology, we will use the Adomian analysis method, the
so-called Adomian decomposition method (ADM) [19,20], to find another solution in an
approximate (not numerical) way. The ADM method was created and developed at the
beginning of the 1980s of the last century, and it has proven its worth when used in various
nonlinear, ordinary and partial differential equations. There are many previous studies
that dealt with finding a solution to linear or nonlinear, ordinary or partial differential
equations, via the use of ADM, see for example [21–23]. Those equations represented a
mathematical model in several fields, including physics, chemistry, biology, engineering
in its various forms and medical sciences. The ADM is summarized as finding a solution
in the form of a convergent series, and often we need a number that does not exceed the
number of fingers on one hand to obtain an appropriate solution, knowing that in previous
studies there is sufficient and convincing evidence for the convergence of the method to an
accurate solution.

The general structure of this paper can be reviewed as follows: In Section 2, we present
the main concepts of the Sinc function and all the theories we need in writing the solution
to Equation (1). As for Section 3, we will discuss the formulation of the solution using
the Sinc-collocation method, while Section 4 is limited to talking about the stability of
the calculated solution. Section 5 is where we will present the alternative method, which
is ADM. The effectiveness of the solution presented by the two methods in this paper is
discussed in Section 6 by taking two different values of the constant p. The credibility of
the methods used will be shown by presenting the numerical results in the form of tables
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and graphs, and finally, a summary of what happened with some recommendations in
Section 7.

2. Sinc-Collocation

The Sinc function method has proven its effectiveness in finding approximate solu-
tions to many problems with physical and engineering applications. The Sinc function is
considered to be some kind of wavelet that has been used effectively in recent years to find
solutions to many problems. Here, we will review some important characteristics that we
will use to formulate the solution using the basis of the Sinc function. These are discussed
in [17,18]. It is known that the Sinc function is defined in the domain of all real numbers as
follows

sinc (x) =
sin(πx)

πx
, x ∈ IR. (4)

We will use the Sinc function for the purposes of interpolation, over the defined
interval of the question under consideration. To do so, we first divide the interval into
sub-intervals, each of which is h, and then redefine the Sinc function as follows:

Sj(x) = sinc
( x− jh

h

)
, j = 0,∓1,∓2, · · · (5)

In order to use the formula in Equation (5) as a basis, then for every continuous
function f (x), we define an infinite series, known as Whittaker cardinal function, denoted
by C( f , h), and defined to be

C( f , h)(x) =
∞

∑
j=−∞

f (ih)Sj(x).

We know very well that we cannot deal with an infinite series, so we will deal with
a finite series, ensuring its convergence within certain conditions, which we will impose
on the function to be approximated, so N can be a positive integer, we define the series of
2N + 1 terms as

CN( f , h)(x) =
N

∑
j=−N

f jSj(x). (6)

We use the above series to approximate the nth derivative of the function f , and is
given by the relationship

f (n) ≈
N

∑
j=−N

f (jh)
dn

dxn [Sj(x)]. (7)

In fact, we need the derivatives of the Sinc function computed at the nodes on which
the period was divided, and in this paper we need the first and second derivatives only,
so that we can write the solution in the form of a system of linear equations, as we will
see in detail later. We also require derivatives of composite Sinc functions evaluated at the
nodes. The expressions are required for the present discussion, so the following convenient
notation will be needed [17].

δ
(0)
j−k = [Sj(x)]

∣∣∣
x=xk

=


1, j = k

0, j 6= k
(8)

δ
(1)
j−k =

d
dx

[Sj(x)]
∣∣∣
x=xk

=


0, j = k

(−1)jk

h(k−j) , j 6= k
(9)
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δ
(2)
j−k =

d2

dx2 [Sj(x)]
∣∣∣
x=xk

=


−π2

3 , j = k

−2(−1)k−j

(k−j)2 , j 6= k.
(10)

where the points xk appeared above, they are all those points that have been divided into the
period and are called collocation points, and they will be used in the approximation process.
So, we need to use a finite series that starts from the integer −N and ends with the number
N, but there must be a constraint or conditions that the function f , to be approximated,
must fulfill or its derivatives. The next definition provides us with a property called
exponentially decaying that the function must achieve for this purpose.

Definition 1. We define a domain Dd, in the form of an infinite strip of width 2d, d > 0, as

Dd = {z ∈ IC : z = x + iy, |y| < d ≤ π/2}.

When 0 < ε < 1, we define the rectangular domain Dd(ε) by

Dd(ε) = {z ∈ IC : z = x + iy, |x| < 1/ε, |y| < d(1− ε)}. (11)

In the region Dd, we define the Hardy space, denoted by B(Dd), to be the set of all
functions f that satisfy the following boundedness condition.

lim
ε→0

∫
∂Dd(ε)

| f (z)| |dz| < ∞. (12)

There are a lot of characteristics related to the family B(Dd) mentioned in [17]. Below
we write a theorem that we will need when talking about the convergence of the Sinc
method.

Theorem 1 ([17]). For the positive constants α, β and d, suppose the following conditions hold true

1. f belongs to the class B(Dd).
2. the function f satisfy the decaying condition | f (x)| ≤ α exp(−β|x|), valid for all real-valued

of x. We conclude that

sup
∣∣∣ f (n)(x)−

N

∑
j=N

f jS
(n)
j (x)

∣∣∣ ≤ C1N(n+1)/2 exp(−
√

πdβN)

for some constant c1, where h =
√

πd/(βN).

It can be summarized what the previous theorem stipulated as follows, if the analytic
function f fulfills the vanishing condition, then we can use the Sinc function to approximate
f and its nth-derivatives f (n), so that the error in the approximation is of the exponential
type, which is considered to be one of the fastest types of convergence. Thus, in order for
us to find an approximate solution to Equation (1), there must be a hypothesis that the
initial condition belongs to the family B(Dd). Now, we will define some matrices that we
will need to describe the solution as a discrete system.

Define three Toeplitz matrices, each of size m×m, (m = 2N + 1), as I(q)m = [δ
(q)
j−k], for

values of q = 0, 1, 2, which means the matrix whose jkth entry is given by δ
(q)
j−k, q = 0, 1, 2.

The diagonal matrix D(g) is defined to be D(g) = diag [g(x−N), · · · , g(xN)]. It is known
that the matrix I(2) is symmetric, and I(1) is skew-symmetric, i.e., I(1)jk = −I(1)kj and they
take the form
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I(2)m =


−π2

3 2
... (−1)m−1

m−1
2 . . .
... . .

...
(−1)m−1

m−1
... 2 −π2

3

, and I(1)m =


0 −1 . . . (−1)m−1

m−1

1 0
...

...
...

(−1)m−1

m−1 . . . 1 0

 (13)

It is noted that I(0) is the identity matrix. Because these matrices will appear in the
final discrete solution, and for the purpose of demonstrating the stability property of
the solution, it is necessary to find some bounds for the eigenvalues, as stated in [17]. If
{iλ(1)

j }
N
j=−N indicate to be the eigenvalues of the matrix I(1), then −π ≤ λ

(1)
−N ≤ · · · ≤

λ
(1)
N ≤ π. Similarly, {iλ(2)

j }
N
j=−N indicate to be the eigenvalues of the matrix I(2), then

−π2 ≤ λ
(2)
−N ≤ · · · ≤ λ

(2)
N ≤ π2.

3. Setting Up the Scheme

To accomplish the goal of finding an approximate solution for the Equation (1), us-
ing Sinc-collocation, without losing anything of importance, but for reasons related to
facilitating the calculations, we will discuss the solution by the Sinc methodology when
p = 2 only. We discretize the time derivatives that appeared on the left side and the last
term in Equation (1) via the use of the regular finite-difference scheme, secondly, we apply
θ−metric (0 ≤ θ ≤ 1) scheme to the x derivatives evaluated at two time levels n and n + 1,
so we obtain

(
u(n+1)−u(n)

δt

)
+ θ
[(

∂u
∂x

)(n+1)
+ ε(u)(n+1)

(
∂u
∂x

)(n+1)]
+ (1− θ)

[(
∂u
∂x

)(n)
+ ε(u)(n)

(
∂u
∂x

)(n)]
− µ

δt

[(
∂2u
∂x2

)(n+1)
−
(

∂2u
∂x2

)(n)]
= 0,

(14)

where the notation u(n) is to represent the value of the solution at time level n, i.e.,
u(n) = u(x, t(n)), and for the time step size δt, we denote t(n) = t(n−1) + δt. Before go-
ing into the process of writing the solution, it is necessary to convert the non-linear term in
Equation (14) into a linear quantity and the conversion process is achieved through the use
of Taylor expansion, as follows:

(u2)(n+1)
(∂u

∂x

)(n+1)
≈ (u(n))2

(∂u
∂x

)(n+1)
+ 2u(n)

(∂u
∂x

)(n)
u(n+1) − 2

(
u(n)

)2(∂u
∂x

)(n)
(15)

From Equations (14) and (15), we arrive at

u(n+1) + δtθ
[(

∂u
∂x

)(n+1)
+ ε
{
(u(n))2

(
∂u
∂x

)(n+1)
+ 2u(n)

(
∂u
∂x

)(n)
u(n+1)

}]
− µ

(
∂2u
∂x2

)(n+1)

= u(n) + δt
[
ε(3θ − 1)(u(n))2

(
∂u
∂x

)(n)
− (1− θ)

(
∂u
∂x

)(n)]
− µ

(
∂2u
∂x2

)(n) (16)

where u(n) represent the nth iteration in the obtained approximate solution. Next, we use
the Sinc-collocation method along the space variable, for that we discretize the interval
[a, b] as follows: For the positive integer N > 2, take the step-size h = (b−a)

N−1 , then points of
interpolation are

x0 = a, xN = b, xi =
ih
N

, i = 1, 2, · · · , N − 1. (17)

To find a solution for Equation (14), using Sinc basis, we plug in,

u(x, tn) ≡ un(x) =
N

∑
j=1

un
j Sj(x), (18)
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where the basis Sinc functions are given by

Sj(x) = sinc
( x− (j− 1)h− a

h

)
. (19)

The constants uj in Equation (18) are to be determined. Hence, for each collocation
point xi in (17), Equation (18) can be written as

un(xi) =
N

∑
j=1

un
j Sj(xi), i = 1, · · · , N. (20)

Replacing Equation (20) into Equation (16), the approximation evaluated at those
nodes inside the interval is given by

∑N
j=1 un+1

j S(0)
j (xi) + δtθ

[(
∑N

j=1 un+1
j S(1)

j (xi)
)
+ ε
{
(∑N

j=1 un
j Sj(xi))

2
(

∑N
j=1 un+1

j S(1)
j (xi)

)
+2 ∑N

j=1 un
j Sj(xi)

(
∑N

j=1 un
j S(1)

j (xi)
)

∑N
j=1 un+1

j Sj(xi)
}]
− µ

(
∑N

j=1 un+1
j S(2)

j (xi)
)

= ∑N
j=1 un

j Sj(xi) + δt
[
ε(3θ − 1)(∑N

j=1 un
j Sj(xi))

2
(

∑N
j=1 un

j S(1)
j (xi)

)
−(1− θ)

(
∑N

j=1 un
j S(1)

j (xi)
)]
− µ

(
∑N

j=1 un
j S(2)

j (xi)
)

.

(21)

The above Equation (21) is used for all interior points x = xi, i = 2, · · · , N − 1. The
boundary conditions are given by Equation (2) for the boundary points x1 and xN can be
formulated as

N

∑
j=1

un+1
j Sj(xi) = α1(tn+1),

N

∑
j=1

un+1
j Sj(xi) = α2(tn+1). (22)

In order to write the solution as stated in the previous two equations, and in the form
of a system of matrices, we redefine the following matrices and vectors:

Un = [un
1 , un

2 , · · · , nn
N ]

T , I(0) = (Sj(xi), I(1) = (S′j(xi), I(2) = (S′′j (xi), i, j = 1, · · · , N. (23)

Therefore, in matrix form, Equation (21) becomes as[
I(0) − µI(2) + θδt

{
I(1) + ε

((
u(n)

)2
? I(1) + 2

(
u(n) ◦ u(n)

x

)
? I(0)

)}]
un+1

=
[

I(0) − µI(2) + δt
{

ε(3θ − 1)
(

u(n)
)2

? I(2) − (1− θ)I(2)
}]

un + Fn+1.

(24)

where the multiplication of the ith component of the vector u(n) by every element of the ith
row of the matrix I(q), q = 0, 1, 2 is denoted by the symbolic notations ?, that has been used
above. While the symbol ◦ is to denote the Hadamard matrix multiplication. The discrete
system in Equation (24) represents a system of N + 1 equations in N + 1 unknowns, which
can be written in a more compact form as

Mun+1 = R (25)

where
M = [Ad + Ab − µC + θδt{B + ε(E + D)}]

R = [Ad − µC + δt{ε(3θ − 1)E− (1− θ)B}]un + Fn+1,

in which the matrices Ad, Ad, B and C each of size N × N and can be written as

Ad = [I(0)ij , i = 2, · · · , N − 1; j = 1, · · · , N, otherwise 0], Ab = [I(0)ij , i = 1, N; j = 1, · · · , N, otherwise 0]
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B = [I(1)ij , i = 2, · · · , N − 1; j = 1, · · · , N, otherwise 0], C = [I(2)ij , i = 2, · · · , N − 1; j = 1, · · · , N, otherwise 0].

Moreover, un
x = Bun, D = 2un ?un

x ?Dd, E = (un)2 ? B,and Fn+1 = [α1(tn+1), 0, ..., α2(tn+1)]T .
The approximate solution can be found from Equation (25) at any point in the interval [a, b]
at each time level, which can be solved by any iterative techniques. It should be noted
that a previous study for a system of partial differential equations using the same method,
(Sinc-collocation ) was published by the first author in [24]. For the purposes of facilitating
the computing process, we offer the following algorithm, which summarizes what was
stated in this section.

Algorithm Stages

We follow the following steps to write the program:

1. Select collocation points inside the interval [a, b].
2. Select the parameters δt and θ.
3. Setup the initial solution u(0), then use Equation (24).
4. Evaluate the matrix M and the vector R in Equation (25).
5. The approximate solution u(n+1) at the successive time level is obtained.
6. If nδt < T stop, otherwise go to step 4.

4. Stability Analysis

Here, we study briefly and in an analytical way the stability of the solution by the Sinc
method for the MRLW equation. Imitation of what was performed in [4,25], if U represent
the exact solution, while Ũ, is taken to be the numerical solution of the MRLW equation
in (1). If we define the error εn

u = U− Ũ.
Then, the error εn+1

u can be written as

εn+1
u = Un+1 − Ũn+1 = I(0)Ad

−1 Abεn
u (26)

For the stability of the method, we need εn
u → 0, provided n is large enough. We may

conclude that the scheme is stable in a numerical sense, if ρ(I(0)Ad
−1 Ab) < 1, where the

notation ρ(.) represents the spectral radius. Upon passing simple calculations, it is easy to
verify stability if the following two conditions are fulfilled∣∣∣ 1 + αδtθλ3 + 6αδtθ[λ1N + λ2N ]

1− α(1− θ)δtλ3 − 6α(1− θ)δtλ1N + 6αδtθλ1N + 2µδtλ1N

∣∣∣ < 1 (27)

and ∣∣∣ 1 + βδtθλ3

1− β(1− θ)δtλ3 − 3βδtλ1N

∣∣∣ < 1 (28)

where we have used the numbers 1, λ1, λ3, λ1N , λ2N being eigenvalues of the matrices
I(0), I(1), I(3), Un ∗ I(1), Un ∗ I(0), respectively. We use some known facts about the upper
bounds for the matrices I(1), I(2), together with the fact that λ1 = i|λ1|, λ3 = i|λ3|, and
λ1N , λ2N are complex, after algebraic manipulation (see, [4,25]), the condition (27) must
hold for all eigenvalues of the respective matrices, for the method to be stable, and for
1/2 ≤ θ < 1 is a necessary condition for stability, but not sufficient.

5. Adomian Decomposition Method

Our goal in this section is to introduce the performance of the second scheme, namely,
the Adomian decomposition method (ADM) [19,20], and give a detailed description to
setup a solution for the MRLW equation [26]. The ADM is a technique to find solutions for
differential equations (partial, ordinary), linear and nonlinear, homogeneous and nonho-
mogeneous. First, we look at the problem under consideration in general, so any nonlinear
partial differential equation can be written as

Ltu(x, t) = Lxu(x, t) + R(u(x, t)) + F(u(x, t)) + g(x, t) (29)
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where the operator Lx is to represent the highest order derivative with respect to the
variable x, Lt represent the time operator, R(u(x, t)) contains the remaining linear terms
of lower derivatives in x, F(u(x, t)) is an analytic nonlinear term, and g(x, t) is the forcing
inhomogeneous term. Applying the inverse operator L−1

t to Equation (29), we arrive at

u(x, t) = u(x, 0) + L−1
t {Lxu(x, t) + R(u(x, t)) + F(u(x, t)) + g(x, t)} (30)

For the use of ADM, we express the solution u(x, t) of (30) by the decomposition series

u(x, t) =
∞

∑
n=0

un(x, t) (31)

while we express the nonlinear term F(u(x, t)) with an infinite sum of polynomials given by

F(u(x, t)) =
∞

∑
n=0

An(u0, u1, · · · , un), (32)

where the terms un(x, t) are calculated recurrently so that the zeroth term u0(x, t) is chosen
from those terms arises from the initial condition, or from the source term. Then, followed
by finding the first term u1(x, t), which depends on the zeroth term, followed by finding
the second term, which also depends on the first term, and so on until we reach the nth
component. As for calculating Adomian polynomials An, there is a general formula written
by Adomian [19,20,27], and another in a famous paper for Wazwaz [27], here we present
the Adomian’s formula

An =
1
n!

dn

dλn

[
F(

n

∑
i=0

λiui)

]
λ=0

, n ≥ 0.

The substitution of (31) and (32) into (30) yields

∞

∑
n=0

un(x, t) = u(x, 0) + L−1
t

{
Lx

∞

∑
n=0

un(x, t) + R(
∞

∑
n=0

un(x, t)) + (
∞

∑
n=0

An(x, t)) + g(x, t)

}
. (33)

As mentioned above, the components are computed in a recursive manner as

u0(x, t) = u(x, 0) + L−1
t [g(x, t)],

uk+1(x, t) = L−1
t

[
Lx(uk(x, t)) + R(uk(x, t)) + (Ak(x, t))

]
, k ≥ 0.

(34)

Looking at the above relationships, we can say that all terms depend largely on the
zeroth term, so it is desirable that the zeroth term contain the least possible number of
terms. If the series converges in a suitable way, then we see that

uA(x, t) = lim
M→∞

M

∑
n=0

un(x, t) (35)

where M is the number of terms that we found. Previous studies showed the convergence
of the solution series presented in the Equation (35), see for example [28,29]. In order to
understand more about the above explanation and presentation of the ADM method, we
present in the next subsection the method applied to the equation under consideration.

Analysis of ADM

We rewrite Equation (1) in an operator form as (see, [30])

Ltu = −ux − εN(u) + µLxx(ut) (36)
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with the initial condition u(x, 0) = f (x), where the linear operators are defined by
Lt(.) = ∂

∂t (.) and Lxx(.) = ∂2

∂x2 (.). While the term N(u) represents the non-linear term
upux. To start, we operate on both sides of Equation (36) with the inverse of Lt, denoted by
L−1

t (.) =
∫ t

0 . dt yields

u(x, t) = u(x, 0)− L−1
t (ux)− εL−1

t (N(u)) + µL−1
t (Lxx(ut)). (37)

Assume the solution u(x, t) can be represented as an infinite sum of components of
the form:

u(x, t) =
∞

∑
n=0

un(x, t).

While the nonlinear operator N(u) can be expressed as

N(u) = upux =
( up+1

p + 1

)
x
=

∞

∑
n=0

An(u0, u1, · · · , un).

In our case, as the nonlinear part in the PDE is N(u), then Adomian polynomials An
can be evaluated by a formula set by Adomian

An =
1
n!

dn

dλn

[
N
( ∞

∑
i=0

λiui

)]∣∣∣
λ=0

.

In the next, we just state the first three Adomian polynomials as:

A0 =
( up+1

0
p + 1

)
x
, A1 =

(
up

0 u1

)
x
, A2 =

(
pup−1

0
u2

1
2!

+ up
0 u2

)
x
,

A3 =
(
(p− 1)pup−2

0
u3

1
3!

+ pup−1
0 u1u2 + up

0 u3

)
x

and so on. In the same way, additional polynomials can be calculated. Now, Equation (37)
reduces to

∑∞
n=0 un(x, t) = u(x, 0)− L−1

t (∑∞
n=0 unx(x, t))− εL−1

t (∑∞
n=0 An(u0, u1, · · · , un))

+µL−1
t (Lxx(∑∞

n=0 unt(x, t))),
(38)

Now, set n = 0 into the left-hand-side to identify the zero component to be u0(x, t) =
u(x, 0), and for n ≥ 1 we obtain the subsequent components as

un+1(x, t) = −L−1
t (un)x − εL−1

t (An) + µL−1
t (Lxx(un)t), n ≥ 1.

Then, we see that the approximate solution is given by

uA(x, t) = lim
M→∞

M

∑
n=0

un(x, t) (39)

where M is the number of terms that we found.

6. Numerical Experiments and Results

This section provides numerical solutions to the MRLW equation for three standard
problems: solitary wave motion and the development of the Maxwellian initial condition
into solitary waves. In order to be able to determine the accuracy and effectiveness of the
method, we will deal with specific values of the constants that appeared in Equation (1),
and here if the value of ε = 6, µ = 1 and p = 2, then for these values, the exact solution to
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Equation (1) is known and this allows us to know the exact error, and so we discuss the
effectiveness of the proposed schemes in this paper.

Example 1. Let us examine the problem

∂u
∂t

+
∂u
∂x

+ 6u2 ∂u
∂x
− ∂

∂t

(∂2u
∂x2

)
= 0 (40)

with boundary conditions u→ 0, as x → ∓∞, and the initial condition

u(x, 0) =
√

c sech[
√

c
µ(c + 1)

(x + x0)], (41)

here, the constants c, x0 are free. The exact solution is given by [31]

u(x, t) =
√

c sech[
√

c
µ(c + 1)

(x− (c + 1)t + x0)]. (42)

Equation (40) has three polynomial invariants that are related to mass, momentum
and energy and is given by [32],

I1 =
∫ b

a
u(x, t)dx, I2 =

∫ b

a
(u2(x, t) + µu2

x(x, t))dx, I3 =
∫ b

a
(u4(x, t)− 6µu2

x(x, t))dx. (43)

The invariants I1, I2, I3 are considered to be an excellent tool to measure the success of
the numerical solution, especially for cases where we do not know the exact solution to the
problem. The quantities I1, I2 and I3 are applied to measure the conservation properties of
the collocation scheme. The integrals in (43) are approximated by sums to obtain numerical
values of invariants in Equation (43) at the finite domain [a, b] as follows:

I1 ' h
N

∑
j=0

u(n)
j , I2 ' h

N

∑
j=0

(
(u(n)

j )2 + µ((u′)(n)j )2
)

, I3 ' h
N

∑
j=0

(
(u(n)

j )4 − µ((u′)(n)j )2
)

(44)

The computations associated with the example were performed using Mathematica.
The accuracy of ADM is demonstrated for the absolute errors |u(x, t) − uA(x, t)|. We
compute the quantities I1, I2 and I3 to ensure the conservation laws in using ADM as an
approximate tool for MRLW. In the computational work, we take c = 1, µ = 1, ε = 6, and
the simulation is performed up to t = 1, n = 8. Table 1 shows the difference between the
exact and the ADM solution uA(x, t). From Table 1, we can read that results show a high
degree of accuracy and efficiency of the ADM. Since the changes of invariants I1, I2 and I3
are less than 10−4, 10−5 and 10−6, respectively, our scheme is sensibly conservative, and
our results are recorded in Table 1.

In our computational work for the Sinc-collocation method, we take α = 1.5, µ = 0.1,
ε = 6, and two different values of the time step sizes δt = 0.1 and δt = 0.05, where our
interval is taken to be [−30, 30] and, the N = 160 for the points in Equation (17). We use
the L2, L∞ [4,33], defined below to measure the accuracy of our schemes

L2 =‖ u− ũ ‖2=

√√√√h
N

∑
j=1
|uj − ũj|2, L∞ =‖ u− ũ ‖∞= max

1≤j≤N
|uj − ũj|

where u and ũ represent the exact and approximate solutions, respectively, and h is the
minimum distance between any two points in Equation (18). We calculate the convergence
with respect to time t, according to the following relationship [4,33]

Order =
log10

(
‖ uexact − uδtj ‖ / ‖ uexact − uδtj+1 ‖

)
log10(δtj/δtj+1)

,
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where the numerical solution with step size δtj is denoted by uδtj . The numerical solutions
are shown in Tables 2 and 3, where invariant and error norms for solitary waves are
presented. Looking at the last column in Table 2, we see that the order of convergence
is almost 2. The numerical solutions that are shown in Figures 1–3. Figure 1 shows the
plot of a single soliton solution for different values of time T using the Sinc-collocation
method. These solutions are the bell-shaped waves, which agree with the results of [4–6].
Figures 2 and 3 illustrate that the series solution is very close to the exact solution.

Table 1. Invariants for MRLW equation using ADM when c = 0.01 and 0 ≤ x ≤ 60. We used xEy to
denote x× 10y.

t I1 I2 I3 |u(x, t)− uA(x, t)|
0 3.082210 0.201518 0.000678011 6.28820E−08

0.1 3.082210 0.201518 0.000678015 1.22231E−08
0.2 3.082208 0.201518 0.000678019 6.32709E−07
0.3 3.082205 0.201517 0.000678021 2.72210E−07
0.4 3.082202 0.201515 0.000678025 3.77219E−06
0.5 3.082201 0.201515 0.000678027 1.70010E−06
0.6 3.082201 0.201512 0.000678029 6.00899E−05
0.7 3.082200 0.201512 0.000678029 3.91129E−05
0.8 3.082196 0.201510 0.000678032 5.59981E−04
0.9 3.082190 0.201510 0.000678036 3.72210E−04
1.0 3.082184 0.201506 0.000678039 1.00287E−04

Table 2. Estimated error for the Sinc solution of Equation (1) : t = 16, θ = 1
2 , N = 60,−30 ≤ x ≤ 30.

We used xEy to denote x× 10y.

δt L∞ Order L2 Order

0.8 3.10524E−03 − 1.10518E−02 −
0.4 1.22201E−03 1.96166 3.22148E−03 1.96453
0.2 5.35209E−04 1.99086 8.35020E−04 1.99486
0.1 1.49743E−04 1.99748 4.49278E−04 1.99782

0.05 8.66014E−05 1.99835 1.65082E−04 1.99892
0.025 6.84252E−05 1.99809 5.82611E−05 1.99212
0.010 2.04701E−05 1.98971 1.02058E−05 1.98775

Table 3. Invariants and errors using Sinc-collocation when δt = 0.1, c = 0.01, N = 80 and
−40 ≤ x ≤ 60. We used xEy to denote x× 10y.

Time L∞ L2 I1 I2 I3 CPU Time

4 1.65338E−05 3.54902E−05 3.985214 0.810673 2.597800 0.437 s
8 2.85221E-05 7.50021E-05 3.985216 0.810673 2.597800 0.901 s
12 3.85008E-05 1.25882E-04 3.985217 0.810673 2.597800 1.642 s
16 5.54338E-05 1.57520E-04 3.985202 0.810673 2.597800 1.860 s
20 1.65338E-05 3.54902E-04 3.985192 0.810673 2.597800 2.145 s

Example 2. In this example, we will take the value of p that appeared in Equation (1) to be 3, while
keeping the values µ, ε as they are in the previous example.

We noticed from the graphics in the first example that the type of solution is of soliton
types, but in this second example, a new feature called bifurcation will appear, where
the wave starts to bifurcate into two waves after some time close to t = 0.4, as shown in
Figure 4.
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t=1,0.8,.0.6,0.4,0.2
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0.005
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0.030

t=4, 3,2,1
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0.005

0.010

0.015
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Figure 1. The soliton solution by Sinc-collocation method for different values of time t, and
−10 ≤ x ≤ 20.

Figure 2. The ADM soliton solution (left) with exact (right) for MRLW for c = 0.01 and 0 ≤ t ≤ 2.

Figure 3. The ADM soliton solution (left) with exact (right) for MRLW for c = 0.01 and 2 ≤ t ≤ 4.

t=1.25, 1.0, 0.75, 0.5, 0.3, 0.2, 0.05

-5 5
x

0.2

0.4

0.6

0.8

u

t=1.5, 1.0, 0.4, 0.01

-5 5
x

0.2

0.4

0.6

0.8

1.0

u

Figure 4. The solution of Equation (1) using ADM when p = 3 for different values of t.

Example 3. In this last example, we examined the evolution of an initial Maxwellian pulse into
solitary waves, arising as the initial condition of the form

u(x, 0) = exp[−(x− 40)2]
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When solving Equation (1) for p = 2, and ε = 6. It is known that the behavior of the
solution with the Maxwellian condition depends on the values of µ. So, we study each of
the three cases: µ = 0.5, where only a single soliton is generated as shown in Figure 5, and
µ = 0.05. When µ is reduced more and more, such as in the case of µ = 0.05, two single
solitons are generated as in Figure 5, and for the case µ = 0.005, the Maxwellian initial
condition has decayed into three stable solitary waves as generated and shown in Figure 5.

39 40 41 42 43
x

0.2

0.4

0.6

0.8

1.0

u

39 40 41 42 43
x

0.2

0.4

0.6

0.8

1.0

1.2

u

39 40 41 42 43
x

0.5

1.0

1.5

u

Figure 5. The solution of Equation (1) using ADM when p = 2, ε = 6 when t = 2 and µ = 0.5 (Single
soliton), µ = 0.05 (two solitons), µ = 0.005 (three solitons).

7. Discussion and Conclusions

Two algorithms have been proposed to find a numerical solution to the MRLW equa-
tion, which often appears in physical applications. Whereas the first method, which is
known as Sinc-collocation, is described in detail, with a simple proof of the stability of
the obtained numerical solution, with an indication of an insufficient necessary condition.
The other method, known as ADM, was presented in general first, and then the method
was allocated to Equation (1). For the effectiveness of the two algorithms, we use one
example with a known solution of soliton type, and the accuracy is investigated via the use
of the L∞, L2 error norms. The numerical results we obtained in the last section prove the
effectiveness and accuracy of the two methods to a large extent. However, we would like to
point out that the Sinc method is numerical, and the solution was obtained and evaluated
at some nodes. The scheme was found to be stable, and it converges exponentially in space
direction. On the other hand, the other scheme used to solve the MRLW equation is ADM,
which was found to be highly efficient, and it provides accurate approximate solutions
without spatial discretization as in the Sinc method. We used a few terms from the series
solution obtained by the ADM and obtained a suitable accuracy. However, we may easily
increase the accuracy using ADM by adding more terms to the series. The biggest benefit
of using this method is the speed of its convergence to the exact solution, as well as the
ease of use. Finally, a Maxwellian initial condition was used, and the relationship between
µ and the number of solitons was discussed.
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