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Abstract: We consider a data-driven method, which combines Koopman operator theory with
Extended Dynamic Mode Decomposition. We apply this method to the hypergeometric equation
which is the Fuchsian equation with three regular singular points. The space of solutions at any of its
singular points is a two-dimensional linear vector space on the field of reals when the independent
variable is restricted to take values in the real axis and the unknown function is restricted to be a
real-valued function of a real variable. A basis of the linear vector space of solutions is spanned by the
hypergeometric function and its products with appropriate powers of the independent variable or the
logarithmic function depending on the roots of the indicial equation of the hypergeometric equation.
With our work, we obtain a new representation of the fundamental solutions of the hypergeometric
equation and relate them to the spectral analysis of the finite approximation of the Koopman operator
associated with the hypergeometric equation. We expect that the usefulness of our results will come
more to the fore when we extend our study into the complex domain.

Keywords: hypergeometric equation; Koopman operators; EDMD
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1. Introduction

The study of complex nonlinear dynamical systems appears in many disciplines,
such as physics, engineering, biology, social sciences, etc. The high degree of complexity
of such systems makes their analysis quite a challenge. From this point of view, data-
driven mathematical methods might be of high importance. These methods aspire to
exploit measurement data, which form a relatively small subset of the original state space.
However, they might describe the evolution of the original system, even if its dynamics are
complicated or unknown. In recent years, it seems that advances in numerical techniques
and the broader availability of data have brought data-driven methods to the forefront of
scientific research. For example, one such technique might as well be Koopman operator
theory in connection with Dynamic Mode Decomposition (DMD), and especially with
Extended Dynamic Mode Decomposition (EDMD).

Firstly, in the Koopman operator framework (initiated in [1], see also [2,3]), the cen-
tral objects are complex-valued functions defined on the state space (these functions are
called observables of the systems). The Koopman operator describes the evolution of the
observables according to the evolution of the system. This approach enables us to “lift” the
dynamical system from its original state space to new spaces spanned by observables.

The main advantage is that the Koopman operator is linear. Hence, powerful methods
from operator theory, such as spectral analysis, can be applied. The Koopman operator
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might be quite useful especially when we study in high-dimensional and strongly non-
linear systems. In these cases, the phase space is quite large and its dynamics are so
complicated that very little can be concluded about its corresponding geometrical properties.
Applications of this approach range from, among others, fluid dynamics (see [4,5]), energy
modeling in buildings (see [6]), oceanography (see [7]) and molecular kinetics (see [8]).

Despite its advantages, the Koopman operator converts a finite-dimensional system
to an infinite-dimensional linear system. In other words, we “pay” in dimensions, in
order to gain “linearity”. Being infinite-dimensional, the Koopman operator cannot be
calculated while its spectral properties are difficult to explore. In practice, this amounts to a
simplification only when one can handle the operator numerically. Consequently, the need
for numerical methods that generate finite dimensional approximations of the Koopman
operator is emerging.

In this direction, dynamic mode decomposition (DMD) (see [9,10]) and its generaliza-
tion, the extended-DMD (EDMD) have been proven very efficient. Since these methods
depend on data and rely only on least square regression, they are very easy to implement.

The EDMD method algorithm starts by choosing a finite set of observables, which is
called a dictionary. Then, we approximate the Koopman operator as a linear map on the
span of this finite set. Note that the finite-dimensional linear map which emerges in such a
case is numerically tractable. Furthermore, its spectral properties can approximate those of
the Koopman operator (see [11]).

Critical to the success of the EDMD algorithm is the appropriate choice of the dictio-
nary. The choice of a suitable dictionary significantly impacts the approximation quality of
the spectral properties of the system (see [11–13]). However, in many practical applications,
it is often not so easy to make such a selection without some prior information on the
dynamics of the system.

The Koopman operator-EDMD algorithm has been applied to several ODEs and
PDEs. For example, see [14] for an application to Burgers’ equation and the nonlinear
Scrödinger equation. Moreover, see [15] for an application to Kuramoto–Sivashinsky PDE.
In this paper, we demonstrate the use of the Koopman-EDMD method when applied to the
hypergeometric equation. The effectiveness of our approach is based on the choice of the
appropriate dictionary.

The hypergeometric equation is a linear second-order homogeneous differential equa-
tion that falls into the Fuchsian class and has three regular singular points at 0, 1, and ∞. In
this paper, we restrict the independent variable to be real and the dependent variable to be
a real−valued function of a real variable. At each singular point, there is a fundamental set
of two solutions that span the two-dimensional linear vector solution space.

Summarizing our discussion, the innovation and contribution of this paper are sum-
marized as follows: We address the trajectory approximation of a hypergeometric equation
via EDMD methods. The EDMD method gives rise to a linear system on an enhanced state
space that can approximate a given trajectory. Having data of a given trajectory in a finite
horizon allows us to construct a discrete linear system of dimension n > m, where m is
the dimension of the state space of the original nonlinear system. We demonstrate the
approximation of a single trajectory of a hypergeometric equation via EDMD methods. In
particular, we solve a hypergeometric equation in the vicinity of 0, which is one of its singu-
lar points, by using the Koopman-EDMD theory. Finally, we show that we can improve the
approximation of the solution of a hypergeometric equation in the vicinity of 0, by using
successive trajectory reconstruction via Koopman-EDMD theory with moving horizon.

The EDMD method is data-driven. Consequently, depending on a suitable choice, the
method can be applied to any dynamical system for which probably the dynamical law is
unknown and data, in the form of time series, can be collected for some of its trajectories in
the state space. Moreover, our approach can be used for any nonlinear dynamical system
with known dynamics. However, in such a case a linearization of the dynamics via the
EDMD method may be required in order, for example, to study the control theory of this
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linearized system; the control theory of linear systems is much better understood than the
control theory of nonlinear systems.

The rest of the paper is organized as follows. In Section 2, we briefly present some
basic facts about the Koopman operator theory and EDMD method. In Section 3, we
give an example of a hypergeometric equation and its exact solution via hypergeometric
series. In Section 4, we solve the hypergeometric equation in the interval (−0.9,−0.001)
via Koopman-EDMD theory. In Section 5, we solve the hypergeometric equation in the
interval (0.2, 1) via Koopman-EDMD theory. In Section 6, we present a successive trajectory
reconstruction via Koopman-EDMD theory with a moving horizon. Finally, Section 7
contains our conclusions about this paper.

2. Koopman Operator and EDMD

Koopman operator theory has been extensively used in the analysis, prediction, and
control of nonlinear dynamical systems. To define this class of operators, we start with a
continuous dynamical systemM, f , whereM is the state space (usually a manifold in Rn)
and f is the evolution map. The system is described by the differential equation ẋ = f (x).
We also denote by Φt(x0) the flow map, which is defined as the state of the system in time t
when the initial condition is x0.

In the literature of Koopman operators, complex-valued functions g : M→ C defined
onM are called observables of the system (M, f ). We now consider a function space F of
observables which is closed under composition with the flow map. This means that g ◦Φt
belongs to F whenever g ∈ F . (In many applications, F is the space L2(M) of complex
valued square integrable functions on M. However, other function spaces can also be
considered.) Then, for any t ≥ 0, the operator Kt : F → F is defined by Kt(g) = g ◦Φt.
The term Koopman operator usually refers to the whole class of operators, i.e., K = (Kt)t≥0.
The linearity of composition implies that Kt is a linear operator for any t ≥ 0.

In a similar way, the Koopman operator can be defined for discrete dynamical sys-
tems, which, in some sense, are more natural. Indeed, in many practical applications, the
differential equations that describe the evolution of the system are completely unknown
and we have only measurement data that are provided in discrete time. So, let us assume
that we are given a discrete system, xk+1 = f (xk), where xk belongs to the state spaceM.
The Koopman operator is defined as the composition of any observable with the evolution
map f . Thus, K : F → F is given by K(g) = g ◦ f , for any g ∈ F . (Again, F is a function
space of observables closed under composition with f ).

By its definition, the Koopman operator updates every observable according to the
evolution of the dynamical system. A new system (F ,K) is defined which is a global
linearization of the original system (M, f ) (i.e., it does not hold only to the area of some
attractor or fixed point). Furthermore, many properties of (M, f ) can be related to the
eigenstructure of K (see [16]). Consequently, one can utilize tools from functional analysis
and operator theory in order to study the system (M, f ) even if this is a nonlinear one.

The main advantage of the Koopman operator is its linearity. However, it is infinite-
dimensional and, except in some cases, we can calculate neither the operator nor its
eigenstructure. In order to address the problems that infinite dimensionality poses, we have
to look for finite-dimensional linear approximations of the Koopman operator. Towards
this direction, the Dynamic Mode Decomposition (DMD) and, mainly, its generalization
the Extended Dynamic Mode Decomposition (EDMD) have been proven very successful.

Extended Dynamic Mode Decomposition (EDMD)

We next give a brief description of the EDMD algorithm. The first step is to fix a set
of observables {g1, g2, . . . , gp}, which is usually called a dictionary. In the case of DMD
(Dynamic Mode Decomposition), we use only the observables gi(x) = xi, for i = 1, 2, . . . , n.
On the contrary, in EDMD any observable can be chosen. In this way, we construct an
augmented state space and; hence, EDMD gives better approximation properties than
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DMD. The augmented state space is denoted by M and its elements are denoted by
y = [g1(x), . . . , gp(x)]T .

The second step involves data collection. To this end, we consider a trajectory of the
original system with some initial condition x0 and some finite time horizon T. Then, we
collect sampling points at a fixed time interval ∆T (although, uniform sampling is not
mandatory and one can apply other sampling methods). Therefore, we consider n0 = T

∆T
points in this trajectory, which are denoted by (xs)

n0
s=0. These points generate data (ys)

n0
s=0

in the augmented spaceM. Finally, the data are organized in data matrices as follows

Y[0,n0−1] =
[
y0, y1, . . . , yn0−1

]
and Y[1,n0]

= [y1, y2, . . . , yn0 ].

The last step is to obtain a p× p matrix A (using, for instance, least square regression
methods) such that Y[1,n0]

∼ AY[0,n0−1]. Therefore,

A = argmin
Ã∈Rp×p

∥∥∥Y[1,n0]
− ÃY[0,n0−1]

∥∥∥,

where ‖ · ‖ is some matrix norm.
The procedure described above can be applied to several trajectories. Hence, we may

fix k trajectories and, following the previous steps, we obtain data matrices Yj[0,n0−1] and
Yj[01,n0]

for every j = 1, 2, . . . , k. In this case, the matrix A is chosen such that

A = argmin
Ã∈Rp×p

k

∑
j=1

∥∥∥Yj[1,n0]
− ÃYj[0,n0−1]

∥∥∥.

Consequently, A is a best-fit matrix that relates the two data matrices in every tra-
jectory. The matrix A generates a finite-dimensional linear system that advances spatial
measurements from one time to the next and it provides approximations to the Koopman
operator and to the original nonlinear system.

One of the main advantages of EDMD is that it is a purely data-driven method.
Therefore, there is actually no restriction to its applicability and it can be utilized even if
the dynamics of the system are completely unknown. However, the success of this method
depends on the a priori chosen dictionary. In many problems, the most difficult part is to
choose a dictionary that will give good approximations. There is no generic algorithm for
this problem, however, some recent studies use artificial intelligence methods in order to
“train” the dictionary (see [15,17]).

3. An Example of Hypergeometric Equation and Its Exact Solution via
Hypergeometric Series

We consider the hypergeometric equation

t(t− 1)
d2x
dt2 + (2t− 1)

dx
dt

+ x = 0, (1)

with initial conditions t = −0.9, x(−0.9) = 0.1, dx
dt

∣∣∣
t=−0.9

= 1. The solution of the

complexification of (1) with the aforementioned initial conditions is given by

(−16.9355 + 11.3861i)
(

LegendreP
(

1
2

i
(

i +
√

3
)

,−1 + 2t
)

+

(0.00524496− 0.649963i)LegendreQ
(

1
2

i
(

i +
√

3
)

,−1 + 2t
))

(2)

where LegendreP denotes the Legendre function of the first kind and LegendreQ denotes
the Legendre function of the second kind. Figure 1 depicts the plot of the real part of the
solution (2). We observe that the solution has vertical asymptotes at the singular points
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t = 0, t = 1 of (1). In the next section, we numerically integrate (1) and reproduce the
solution of (1) in the connected interval t ∈ (−0.9,−0.001).

Figure 1. Graph of the real part of the solution (2).

4. Solving the Hypergeometric Equation in the Interval (−0.9,−0.001) via
Koopman-EDMD Theory

We numerically integrate

t(t− 1)
d2x
dt2 + (2t− 1)

dx
dt

+ x = 0,

with initial conditions t = −0.9, x(−0.9) = 0.1, dx
dt

∣∣∣
t=−0.9

= 1 in the interval t ∈
(−0.9,−0.001). Subsequently, we sample the trajectory with a time step ∆t = 0.01. Figure 2
depicts the graph of the sampled points showing the asymptotic trend at t = 0.

Figure 2. The graph of the sampled points of the hypergeometric Equation (1).
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We then apply EDMD interpolation, as described in Section 2, using a dictionary
of 4 observables, namely x, 1

x , tx, t
x . The EDMD algorithm provides the following

4× 4 transition matrix
1.08228 0.401294 0.145089 0.131762

0.00886136 1.01576 −0.00552547 −0.00574604
0.0075471 −0.35145 0.628826 −0.252387
−0.0127506 0.332983 0.354283 1.23706


The above matrix has 4 eigenvalues, two of which are real and the other two are

complex numbers. In particular, the eigenvalues are

1.11249, 0.987529 + 0.00693293i, 0.987529− 0.00693293i, 0.876376.

Figure 3 shows the position of these eigenvalues in the complex plane.

Figure 3. The eigenvalues of the EDMD transition matrix depicted in the complex plane.

The above matrix gives rise to a (finite-dimensional) linear dynamical system, whose
trajectory (for the specific initial conditions) approximates the real trajectory. The compar-
ison between the two trajectories approximated (orange line) and real data (blue line) is
shown in Figure 4. Despite the low dimensions of this approximation, the Koopman-EDMD
curve approximates well the given data away from the singularity at t = 0 and fails to do
so near t = 0. It is possible to considerably improve the approximation by augmenting the
dictionary both quantitatively and qualitatively.

Improving the Trajectory Approximation via Koopman-EDMD Theory

We follow on by augmenting the dictionary and repeating the trajectory approxima-
tion via EDMD. The dictionary that produces the best results and at the same time the
dimension of the augmented space is kept comparatively low (equal to 5) is given by
x, 1

x , tx, t
x , xt15. The comparison between the real trajectory and the approximation pro-

vided by the EDMD algorithm is presented in Figure 5. We notice that the approximation
is significantly improved.
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Figure 4. The real data (blue line) and the approximate trajectory (orange line).

Figure 5. Comparison between the real trajectory (blue line) and the trajectory (orange line) given by
the EDMD algorithm with a dictionary of five observables.

The matrix provided by the EDMD algorithm is now given by
1.08292 0.387515 0.126814 0.119021 1.67268

0.00887233 1.01553 −0.00583752 −0.0059636 0.0285622
0.0162179 −0.537512 0.382055 −0.424438 22.5875
−0.0213778 0.518112 0.599816 1.40825 −22.4742
−0.0000448427 0.00187752 0.00186914 0.00143044 0.799134


This matrix has two complex eigenvalues and three real eigenvalues, namely

1.11308, 0.986969 + 0.00680815i, 0.986969− 0.00680815i, 0.901002, 0.699867.

Their positions in the complex plane are depicted in Figure 6.
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Figure 6. Eigenvalues of the 5× 5 matrix produced by the EDMD methodology.

5. Solving the Hypergeometric Equation in the Interval (0.2, 1) via
Koopman-EDMD Theory

Figure 7 shows the plot of the real part of the solution (2) in the interval [0, 1] (this is
also depicted in Figure 1).

Figure 7. Graph of the real part of the solution (2) in the interval [0, 1].

This solution has vertical asymptotes at the singular points of (1), that is, at t = 0, t = 1.
We are going to numerically integrate (1) and reproduce the solution of (1) by Koopmman-
EDMD theory in the connected interval (0.2, 1).

We approximate this solution in the interval (0.2, 1) by using the EDMD basis x, 1
x , tx, t

x ,
xt0.1. The five-dimensional discrete linear system obtained this way approximates satisfac-
torily the trajectory in the interval (0.2, 1) as shown in Figure 8.
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Figure 8. Comparison between approximated (orange line) and real data (blue line) in the inter-
val (0.2, 1).

The EDMD matrix is given by
8.03736 3.0825 5.23571 6.45347 −10.0906
7.37378 4.18128 5.39554 6.58341 −10.5197
−0.0144556 −0.00620308 0.978249 0.00396585 0.0199957
−0.00137726 −0.00686054 −0.020928 0.975436 0.00765612

7.15414 3.10723 5.294 6.46348 −9.23167


which has the following eigenvalues

1.10972, 0.984838 + 0.0194333i, 0.984838− 0.0194333i, 0.959174, 0.902077.

6. Successive Trajectory Reconstruction via Koopman-EDMD Theory with
Moving Horizon

We apply EDMD trajectory reconstruction for t ∈ (0, 1) of the real part of the solution
(2) of the differential Equation (1) whose graph is depicted in Figure 1.

We consider a four-dimensional EDMD basis consisting of x, 1
x , tx, t

x , and we cover
the interval [0.05, 0.95] with 14 overlapping windows each of which contains 41 sample
points of the hypergeometric solution. We then apply 14 EDMD computations for the
14 moving windows and produce 14 approximating trajectories as well as an equal number
of EDMD matrices. The errors between these approximations compared to the real data
and measured by the l2 (Euclidean) norm for all 14 horizons are depicted in Figure 9 and,
thus, the approximation is considered very satisfactory.

The 14 successive approximating trajectories to the hypergeometric solution (2) of
Equation (1) which cover the interval [0.05, 0.95] are given by

Px An
k xok = a1kλn

1k + a2kλn
2k + a3kλ

n
2k + a4kλn

4k, (3)

where k = 0, . . . , 14 enumerates the 14 EDMD computations for the 14 moving windows
and the resulting approximating trajectories, n = 0, . . . , 40 enumerates the 41 sample points
at each window, xok is a 4× 1 vector of initial conditions for the basis functions x, 1

x , tx, t
x ,

for each one of the EDMD computations, Ak is the 4× 4 EDMD matrix for each of the
moving windows, Px is the 1× 4 projection matrix to the one-dimensional space spanned
by x, λ2k is the complex conjugate of λ2k, λ1k, λ2k, λ2k, λ4k are the eigenvalues of the
matrices Ak, and a1k, a2k, a3k, a4k are real coefficients. In the three diagrams of Figure 10, we
depict from left to right the real eigenvalue λ1k, which is the largest, versus k, the modulus
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|λ2k| = |λ2k| of the complex conjugate eigenvalues λ2k, λ2k, which are the intermediate,
versus k, and the real eigenvalue λ4k, which is the smallest, versus k. It becomes evident
from the diagrams that the largest real eigenvalue λ1k dominates in the approximating
trajectory at the vicinity of the t = 1 asymptote.

Figure 9. Errors between the 14 EDMD approximating trajectories and real data measured by the l2
(Euclidean) norm.

Figure 10. The graph of (a) the largest real eigenvalue; (b) the modulus of the complex conjugate
eigenvalues; (c) the smallest real eigenvalue versus k.

7. Conclusions

The hypergeometric equation is a linear second-order homogeneous differential equa-
tion that falls into the Fuchsian class and has three regular singular points at 0, 1, and ∞.
The solution space of the hypergeometric equation is two-dimensional with basis vectors
hypergeometric series. We present an alternative data-driven method in order to solve the
hypergeometric equation. This method, the Koopman-EDMD method, whose popularity
has increased over the last years, does not use power series but it uses instead a basis
of functions, remarkably 4 or 5. The Koopman-EDMD method is data-driven and we
use it in order to approximate a trajectory of the hypergeometric equation at hand in the
vicinity of 0 which is one of its singular points. Having data of a given trajectory in a finite
horizon allows us to construct with the Koopman-EDMD theory a discrete linear system of
dimension n > m, where m = 2 is the dimension of the state space of the hypergeometric
equation. In our approach, we have n = 4 or n = 5 depending on how accurate we want to
be the approximation to the real trajectory of the hypergeometric equation. It is noteworthy
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that we approximate with great accuracy the real trajectory of the hypergeometric equation
by a small increase in the number of dimensions of the state space (2 is increased only
to 4 or 5 in the Koopman-EDMD theory. The Koopman-EDMD theory can be used as
an alternative theory in order to study the solution space of both ordinary differential
equations and of partial differential equations. Our results are amenable for application
and generalization to these other cases of differential equations as well.

Author Contributions: All authors contributed equally. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Koopman, B.O. Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. USA 1931, 17, 315–318. [CrossRef]

[PubMed]
2. Brunton, S.; Kutz, N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control; Cambridge Univerisy

Press: Cambridge, UK, 2019.
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