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Abstract: This paper is devoted to boundary-value problems for Riemann–Liouville-type fractional
differential equations of variable order involving finite delays. The existence of solutions is first
studied using a Darbo’s fixed-point theorem and the Kuratowski measure of noncompactness. Sec-
ondly, the Ulam–Hyers stability criteria are examined. All of the results in this study are established
with the help of generalized intervals and piecewise constant functions. We convert the Riemann–
Liouville fractional variable-order problem to equivalent standard Riemann–Liouville problems of
fractional-constant orders. Finally, two examples are constructed to illustrate the validity of the
observed results.
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1. Introduction and Motivations

The concept of fractional calculus, whose origin goes back to 1695, is considered
as one of the most important branches in mathematics. It has been shown that models
with fractional derivatives may more accurately represent complex phenomena than
integer-order models. Fractional integrals and derivatives have attracted the attention of
the researchers due to their essential features such as long-term dependence properties
and more degrees of freedom. As a result, in the last few decades we have witnessed the
application of fractional calculus methods in modeling processes studied in computer
sciences, physics, neuroscience, biology, medicine, engineering, etc. [1–7]. In view
of their advantages, the Riemann–Liouville and Caputo types are the most applied
fractional derivatives [3,5].

Additionally, various techniques have been introduced and applied to establish ex-
istence criteria for analytical, semi-analytical, and numerical solutions of fractional-order
boundary-value problems. Different researchers applied fixed-point theorems [3], nondif-
ferentiable traveling-wave techniques [8], the homotopy perturbation transform method
and the Yang transform decomposition method [9], iteration transformation techniques [10],
the natural transform method [11], measures of noncompactmess [12], almost sectorial
operators [13], and some others.

On the other hand, the extended class of variable-order fractional derivatives have also
been recently developed [14–17]. In fact, the generalizations performed by the fractional
derivatives of a variable order offered great opportunities for applications and mathematical
modeling approaches [18–20].
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The main idea of variable-order fractional calculus is to substitute the constant fractional
order µ with a function µ(.). Although this difference seems simple, a variable-order operator
can explain and model several physical and natural phenomena [21,22]. The recent publica-
tions in the field confirm our understanding of the importance of this consideration [23–27].

Despite the proven potential in applications to describe the complicated behavior of
real-world problems, the theory of variable-order delayed fractional differential equations
is not well developed. Some numerical approaches to solve such differential equations
have been developed in several articles. For example, in [28] a collocation numerical
approach is applied with the aid of shifted Chebyshev polynomials to solve a multiterm
variable-order fractional delay differential equation. The existence, uniqueness criteria, and
stability results have been presented in [29] for linear systems with distributed delays and
distributed-order fractional derivatives based on Caputo type single fractional derivatives
with respect to a nonnegative density function. In [30], a numerical method based on the
Lagrangian piece-wise interpolation is proposed to solve variable-order fractal-fractional
time delay equations with power law, exponential decay, and Mittag–Leffler memories.
The paper [31] applied a method based on the fundamental theorem of fractional calculus
and the Lagrange polynomial interpolation to numerically solve a type of variable-order
fractional delay differential equation.

However, as stated in [28], analytical solutions for variable-order delayed fractional
differential equations are difficult to obtain since the kernel of the variable-order opera-
tors has a variable exponent. This explains the limited number of results related to the
fundamental and qualitative results for the solutions of such equations. To the best of the
authors’ knowledge, the existence results are established only for a damped fractional
subdiffusion equation with time delay with a variable-order fractional Caputo operator
in a very resent publication [32] where the authors applied shifted Chebyshev polynomi-
als to solve the presented problem by a matrix discretization technique. Similar results
for delayed variable-order fractional differential equations involving Riemann–Liouville
derivatives have not yet been reported in the existing literature. This is the main aim of
our research.

In [33], the authors studied the existence of solutions for the following nonlinear
fractional differential equations of constant order:{

Dµ
0+ξ(s) = ϕ(s, ξs), s ∈ N := [0, N], µ ∈]0, 1],

ξ(s) = χ(s), s ∈ (−∞, 0],

where Dµ
0+ is the standard Riemann–Liouville fractional derivative, 0 < N < +∞, ϕ and χ

are well defined functions, and ξs is an element of C((−∞, 0],R) defined by

ξs(τ) := ξ(s + τ), τ ∈ (−∞, 0]

for any function ξ defined on (−∞, N] and any s ∈ N , C((−∞, 0],R) is the class of all
continuous functions from (−∞, 0] to R.

Since the paper [33] considers an infinite delay, the obtained existence results can be
examined as a generalization of several existence results for delayed fractional differen-
tial equations with fractional constant-order derivatives. In fact, there have been some
important existence results for such equations where different techniques have been ap-
plied [34–38]. However, as stated above, the corresponding results for delayed fractional
variable-order boundary-value problems are very few.

Motivated by [15,23–27,33], in this paper we study the existence of solutions for the
boundary-value problem of the nonlinear fractional differential equation of variable order
with finite delay in the format{

Dµ(s)
0+ ξ(s) = ϕ(s, ξs), s ∈ N := [0, N],

ξ(s) = χ(s), s ∈ [−γ, 0], γ > 0,
(1)
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where 1 < µ(s) ≤ 2, Dµ(s)
0+ is the Riemann–Liouville fractional derivative of the variable-

order µ(.), ϕ : N × C([−γ, 0],R)→ R. The initial function χ ∈ C([−γ, 0],R) and χ(0) = 0,
ξs in C([−γ, 0],R) is given by

ξs(τ) := ξ(s + τ), τ ∈ [−γ, 0],

for any function ξ defined on [−γ, N] and any s ∈ N .
Such problems have a great potential to model numerous real-world phenomena

studied in science and engineering.
The main novelty of the paper is in the following five points: (1) a fractional boundary-

value problem for delay differential equations in the variable-order Riemann–Liouville
settings is introduced, which generalizes the fractional constant-order concepts; (2) new ex-
istence specifications of solutions are established; (3) we consider generalized subintervals
by combining the existing notions in relation to the Kuratowski measure of noncompactness
in the context of Darbo’s fixed-point theorem; (4) we apply piecewise constant functions to
convert the Riemann–Liouville fractional boundary-value problem of variable order (1) to
standard Riemann–Liouville fractional constant-order boundary-value problems, which
allows for the more accurate estimation of the solution operator and leads to a better
exploration of the effect of the variable fractional order; and (5) the Ulam–Hyers stability
behavior of the fractional variable-order problem is analyzed, and new stability criteria
are proved.

The organization of the paper is as follows. Some definitions and preliminary results
are presented in Section 2. In Section 3, the main existence criteria for solutions of the
boundary-value problem of variable order (1) are established using Darbo’s fixed-point
theorem. Section 4 presents our main Ulam–Hyers stability results. Two illustrative
examples are presented in Section 5 to complete the consistency of our findings. Finally,
some conclusion notes and the future scope of this paper are given in Section 6.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts, which are
used throughout this paper.

We denote by C(N ,R) the space of real-valued continuous functions on N equipped
with the supremum norm

‖ξ‖N = sup{|ξ(s)| : s ∈ N},

for any ξ ∈ C(N ,R).

Definition 1 ([39,40]). The left Riemann–Liouville fractional integral of variable-order µ(.), µ :
[c, d]→ (0,+∞), −∞ < c < d < +∞, for a function ξ(.), is defined by

Iµ(s)
c+ ξ(s) =

∫ s

c

(s− τ)µ(τ)−1

Γ(µ(τ))
ξ(τ)dτ, s > c, (2)

where the standard Gamma function is denoted by Γ(.).

Definition 2 ([39,40]). For −∞ < c < d < +∞, we consider the mapping µ : [c, d] →
(m− 1, m), m ∈ N. Then, the left Riemann–Liouville fractional derivative of variable-order µ(.)
for a function ξ is defined by

Dµ(s)
c+ ξ(s) =

( d
ds

)m
Im−µ(s)
c+ ξ(s) =

( d
ds

)m ∫ s

c

(s− τ)m−µ(τ)−1

Γ(m− µ(τ))
ξ(τ)dτ, s > c. (3)

Obviously, if the order µ(.) is a constant function, then the Riemann–Liouville frac-
tional variable order derivative (3) and Riemann–Liouville fractional integral of variable-
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order (2) are reduced to the classical Riemann–Liouville fractional derivative and Riemann–
Liouville fractional integral, respectively; see [3,5,14,39].

The following properties are some of the main ones of the fractional derivatives and
integrals that we will use in our analysis.

Lemma 1 ([3]). Let $ > 0, c ≥ 0, ξ ∈ L1(c, d), D$
c+ξ ∈ L1(c, d). Then, the differential equation

D$
c+ξ = 0

has a solution

ξ(s) = η1(s− c)$−1 + η2(s− c)$−2 + · · ·+ η`(s− c)$−` + · · ·+ ηm(s− c)$−m,

where m = [$] + 1, η` ∈ R, ` = 1, 2, . . . , m.

Lemma 2 ([3]). Let $ > 0, c ≥ 0, ξ ∈ L1(c, d), D$
c+ξ ∈ L1(c, d). Then,

I$
c+D$

c+ξ(s) = ξ(s) + η1(s− c)$−1 + η2(s− c)$−2 + · · ·+ η`(s− c)$−` + · · ·+ ηm(s− c)$−m, (4)

where m = [$] + 1, η` ∈ R, ` = 1, 2, . . . , m.

Lemma 3 ([3]). Let $ > 0, c ≥ 0, ξ ∈ L1(c, d), D$
c+ξ ∈ L1(c, d). Then,

D$
c+ I$

c+ξ(s) = ξ(s).

Lemma 4 ([3]). Let $, ρ > 0, c ≥ 0, ξ ∈ L1(c, d). Then,

I$
c+ Iρ

c+ξ(s) = Iρ
c+ I$

c+ξ(s) = I$+ρ
c+ ξ(s).

Remark 1 ([41,42]). Generally, for two functions µ1(s) and µ2(s), the semigroup property does
not hold, i.e.,

Iµ1(s)
c+ Iµ2(s)

c+ ξ(s) 6= Iµ1(s)+µ2(s)
c+ ξ(s).

Definition 3 ([43]). Let E be a Banach space and Pb(E) the family of bounded subsets of E. Then,
ζ : Pb(E)→ [0,+∞[ defined by

ζ(U) = in f {λ > 0 : U ⊆ ∪n
k=1Bk and diam(Bk) < λ}.

for every U ∈ Pb(E) is called the Kuratowski measure of noncompactness.

The Kuratowski measure of noncompactness satisfies the following properties:

Proposition 1 ([44,45]). Let E be a Banach space. Then, for all bounded subsets U, V of E, the
following assertions hold:

1. ζ(U) = 0⇐⇒ U is compact;
2. ζ(φ) = 0;
3. ζ(U) = ζ(U) = ζ(convU);
4. (U ⊂ V) =⇒ ζ(U) ≤ ζ(V);
5. ζ(U + V) ≤ ζ(U) + ζ(V);
6. ζ(λU) = |λ|ζ(U), λ ∈ R;
7. ζ(U ∪V) = max{ζ(U), ζ(V)};
8. ζ(U ∩V) ≤ min{ζ(U), ζ(V)};
9. ζ(U + x0) = ζ(U) for any x0 ∈ E.

Lemma 5 ([45]). If the bounded set U ⊂ C(N , E) is equicontinuous, then
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(i) the function ζ(U(s)) is continuous for s ∈ N , and

ζN (U) = sup
s∈N

ζ(U(s)).

(ii) ζ
(∫ N

0 ξ(s)ds : ξ ∈ U
)
≤
∫ N

0 ζ(U(s))ds,

where
U(s) = {ξ(s) : ξ ∈ U}, s ∈ N .

Remark 2. For the definition and properties of equicontinuous sets, we refer to [45].

Remark 3. In the following, we shall use ζ and ζN to denote the Kuratowski measures of noncom-
pactness of sets in space R and space C(N ,R) respectively.

The following theorem will be needed.

Theorem 1 (Darbo’s fixed-point theorem [43]). Let M be a nonempty, bounded, convex, and
closed subset of a Banach space E and T : M −→ M is a continuous operator satisfying ζ(TA) ≤
Lζ(A) for any nonempty subset A of M and for some constant L ∈ [0, 1). Then, T has at least one
fixed point in M.

Definition 4 ([46,47]). Equation (1) is Ulam–Hyers is stable if there exists a real number cϕ > 0
such that for each ε > 0 and any solution y ∈ C([−γ, N],R) of the inequality{

|Dµ(s)
0+ y(s)− ϕ(s, ys)| ≤ ε, s ∈ N := [0, N],

y(s) = χ(s), s ∈ [−γ, 0],
(5)

there exists a solution ξ ∈ C([−γ, N],R) of Equation (1) with

|y(s)− ξ(s)| ≤ cϕε, s ∈ [−γ, N].

Remark 4. A function y ∈ C([−γ, N],R) is a solution of the inequality (5) if and only if a
function h ∈ C([−γ, N],R) (which depends on solution y) exists such that

(i) |h(s)| ≤ ε, for all s ∈ [−γ, N].

(ii) Dµ(s)
0+ y(s) = ϕ(s, ys) + h(s) for all s ∈ N .

Definition 5 ([15,48]). Let I ⊂ R.

(a) The interval I is called a generalized interval if it is either an interval or {ρ1} or ∅.
(b) A partition of I is a finite set P such that each x in I lies in exactly one of the generalized

intervals E in P .
(c) A function g : I → R is called piecewise constant with respect to the partition P of I if for

any E ∈ P , g is constant on E.

3. Existence Criteria

We will begin with the introduction of some main hypotheses:

(Hyp1) For an integer n ∈ N, let the finite sequence of points {Nk}n
k=0 be given such that

0 = N0 < Nk−1 < Nk < Nn = N, k = 2, . . . , n − 1. Denote Nk := (Nk−1, Nk],
k = 1, 2, . . . , n and consider the partition P = {Nk : 1 = 1, 2, . . . , n} of the intervalN .
Let µ : N → (1, 2] be a piecewise constant function with respect to P , represented
as follows:
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µ(s) =
n

∑
k=1

µk Ik(s) =



µ1, if s ∈ N1,
µ2, if s ∈ N2,

.

.

.
µn, if s ∈ Nn,

where 1 < µk ≤ 2 are constants and Ik is an indicator of the interval Nk, k = 1, 2, . . . , n
defined by

Ik(s) =
{

1, for s ∈ Nk,
0, elsewhere.

(Hyp2) Let sσ ϕ : N × C([−γ, 0],R) → R be continuous (0 < σ < 1). K > 0 exists, such
that sσ|ϕ(s, ys) − ϕ(s, zs)| ≤ K‖ys − zs‖[−γ,0], for any y, z ∈ C([−γ, N],R) and
s ∈ N .

The next definition of a solution of the problem (1) will be essential in this paper.

Definition 6. Problem (1) has a solution, if there are functions ξk, k = 1, 2, . . . , n, so that
ξk ∈ C([−γ, Nk],R) satisfying Equation (7) for s ∈ [0, Nk], ξk(s) = χ(s) for s ∈ [−γ, 0]
and ξk(0) = ξk(Nk) = 0.

In order to apply Darbo’s fixed-point theorem and the Kuratowski measure of non-
compactness, we will perform an essential analysis to the problem (1).

Using (3), we represent the equation of the problem (1) in the following form:

d2

ds2

∫ s

0

(s− τ)1−µ(τ)

Γ(2− µ(τ))
ξ(τ)dτ = ϕ(s, ξs), s ∈ N . (6)

According to (Hyp1), we can represent Equation (6) on the interval Nk, k = 1, 2, . . . ,
n as

d2

ds2

( ∫ N1

0

(s− τ)1−µ1

Γ(2− µ1)
ξ(τ)dτ + ... +

∫ s

Nk−1

(s− τ)1−µk

Γ(2− µk)
ξ(τ)dτ

)
= ϕ(s, ξs) (7)

for s ∈ Nk.
For 0 ≤ s ≤ Nk−1, by taking ξ(s) ≡ 0, Equation (7) is reduced to

Dµk
N+

k−1
ξ(s) = ϕ(s, ξs), s ∈ Nk.

Let us consider the following problem:
Dµk

N+
k−1

ξ(s) = ϕ(s, ξs), s ∈ Nk,

ξ(Nk−1) = 0, ξ(Nk) = 0,
ξ(s) = χk(s), s ∈ [Nk−1 − γ′, Nk−1],

(8)

where γ′ = Nk−1 + γ and

χk(s) =
{

0, i f s ∈ [0, Nk−1]
χ(s), i f s ∈ [−γ, 0].

The following auxiliary lemma will offer existence criteria for solutions for the problem (8).
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Lemma 6. The function ξ ∈ C([−γ, Nk],R) is a solution of problem (8) if and only if ξ satisfies
the integral equation

ξ(s) =

{
−
∫ Nk

Nk−1
Gk(s, τ)ϕ(τ, ξτ)dτ, i f s ∈ Nk,

χk(s), i f s ∈ [−γ, Nk−1],
(9)

where Gk(s, τ) is a Green’s function defined by

Gk(s, τ) =



1
Γ(µk)

[
(Nk − Nk−1)

1−µk (s− Nk−1)
µk−1(Nk − τ)µk−1 − (s− τ)µk−1

]
,

Nk−1 ≤ τ ≤ s ≤ Nk,

1
Γ(µk)

(Nk − Nk−1)
1−µk (s− Nk−1)

µk−1(Nk − τ)µk−1,

Nk−1 ≤ s ≤ τ ≤ Nk,

k = 1, 2, . . . , n.

Proof. Let ξ ∈ C([−γ, Nk],R) be a solution of the problem (8). From (4), we have

ξ(s) = η1(s− Nk−1)
µk−1 + η2(s− Nk−1)

µk−2 + Iµk
N+

k−1
ϕ(s, ξs), s ∈ Nk, k ∈ {1, 2, . . . , n}. (10)

Using ξ(Nk−1) = ξ(Nk) = 0, we find that η2 = 0 and

η1 = −(Nk − Nk−1)
1−µk Iµk

N+
k−1

ϕ(NK, ξNk ).

By substituting the values of η1 and η2 in (10), we obtain

ξ(s) = −(Nk − Nk−1)
1−µk (s− Nk−1)

µk−1 Iµk
N+

k−1
ϕ(Nk, ξNk ) + Iµk

N+
k−1

ϕ(s, ξs), s ∈ Nk.

Then, the solution of the problem (8) is given by

ξ(s) = −(Nk − Nk−1)
1−µk (s− Nk−1)

µk−1 1
Γ(µk)

∫ Nk

Nk−1

(Nk − τ)µk−1 ϕ(τ, ξτ)dτ

+
1

Γ(µk)

∫ s

Nk−1

(s− τ)µk−1 ϕ(τ, ξτ)dτ

= − 1
Γ(µk)

[ ∫ s

Nk−1

[
(Nk − Nk−1)

1−µk (s− Nk−1)
µk−1(Nk − τ)µk−1 − (s− τ)µk−1

]
ϕ(τ, ξτ)dτ

+
∫ Nk

s
(Nk − Nk−1)

1−µk (s− Nk−1)
µk−1(Nk − τ)µk−1 ϕ(τ, ξτ)dτ

]
= −

[ ∫ s

Nk−1

Gk(s, τ)ϕ(τ, ξτ)dτ +
∫ Nk

s
Gk(s, τ)ϕ(τ, ξτ)dτ

]
and the continuity of the Green function gives

ξ(s) = −
∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, ξτ)dτ, s ∈ Nk.

Conversely, let ξ ∈ C([−γ, Nk],R) be a solution of integral Equation (9); then, by the
continuity of function Sσ ϕ and Lemma 3, we can easily obtain that ξ is the solution of the
problem (8).
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Proposition 2 ([16]). Let 0 < σ < 1 and assume that sσ ϕ : Nk × C([−γ, 0],R) → R is
continuous, and µ : Nk → (1, 2] satisfies (Hyp1). Then, the Green’s function of problem (8)
satisfies the following properties:

(1) Gk(s, τ) ≥ 0 for all Nk−1 ≤ s, τ ≤ Nk,

(2) max
s∈Nk

Gk(s, τ) = Gk(τ, τ), τ ∈ Nk,

(3) Gi(s, s) has a unique maximum given by

max
τ∈Nk

Gk(τ, τ) =
1

Γ(µk)

(Nk − Nk−1
4

)µk−1
,

where k = 1, 2, . . . , n.

We will now establish the existence results for the Riemann–Liouville constant-order
fractional problem (8). Our first result is based on Darbo’s fixed-point theorem.

Theorem 2. Suppose that both (Hyp1) and (Hyp2) hold, and

K
(

N1−σ
k − N1−σ

k−1

)(
Nk − Nk−1

)µk−1

4µk−1(1− σ)Γ(µk)
< 1. (11)

Then, the Riemann–Liouville constant-order fractional problem (8) possesses at least one solution on
C([−γ, Nk],R).

Proof. Consider the operator

L : C([−γ, Nk],R)→ C([−γ, Nk],R),

defined by

(Lξ)(s) =

{
χk(s), s ∈ [−γ, Nk−1],
−
∫ Nk

Nk−1
Gk(s, τ)ϕ(τ, ξτ)dτ, s ∈ Nk.

Let v(.) : [−γ, Nk]→ R be a function defined by

v(s) =
{

0, i f s ∈ Nk,
χk(s), i f s ∈ [−γ, Nk−1].

For each z ∈ C([Nk−1, Nk],R), with z(Nk−1) = 0, we denote by z the function de-
fined by

z(s) =
{

z(s), i f s ∈ Nk,
0, i f s ∈ [−γ, Nk−1].

If ξ(.) satisfies the integral equation

ξ(s) = −
∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, ξτ)dτ,

then we can decompose ξ(.) as ξ(s) = z(s) + v(s), Nk−1 ≤ s ≤ Nk, which implies ξs =
zs + vs for every Nk−1 ≤ s ≤ Nk, and the function z(.) satisfies

z(s) = −
∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, zτ + vτ)dτ.

Set
CNk−1 = {z ∈ C([Nk−1, Nk],R) : z(Nk−1) = 0}
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and let ‖.‖Nk be the norm in CNk−1 defined by

‖z‖Nk = sup
s∈Nk

|z(s)|, z ∈ CNk−1 .

Thus, CNk−1 is a Banach space with the norm ‖.‖Nk . Let the operator P : CNk−1 → CNk−1
be defined by

(Pz)(s) = −
∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, zτ + vτ)dτ, s ∈ Nk. (12)

It follows from the properties of fractional integrals and from the continuity of function
sσ ϕ that the operator P : CNk−1 → CNk−1 in (12) is well defined.

Then, it is enough to show that the operator P has a fixed point z that will guarantee
that the operator L has a fixed point ξ = z + v, and in consequence, this fixed point will
correspond to a solution of the problem (8). Indeed,

ξ(s) = z(s) + v(s)

=

{
z(s), i f s ∈ Nk,

χk(s), i f s ∈ [−γ, Nk−1]

=

{
−
∫ Nk

Nk−1
Gk(s, τ)ϕ(τ, zτ + vτ)dτ, i f s ∈ Nk,

χk(s), i f s ∈ [−γ, Nk−1]

=

{
−
∫ Nk

Nk−1
Gk(s, τ)ϕ(τ, ξτ)dτ, i f s ∈ Nk,

χk(s), i f s ∈ [−γ, Nk−1]

= (Lξ)(s).

Let

Rk ≥

(K‖χ‖[−γ,0]+ϕ?)(Nk−Nk−1)
µk−1
(

N1−σ
k −N1−σ

k−1

)
4µk−1Γ(µk)(1−σ)

1−
K
(

N1−σ
k −N1−σ

k−1

)(
Nk−Nk−1

)µk−1

4µk−1(1−σ)Γ(µk)

with ϕ? = sups∈N sσ|ϕ(s, 0)|, and consider the following set:

BRk = {z ∈ CNk−1 , ‖z‖Nk ≤ Rk}.

Clearly, BRk is nonempty, convex, bounded, and closed.
For z ∈ BRk and s ∈ Nk, we have

‖zs‖[−γ′ ,0] = sup
−Nk−1−γ≤θ≤0

|zs(θ)|

= sup
−Nk−1−γ≤θ≤0

|z(s + θ)|

≤ sup
−γ≤τ≤Nk

|z(τ)|

= sup
τ∈Nk

|z(τ)| = ‖z‖Nk
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and

‖vs‖[−γ′ ,0] = sup
−Nk−1−γ≤θ≤0

|vs(θ)|

= sup
−Nk−1−γ≤θ≤0

|v(s + θ)|

≤ sup
−γ≤τ≤Nk

|v(τ)|

= sup
−γ≤τ≤0

|v(τ)| = sup
−γ≤τ≤0

|χ(τ)| = ‖χ‖[−γ,0].

We shall show that P satisfies Theorem 1 in five steps.
Step 1: P(BRk ) ⊆ (BRk ).
For z ∈ BRk , by Proposition 2 and (Hyp2), we obtain

|Pz(s)| =
∣∣∣ ∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, zτ + vτ)dτ
∣∣∣

≤
∫ Nk

Nk−1

Gk(s, τ)|ϕ(τ, zτ + vτ)|dτ

≤ 1
Γ(µk)

(Nk − Nk−1
4

)µk−1 ∫ Nk

Nk−1

|ϕ(τ, zτ + vτ)|dτ

≤ 1
Γ(µk)

(Nk − Nk−1
4

)µk−1 ∫ Nk

Nk−1

τ−στσ
∣∣∣ϕ(τ, zτ + vτ)− f (τ, 0)

∣∣∣dτ

+
1

Γ(µk)

(Nk − Nk−1
4

)µk−1 ∫ Nk

Nk−1

τ−στσ|ϕ(τ, 0)|dτ

≤ 1
Γ(µk)

(Nk − Nk−1
4

)µk−1 ∫ Nk

Nk−1

τ−σ(K‖zτ + vτ‖[−γ′ ,0])dτ

+
ϕ?(Nk − Nk−1)

µk−1

Γ(µk)4µk−1

∫ Nk

Nk−1

τ−σdτ

≤ K
Γ(µk)

(Nk − Nk−1
4

)µk−1 ∫ Nk

Nk−1

(‖zτ‖[−γ′ ,0] + ‖vτ‖[−γ′ ,0])τ
−σdτ

+
ϕ?
(

Nk − Nk−1

)µk−1(
N1−σ

k − N1−σ
k−1

)
4µk−1Γ(µk)(1− σ)

≤ K
Γ(µk)

(Nk − Nk−1
4

)µk−1
(‖z‖Nk + ‖χ‖[−γ,0])

∫ Nk

Nk−1

τ−σdτ

+
ϕ?
(

Nk − Nk−1

)µk−1(
N1−σ

k − N1−σ
k−1

)
4µk−1Γ(µk)(1− σ)

≤ K
Γ(µk)

(Nk − Nk−1
4

)µk−1
Rk

(N1−σ
k − N1−σ

k−1
1− σ

)

+
K

Γ(µk)

(Nk − Nk−1
4

)µk−1
‖χ‖[−γ,0]

(N1−σ
k − N1−σ

k−1
1− σ

)
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+
ϕ?
(

Nk − Nk−1

)µk−1(
N1−σ

k − N1−σ
k−1

)
4µk−1Γ(µk)(1− σ)

≤
K
(

N1−σ
k − N1−σ

k−1

)(
Nk − Nk−1

)µk−1

4µk−1(1− σ)Γ(µk)
Rk

+

(
Nk − Nk−1

)µk−1(
N1−σ

k − N1−σ
k−1

)
4µk−1Γ(µk)(1− σ)

(
K‖χ‖[−γ,0] + ϕ?

)
≤ Rk,

which means that P(BRk ) ⊆ BRk .
Step 2: P is continuous.
We presume that the sequence (zn) converges to z in CNk−1 and s ∈ Nk. Then,

|P(zn)(s)− (Pz)(s)| ≤
∫ Nk

Nk−1

Gk(s, τ)
∣∣∣ϕ(τ, znτ + vτ)− ϕ(τ, zτ + vτ)

∣∣∣dτ

≤ 1
Γ(µk)

(Nk − Nk−1
4

)µk−1 ∫ Nk

Nk−1

∣∣∣ϕ(τ, znτ + vτ)− ϕ(τ, zτ + vτ)
∣∣∣dτ

≤ 1
Γ(µk)

(Nk − Nk−1
4

)µk−1 ∫ Nk

Nk−1

τ−σK‖znτ − zτ‖[−γ′ ,0]dτ

≤ 1
Γ(µk)

(Nk − Nk−1
4

)µk−1
(K‖zn − z‖Nk )

∫ Nk

Nk−1

τ−σdτ

≤
K
(

N1−σ
k − T1−σ

k−1

)(
Nk − Nk−1

)µk−1

4µk−1(1− σ)Γ(µk)
‖zn − z‖Nk .

Hence, we obtain
‖(Pzn)− (Pz)‖Nk → 0 as n→ ∞.

Then, the operator P is a continuous on CNk−1 .
Step 3: P(BRk ) is bounded set in CNk−1 .
As in Step 1, we have P(BRk ) ⊂ BRk . This implies that P(BRi ) is bounded set in CTi−1 .
Step 4: P(BRk ) is equicontinous set in CNk−1 .
For arbitrary s1, s2 ∈ Nk, with s1 < s2, let z ∈ BRk . Estimate

|P(z)(t2) − (Pz)(t1)| =
∣∣∣ ∫ Nk

Nk−1

Gk(s2, τ)ϕ(τ, zτ + vτ)dτ −
∫ Nk

Nk−1

Gk(s1, τ)ϕ(τ, zτ + vτ)dτ
∣∣∣

≤
∫ Nk

Nk−1

∣∣∣(Gk(s2, τ)− Gk(s1, τ)
)

ϕ(τ, zτ + vτ)
∣∣∣dτ

≤
∫ Nk

Nk−1

∣∣∣Gk(s2, τ)− Gk(s1, τ)
∣∣∣|ϕ(τ, zτ + vτ)|dτ

≤
∫ Nk

Nk−1

∣∣∣Gk(s2, τ)− Gk(s1, τ)
∣∣∣τ−σ

(
τσ
∣∣∣ϕ(τ, zτ + vτ)− ϕ(τ, 0)

∣∣∣+ τσ|ϕ(τ, 0)|
)

dτ
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≤
∫ Nk

Nk−1

∣∣∣Gk(s2, τ)− Gk(s1, τ)
∣∣∣[τ−σ(K‖zτ + vτ‖[−γ′ ,0]) + τ−σ ϕ?

]
ds

≤
∫ Nk

Nk−1

∣∣∣Gk(s2, τ)− Gk(s1, τ)
∣∣∣[τ−σK(‖zτ‖[−γ′ ,0] + ‖vτ‖[−γ′ ,0]) + τ−σ ϕ?

]
dτ

≤
∫ Nk

Nk−1

∣∣∣Gk(s2, τ)− Gk(s1, τ)
∣∣∣[τ−σK(‖z‖Nk + ‖χ‖[−γ,0]) + ϕ?

]
dτ

≤ KN−σ
k−1(R + ‖χ‖[−γ,0])

∫ Nk

Nk−1

∣∣∣Gk(s2, τ)− Gk(s1, τ)
∣∣∣dτ

+ ϕ?N−σ
k−1

∫ Nk

Nk−1

∣∣∣Gk(s2, τ)− Gk(s1, τ)
∣∣∣dτ.

Hence, |P(z)(s2)− (Pz)(s1)| → 0 as |s2− s1| → 0. This implies thatP(BRk ) is equicon-
tinuous.

Note that [49] the inequality

ζ
(

sδ ϕ(s, B1)
)
≤ Kζ[−γ,0](B1)

is equivalent to (Hyp2) for each B1 ⊂ C([−γ, 0],R) and s ∈ N , where B1 is bounded.
Step 5: P is L-set contraction.
For U ⊂ BRk , s ∈ Nk, we obtain

ζ(P(U)(s)) = ζ(
{
(Pz)(s), z ∈ U

}
)

= ζ(
{
−
∫ Nk

Nk−1
Gk(s, τ)ϕ(τ, zτ + vτ)dτ, z ∈ U

}
)

≤
∫ Nk

Nk−1

Gk(s, τ)ζ(
{

ϕ(τ, zτ + vτ), z ∈ U
}
)

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σζ(
{

τσ ϕ(τ, zτ + vτ), z ∈ U
}
).

Remark 3 indicates that

ζ(P(U)(s)) ≤
∫ Nk

Nk−1

Gk(s, τ)τ−σ[K(ζ[−γ′ ,0]{zτ + vτ , z ∈ U})]dτ

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σ[Kζ[−γ′ ,0]({zτ , z ∈ U}+ vτ)]dτ

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σK[ζ[−γ′ ,0]({zτ , z ∈ U})]dτ

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σK sup
−γ′≤θ≤0

ζ({zτ(θ), z ∈ U}dτ

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σK sup
−γ′≤θ≤0

ζ({z(τ + θ), z ∈ U})dτ

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σK sup
−r≤t≤Nk

ζ({z(t), z ∈ U})dτ

=
∫ Nk

Nk−1

Gk(s, τ)τ−σK sup
Nk−1≤t≤Nk

ζ({z(t), z ∈ U} ∪ {0})dτ
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≤
∫ Nk

Nk−1

Gi(s, τ)τ−σK sup
Nk−1≤t≤Nk

ζ({z(t), z ∈ U})dτ

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σK sup
Nk−1≤t≤Nk

ζ({z(t), z ∈ U})dτ

≤
∫ Nk

Nk−1

Gk(s, τ)τ−σK sup
t∈Nk

ζ(U(t))dτ

≤ 1
Γ(µk)

(Nk − Nk−1
4

)µk−1[
KζNk (U)

∫ Nk

Nk−1

τ−σds
]
,

≤
K
(

N1−δ
k − N1−δ

k−1

)(
Nk − Nk−1

)µk−1

4µk−1(1− σ)Γ(µk)
ζNk (U).

Therefore,

ζNk (PU) ≤
K
(

N1−σ
k − N1−σ

k−1

)(
Nk − Nk−1

)µk−1

4µk−1(1− σ)Γ(µk)
ζNk (U).

Consequently by (11), we deduce that P is a L-set contraction, where

L :=
K
(

N1−σ
k − N1−σ

k−1

)(
Nk − Nk−1

)µk−1

4µk−1(1− σ)Γ(µk)
.

Therefore, since all conditions of Theorem 1 are fulfilled we deduce that P has a fixed
point zk ∈ BRk .

Then, L has a fixed point; thus, the Riemann–Liouville constant-order fractional
boundary-value problem (8) has at least one solution ξk = zk + v ∈ C([−γ, Nk],R).

Now, we will prove the existence result for the Riemann–Liouville fractional problem
of variable order (1).

Theorem 3. Let the hypotheses (Hyp1), (Hyp2) and inequality (11) be satisfied for all
k ∈ {1, 2, . . . , n}. Then, the Riemann–Liouville fractional problem of variable order (1) possesses at
least one solution in C([−γ, N],R).

Proof. For all k ∈ {1, 2, . . . , n} according to Theorem 2, the Riemann–Liouville constant-
order fractional boundary-value problem (8) possesses at least one solution
ξk ∈ C([−γ, Nk],R). For any k ∈ {1, 2, . . . , n}, we have

ξ1(s) = z1(s) + v(s) =
{

χ(s), s ∈ [−γ, 0],
z1(s), s ∈ N1

and for any k ∈ {2, . . . , n}

ξk(s) = zk(s) + v(s) =


χ(s), s ∈ [−γ, 0],
0, s ∈ [0, Nk−1],
zk(s), s ∈ Nk.

Thus, the function ξk ∈ C([−γ, Nk],R) satisfies the integral Equation (7) for s ∈ Nk
with ξk(0) = 0, ξk(Nk) = zk(Nk) = 0 and ξk(s) = χ(s) for s ∈ [−γ, 0].
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Then, the function

ξ(s) =



ξ1(s) =
{

χ(s), s ∈ [−γ, 0],
z1(s), s ∈ N1,

ξ2(s) =


χ(s), s ∈ [−γ, 0],
0, s ∈ N1,
z2(s), s ∈ N2,

.

.

.

.

ξn(s) =


χ(s), s ∈ [−γ, 0],
0, s ∈ [0, Nn−1],
zn(s), s ∈ Nn,

gives the solution for the Riemann–Liouville fractional problem of variable order (1).

Remark 5. The existence results for fractional delay differential equations of constant order are
well established [33–38], but very little research has been done on delay fractional variable-order
systems because of the complex features of fractional variable-order derivatives [32]. Theorems 2
and 3 extend the existent results to boundary-value problems for variable-order fractional delay
differential equations. The offered results are established by converting the Riemann–Liouville
fractional boundary-value problem of variable order (1) to a standard Riemann–Liouville fractional
boundary-value problem with constant-order fractional derivatives (8), and using piecewise constant
functions, the Kuratowski measure of noncompactness in the context of Darbo’s fixed-point theorem.

Remark 6. Our results also extend and generalize some recently published existence results on
boundary-value problems for fractional variable-order differential equations without
delays [15,23,24,26,27,50] to the delay case, considering that the delay terms in the models are
more general and more relevant to the real-world applied problems.

Remark 7. Unlike the existing results in [32] for the delay fractional variable-order problem,
in this study we consider the Riemann–Liouville variable-order fractional derivatives of order
µ : N → (1, 2] and apply Darbo’s fixed-point theorem together with the Kuratowski measure of
noncompactness. In fact, due to the superiority of this strategy, it is intensively applied to fractional
variable-order problems [23,27]. In the further investigations of the proposed boundary-value
problem, different approaches may be applied, and the corresponding comparisons can be made.

We expect that the proposed results will motivate the researchers regarding further
development of the topic.

4. Ulam–Hyers Stability

Existence criteria are necessary when we study the qualitative behavior of the solutions.
In order to demonstrate the applicability of the proposed in Section 2 criteria, we will
provide Ulam–Hyers stability results.

Theorem 4. Assume that conditions (Hyp1), (Hyp2) and (11) hold. Then, the Equation (1) is
Ulam–Hyers stable.

Proof. Let ε > 0 be arbitrary, and the function y ∈ C([−γ, N],R) satisfies the following
inequality: {

|Dµ(s)
0+ y(s)− ϕ(s, ys)| ≤ ε, s ∈ N := [0, N],

y(s) = χ(s), s ∈ [−γ, 0].
(13)
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We define the functions

y1(s) =
{

y(s), s ∈ [0, N1],
χ(s), s ∈ [−γ, 0]

(14)

and for k = 2, 3, . . . , n :

yk(s) =


χ(s), s ∈ [−γ, 0],
0, s ∈ [0, Nk−1],
y(s), s ∈ Nk.

(15)

For any k ∈ {1, 2, . . . , n} according to equality (7) for s ∈ Nk, we obtain

Dµ(s)
0+ yk(s) =

1
Γ(2− µk)

(
d
ds

)2
∫ s

Nk−1

(s− τ)1−µk y(τ)dτ.

Taking Iµk
N+

k−1
on both sides of (13), we obtain

∣∣∣y(s) + ∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, yτ)dτ
∣∣∣ ≤ ε

Γ(µk)

∫ s

Nk−1

(s− τ)µk−1dτ

≤ ε

(
Nk − Nk−1

)µk

Γ(µk + 1)
.

According to Theorem 3, the Riemann–Liouville fractional problem (1) of variable
order has a solution ξ ∈ C([−γ, N],R) defined by ξ(s) = ξk(s)for s ∈ [0, Nk], k = 1, 2, . . . ,
n, where

ξ1(s) =
{

χ(s), s ∈ [−γ, 0]
z1(s), s ∈ N1,

(16)

and for any k ∈ {2, . . . , n}

ξk(s) =


χ(s), s ∈ [−γ, 0],
0, s ∈ [0, Nk−1],
zk(s), s ∈ Nk

(17)

and ξk ∈ C([−γ, Nk],R) is a solution of the Riemann–Liouville constant-order fractional
problem (8). According to Lemma 6, we have

ξk(s) = −
∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, (ξk)τ)dτ. (18)

Let s ∈ Nk, k ∈ {1, 2, . . . , n}.Then, by (15), (16), (17), and (18), we obtain

|y(s)− ξ(s)| = |y(s)− ξk(s)| = |yk(s)− ξk(s)|

= |yk(s) +
∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, (ξk)τ)dτ|

≤
∣∣∣yk(s) +

∫ Nk

Nk−1

Gk(s, τ)ϕ(τ, (yk)τ)dτ
∣∣∣+ ∫ Nk

Nk−1

Gk(s, τ)
∣∣∣ϕ(τ, (yk)τ)− ϕ(τ, (ξk)τ)

∣∣∣dτ

≤ ε

(
Nk − Nk−1

)µk

Γ(µk + 1)

+ K
1

Γ(µk)

(Nk − Nk−1
4

)µk−1 ∫ Nk

Nk−1

τ−σ‖(yk)τ − (ξk)τ‖[−γ′ ,0]dτ
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≤ ε

(
Nk − Nk−1

)µk

Γ(µk + 1)

+ K
1

Γ(µk)

(Nk − Nk−1
4

)µk−1 ∫ Nk

Nk−1

τ−σ sup
−Nk−1−γ≤θ≤0

|(yk)τ(θ)− (ξk)τ(θ)|dτ

≤ ε

(
Nk − Nk−1

)µk

Γ(µk + 1)

+ K
1

Γ(µk)

(Nk − Nk−1
4

)µk−1 ∫ Nk

Nk−1

τ−σ sup
−Nk−1−γ≤θ≤0

|yk(τ + θ)− ξk(τ + θ)|dτ

≤ ε

(
Nk − Nk−1

)µk

Γ(µk + 1)

+ K
1

Γ(µk)

(Nk − Nk−1
4

)µk−1 ∫ Nk

Nk−1

τ−σ sup
−γ≤t≤Tk

|yk(t)− xk(t)|dτ

≤ ε

(
Nk − Nk−1

)µk

Γ(µk + 1)

+ K
1

Γ(µk)

(Nk − Nk−1
4

)µk−1 ∫ Nk

Nk−1

τ−σ‖yk − ξk‖[−γ,Nk ]
dτ

≤ ε

(
Nk − Nk−1

)µk

Γ(µk + 1)

+ K
1

Γ(µk)

(Nk − Nk−1
4

)µk−1
‖yk − ξk‖[−γ,Nk ]

∫ Nk

Nk−1

τ−σdτ

≤ ε

(
Nk − Nk−1

)µk

Γ(µk + 1)
+

K
(

N1−σ
k − N1−σ

k−1

)(
Nk − Nk−1

)µk−1

4µk−1(1− σ)Γ(µk)
‖yk − ξk‖[−γ,Nk ]

≤ ε

(
Nk − Nk−1

)µk

Γ(µk + 1)
+ ν‖yk − ξk‖[−γ,Nk ]

,

where

ν = max
k=1,2,...,n

K
(

N1−σ
k − N1−σ

k−1

)(
Nk − Nk−1

)µk−1

4µk−1(1− σ)Γ(µk)
.

Then,

‖y− ξ‖[−γ,Nk ]
(1− ν) ≤ ε

(
Nk − Nk−1

)µk

Γ(µk + 1)
,

and so for cϕ :=

(
Nk−Nk−1

)µk

(1−ν)Γ(µk+1) ,

‖y− ξ‖[−γ,Nk ]
≤ cϕε,

i.e.,
|y(s)− ξ(s)| ≤ cϕε, s ∈ [−γ, Nk].

Then, by Definition 4, the Riemann–Liouville fractional problem (1) of variable order
is Ulam–Hyers stable.

Remark 8. With the established result in this section, we contribute to the development of the Ulam–
Hyers stability theory for fractional variable-order models. In fact, due to the great opportunities for
applications, this stability notion has been studied by numerous authors [24,46,47,50]. In addition,
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the qualitative results offered by Theorem 4 demonstrate the opportunities for applications of the
existence criteria proved in Theorems 2 and 3.

5. Illustrative Examples

Example 1. Let γ > 0,

µ(s) =
{ 7

5 , s ∈ N1 := [0, 1],
3
2 , s ∈ N2 :=]1, 2]

(19)

and consider the following Riemann–Liouville fractional variable-order boundary-value problem: Dµ(s)
0+ ξ(s) = s−

1
2

4es(1+‖ξs‖[−γ,0])
, s ∈ N :=]0, 2],

ξ(s) = χ(s), s ∈ [−γ, 0].
(20)

The choice of µ(s) guarantee that (Hyp1) holds. Let

ϕ(s, ys) =
s−

1
2

4es(1 + ‖ys‖[−γ,0])
, (s, ys) ∈ [0, 2]× C([−γ, 0],R).

For y, z ∈ C([−γ, 2],R) and s ∈ N , we have

s
1
2 |ϕ(s, ys)− ϕ(s, zs)| =

∣∣∣∣∣ 1
4es

(
1

1 + ‖ys‖[−γ,0]
− 1

1 + ‖zs‖[−γ,0]

)∣∣∣∣∣
≤

|‖ys‖[−γ,0] − ‖zs‖[−γ,0]|
4es(1 + ‖ys‖[−γ,0])(1 + ‖ys‖[−γ,0])

≤ 1
4es (‖ys − zs‖[−γ,0])

≤ 1
4
‖ys − zs‖[−γ,0].

Hence, (Hyp2) holds for σ = 1
2 and K = 1

4 .
By (19), according to (8) we consider the following two auxiliary problems for Riemann–

Liouville fractional differential equations of constant orders:
D

7
5
0+ξ(s) = s−

1
2

4es(1+‖ξs‖[−γ,0])
, s ∈ N1,

ξ(0) = 0, ξ(1) = 0,
ξ(s) = χ1(s), s ∈ [−γ, 0]

(21)

and 
D

3
2
0+ξ(s) = s−

1
2

4es(1+‖ξs‖[−γ,0])
, s ∈ N2,

ξ(1) = 0, ξ(2) = 0,
ξ(s) = χ2(s), s ∈ [−γ, 1],

(22)

where χ1 = χ and

χ2(s) =
{

0, , i f s ∈ [0, 1],
χ(s), i f s ∈ [−γ, 0].

We will show also that condition (11) is satisfied for k = 1. Indeed,

K
(

N1−σ
1 − N1−σ

0

)(
N1 − N0

)µ1−1

4µ1−1(1− σ)Γ(µ1)
=

1
4

(
11− 1

2 − 01− 1
2

)(
1− 0

) 7
5−1

4
7
5−1(1− 1

2 )Γ(
7
5 )

' 0.323663 < 1.
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By Theorem 2, the problem (21) has a solution ξ1 ∈ C([−γ, 1],R), where

ξ1(s) =

{
χ(s), s ∈ [−γ, 0],
z1(s), s ∈ N1.

We also have that

K
(

N1−σ
2 − N1−σ

1

)(
N2 − N1

)µ2−1

4µ2−1(1− σ)Γ(µ2)
=

1
4

(
21− 1

2 − 11− 1
2

)(
2− 1

) 3
2−1

4
3
2−1(1− 1

2 )Γ(
3
2 )

' 0.11684748 < 1.

Thus, (11) is fulfilled for k = 2. According to Theorem 2, the problem (22) possesses a solution
ξ2 ∈ C([−γ, 2],R), where

ξ2(s) =


χ(s), s ∈ [−γ, 0],
0, s ∈ [0, 1],
z2(s), t ∈ N2.

Then, by Theorem 3, the problem (20) has a solution

ξ(s) =


ξ1(s) =

{
χ(s), s ∈ [−γ, 0],
z1(s), s ∈ N1,

ξ2(s) =


χ(s), s ∈ [−γ, 0],
0, s ∈ N1,
z2(s), s ∈ N2,

In addition, according to Theorem 4, problem (20) is Ulam–Hyers-stable.

Example 2. Let γ > 0,

µ(s) =


7
5 , s ∈ N1 := [0, 1],
6
5 , s ∈ N2 :=]1, 3

2 ],
3
2 , s ∈ N3 :=] 3

2 , 2].
(23)

and consider the following Riemann–Liouville fractional variable-order boundary-value problem:
Dµ(s)

0+ ξ(s) = s−
1
3

(ee
s3

1+s +6)(1+‖xs‖[−γ,0])

, s ∈ N :=]0, 2],

ξ(s) = χ(s), s ∈ [−γ, 0],

(24)

The choice of µ(s) guarantees that (Hyp1) holds. Let

ϕ(s, ys) =
s−

1
3

(ee
s3

1+s + 6)(1 + ‖ys‖[−γ,0])

, (s, ys) ∈ [0, 2]× C([−γ, 0],R).

For y, z ∈ C([−γ, 2],R) and s ∈ N , we have

s
1
3 |ϕ(s, ys)− ϕ(s, zs)| =

∣∣∣∣∣∣ 1

(ee
s3

1+s + 6)

(
1

1 + ‖ys‖[−γ,0]
− 1

1 + ‖zs‖[−γ,0]

)∣∣∣∣∣∣
≤

|‖ys‖[−γ,0] − ‖zs‖[−γ,0]|

(ee
s3

1+s + 6)(1 + ‖ys‖[−γ,0])(1 + ‖ys‖[−γ,0])
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≤ 1

(ee
s3

1+s + 6)
‖yt − zs‖[−γ,0]

≤ 1
e + 6

‖ys − zs‖[−γ,0].

Hence, (Hyp2) holds for σ = 1
3 and K = 1

e+6 .
By (23), according to (8) we consider three auxiliary problems for Riemann–Liouville fractional

differential equations of constant order
D

7
5
0+ξ(s) = s−

1
3

(ee
s3

1+s +6)(1+‖xs‖[−γ,0])

, s ∈ N1,

ξ(0) = 0, ξ(1) = 0,
ξ(s) = χ1(s), s ∈ [−γ, 0],

(25)


D

6
5
0+ξ(s) = s−

1
3

(ee
s3

1+s +6)(1+‖xs‖[−γ,0])

, s ∈ N2,

ξ(1) = 0, ξ( 3
2 ) = 0,

ξ(s) = χ2(s), s ∈ [−γ, 1],

(26)

and 
D

3
2
0+ = s−

1
3

(ee
s3

1+s +6)(1+‖xs‖[−γ,0])

, s ∈ N3,

ξ( 3
2 ) = 0, x(2) = 0,

ξ(s) = χ2(s), s ∈ [−γ, 3
2 ],

(27)

where χ1 = χ ,

χ2(s) =
{

0, , i f s ∈ [0, 1],
χ(s), i f s ∈ [−γ, 0]

and

χ3(s) =
{

0, , i f s ∈ [0, 3
2 ],

χ(s), i f s ∈ [−γ, 0].

We will also show that condition (11) is satisfied for k = 1. Indeed,

K
(

N1−σ
1 − N1−σ

0

)(
N1 − N0

)µ1−1

4µ1−1(1− σ)Γ(µ1)
=

1
e+6

(
11− 1

3 − 01− 1
3

)(
1− 0

) 7
5−1

4
7
5−1(1− 1

3 )Γ(
7
5 )

' 0.11137 < 1.

By Theorem 2, the problem (25) has a solution ξ1 ∈ C([−γ, 1],R), where

ξ1(s) =

{
χ(s), s ∈ [−γ, 0]
z1(s), s ∈ N1.

We also have that

K
(

N1−σ
2 − N1−σ

1

)(
N2 − N1

)µ2−1

4µ2−1(1− σ)Γ(µ2)
=

1
e+6

(
3
2

1− 1
3 − 11− 1

3

)(
3
2 − 1

) 6
5−1

4
6
5−1(1− 1

3 )Γ(
6
5 )

' 0.03837 < 1.
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Thus, (11) is fulfilled for k = 2. According to Theorem 2, the BVP (26) possesses a solution
ξ2 ∈ C([−γ, 3

2 ],R), where

ξ2(s) =


χ(s), s ∈ [−γ, 0],
0, s ∈ [0, 1],
z2(s), s ∈ N2.

We also have that

K
(

N1−σ
3 − N1−σ

2

)(
N3 − N2

)µ3−1

4µ3−1(1− σ)Γ(µ3)
=

1
e+6

(
21− 1

3 − 3
2

1− 1
3
)(

2− 3
2

) 3
2−1

4
3
2−1(1− 1

3 )Γ(
3
2 )

' 0.01901 < 1.

Thus, (11) is fulfilled for k = 3. According to Theorem 2, the BVP (27) possesses a solution
ξ3 ∈ C([−γ, 2],R),
where

ξ3(s) =


χ(s), s ∈ [−γ, 0],
0, s ∈ [0, 3

2 ],
z3(s), s ∈ N3.

Then, by Theorem 3, problem (24) has a solution

ξ(s) =



ξ1(s) =
{

χ(s), s ∈ [−γ, 0],
z1(s), s ∈ N1,

ξ2(s) =


χ(s), s ∈ [−γ, 0],
0, s ∈]0, N1],
z2(s), s ∈ N2,

ξ3(s) =


χ(s), s ∈ [−γ, 0],
0, s ∈]0, N2],
z3(s), s ∈ N3.

In addition, according to Theorem 4, problem (24) is Ulam–Hyers stable.

Remark 9. The constructed examples show the capability of the elaborated existence and stability
results.

6. Conclusions

This research introduces a boundary-value problem for a Riemann–Liouville non-
linear fractional differential equation of variable order with finite delay. The analytical
solutions have been successfully investigated via three strategies: the Kuratowski mea-
sure of noncompactness, Darbo’s fixed-point theorem, and the Ulam–Hyers stability
concept. We established existence and stability criteria for the solutions of the problem
under consideration. The presented new results generalize some existing results for the
Riemann–Liouville delayed fractional differential equation of constant order considering
the variable order of fractional derivatives. Two examples are given at the end to support
and validate the potentiality of the obtained results. We expect that the proposed results
will motivate the researchers in the further development of the topic. The established
existence results are essential in the qualitative investigation of the introduced problem.
Additionally, since the Riemann–Liouville delayed fractional differential equations of
variable order are intensively applied in the mathematical modeling, our research is
practically important. Hence, the application of our results to some Riemann–Liouville
fractional-neural-network models of variable order with finite delay is an interesting
topic for a future research. The obtained results can also be applied in the investigation of
numerous qualitative properties of the solutions. In addition, it is possible to extend the



Axioms 2023, 12, 80 21 of 23

proposed results to the impulsive case and study the effect of some impulsive controllers
on the fundamental and qualitative behavior of the solutions.
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