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Abstract: In this article, we present generalized conditions of three-step iterative schemes for solving
nonlinear equations. The convergence order is shown using Taylor series, but the existence of
high-order derivatives is assumed. However, only the first derivative appears on these schemes.
Therefore, the hypotheses limit the utilization of the schemes to operators that are at least nine times
differentiable, although the schemes may converge. To the best of our knowledge, no semi-local
convergence has been given in the setting of a Banach space. Our goal is to extend the applicability
of these schemes in both the local and semi-local convergence cases. Moreover, we use our idea of
recurrent functions and conditions only on the derivative or divided differences of order one that
appear in these schemes. This idea can be applied to extend other high convergence multipoint and
multistep schemes. Numerical applications where the convergence criteria are tested complement
this article.
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1. Introduction

Let M and M1 denote Banach spaces, D stand for an open set and F : D ⊂ M→ M1
be a continuous operator.

We denote by x∗ a solution of the nonlinear equation

F(x) = 0. (1)

Iterative schemes are utilized for solving the nonlinear Equation (1). A plethora of iterative
schemes have been employed for approximating x∗ [1,2].

In this article, we study the generalized three-step iterative schemes defined for
n = 0, 1, 2, . . . , by

yn = xn −M−1
1,n F(xn)

zn = yn −M−1
2,n F(yn) (2)

xn+1 = zn −M−1
3,n F(zn),

where M1,n = M1(xn), M1 : D −→ L(M, M1), M2,n = M2(xn, yn), M2 : D × D −→
L(M, M1), M3,n = M3(xn, yn, zn), and M3 : D× D× D −→ L(M, M1).

This scheme generalizes numerous others already in the literature [3–5]. If, e.g.,

M1,n = M2,n = F′(xn), M3,n = O, (3)

Axioms 2022, 11, 307. https://doi.org/10.3390/axioms11070307 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11070307
https://doi.org/10.3390/axioms11070307
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-0035-1022
https://orcid.org/0000-0002-9189-9298
https://orcid.org/0000-0002-3530-5539
https://doi.org/10.3390/axioms11070307
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11070307?type=check_update&version=2


Axioms 2022, 11, 307 2 of 18

or
M1,n = M2,n = M3,n = F′(xn) (4)

or
M1,n = F′(xn), M2,n = F′(yn) and M3,n = F′(zn), (5)

then Newton–Traub-type methods are obtained.
The convergence order of the specialized schemes was shown to be three, five,

and eight, respectively, using Taylor expansions. In the case of order three, the fourth
derivative is used. Hence, the assumptions on the ninth derivative reduce the applicability
of these schemes [2,4–6]. In particular, even a simple scalar equation cannot be handled
with the existing results.

For example: Let M = M1 = R, D = [−0.5, 1.5]. Define scalar function λ on D by

λ(t) =
{

t3 log t2 + t5 − t4 i f t 6= 0
0 i f t = 0.

Notice that t∗ = 1 solves equation λ(t) = 0 and the third derivative is given by

λ′′′(t) = 6 log t2 + 60t2 − 24t + 22.

Obviously, λ′′′(t) is not bounded on D. Therefore, the convergence of the scheme (2) is not
guaranteed by the previous analyses in [2,4–8]. A plethora of other choices can be found
in [4–8]. Therefore, it is important to study the local as well as the semi-local convergence
under unifying convergence and weaker than before criteria.

There are two important types of convergence: The semi-local and the local. The semi-
local is based on the information about an initial guess to provide criteria guaranteeing
the convergence of the scheme; while the local one is based on the information around a
solution to find estimates of the radii of the convergence balls.

The local convergence results are important, although the solution is generally un-
known since the convergence order of the scheme can be determined. This type of result
also demonstrates the degree of difficulty in choosing initial guesses. There are cases when
the radius of convergence of the scheme can be found without knowing the solution.

As an example, let M = M1 = R. Suppose that function F satisfies an autonomous
differential [4,6] equation of the form

S(F(t)) = F′(t),

where S is a continuous function. Notice that S(F(t∗)) = F′(t∗) or F′(t∗) = S(0). In the
case of F(t) = et − 1, we can choose S(t) = t + 1 (see also the numerical section).

Moreover, the local results can apply to projection schemes such as Arnoldi’s, the gen-
eralized minimum residual scheme (GMRES), the generalized conjugate scheme (GCS) for
combined Newton/finite projection schemes, and in relation to the mesh independence
principle to develop the cheapest and most efficient mesh refinement techniques [5,7,9].

In this article, we introduce a majorant sequence and also use our idea of recurrent
functions to extend the applicability of the scheme (2). Our analysis includes error bounds
and results on the uniqueness of x∗ based on computable Lipschitz constants not given
before in [2,4–8] and in other similar studies using the Taylor series. Our idea is very
general. Therefore, it applies to other schemes too [9–14].

The rest of the article is set up as follows: In Section 2, we present the results of the
local analysis. Section 3 contains the semi-local analysis, whereas in Section 4, special cases
are discussed. The numerical experiments are presented in Section 5. Concluding remarks
are given in the last Section 6.
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2. Local Analysis

Let `1, `2 and `3 be given positive constants. Define function ϕ1 on the interval [0, 1
`1
) by

ϕ1(t) =
(`0 + 2`1)t
2(1− `1t)

.

Notice that r1 = 2
`0+4`1

solves equation ϕ1(t)− 1 = 0. Set ρ1 = min{ 1
`1

, 1
`2
}. Moreover,

define function ϕ2 on the interval [0, ρ1) by

ϕ2(t) =
`2 +

`0
2 ϕ1(t))t

1− `2t
.

Then, ϕ2(0) = −1 and ϕ2(t) −→ ∞ as t −→ ρ−1 . Denote by r2 the minimal root of function
ϕ2(t) − 1 guaranteed to exist by the intermediate value theorem on the interval (0, ρ1).
Furthermore, define function ϕ3 on the interval [0, ρ2) by

ϕ3(t) =
(`3 +

`0
2 ϕ2(t))t

1− `3t
,

for ρ2 = min{ 1
`3

, ρ1}. It follows that ϕ3(0) = −1 and ϕ3(t) −→ ∞ as t −→ ρ−2 . Denote by
r3 the minimal root of function ϕ3(t)− 1 in the interval (0, ρ2).

We then show that r defined by

r = min{r1, r2, r3} (6)

is a radius of convergence for scheme (2). Set T = [0, r). It then follows that for all t ∈ T

`1t < 1, `2t < 1, `3t < 1, (7)

0 ≤ ϕ1(t) < 1, (8)

0 ≤ ϕ2(t) < 1, (9)

and
0 ≤ ϕ3(t) < 1 (10)

hold.
Denote by U(x, ρ) the open ball with center x ∈ M and of radius ρ > 0. Moreover,

the ball U[x, ρ] denotes the closure of the ball U(x, ρ). Furthermore, by F′, we denote the
Fréchet derivative of operator F.

The following conditions are needed to show the local convergence of scheme (2). Sup-
pose:

(A1) There exists a simple solution x∗ ∈ D of equation F(x) = 0.
(A2) ‖F′(x∗)−1(M1(x) − F′(x∗))‖ ≤ `1‖x − x∗‖ for all x ∈ D and some `1 > 0. Set

D1 = U(x∗, 1
`1
) ∩ D.

(A3) ‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ `0‖x− x∗‖ for all x ∈ D1 and some `0 > 0.
(A4) ‖F′(x∗)−1(M2(x, y) − F′(x∗))‖ ≤ `2‖x − x∗‖ for all x ∈ D1, y = x − F′(x)−1F(x),

and some constant `2 > 0.
(A5) ‖F′(x∗)−1(M3(x, y, z)− F′(x∗))‖ ≤ `3‖x− x∗‖ for all x ∈ D1, z = y−M2(x, y)−1F(y),

and some constant `3 > 0.
(A6) U[x∗, r] ⊂ D.

The main local convergence result follows for scheme (2).
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Theorem 1. Suppose conditions (A1)–(A5) hold. Then, sequence {xn} produced by scheme (2) for
x0 ∈ U(x∗, r)− {x∗} exists in U(x∗, r), remains in U(x∗, r) for all n = 0, 1, 2, . . . and converges
to x∗. Moreover, the following estimates hold

‖yn − x∗‖ ≤ ϕ1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (11)

‖yn − x∗‖ ≤ ϕ2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (12)

and
‖yn − x∗‖ ≤ ϕ3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (13)

where the functions ϕj, j = 1, 2, 3 are previously defined and radius r is given by (6).

Proof. Mathematical induction is employed to show assertions (11)–(13). Let v ∈ U(x∗, r)−
{x∗}. Using (A1) and (A2), we obtain

‖F′(x∗)−1(M1(v)− F′(x∗))‖ ≤ `1‖v− x∗‖ ≤ `1r < 1.

It follows by (7) and the Banach lemma on invertible operators [2] that M1(v)−1 ∈ L(M1, M) and

‖M1(v)−1F′(x∗)‖ ≤ 1
1− `1‖v− x∗‖ . (14)

In particular, iterate y0 is well defined by the first substep of method (2) and (14) for v = x0.
Then, we can write by this substep

y0 − x∗ = x0 − x∗ −M−1
1,0 F(x0)

= M−1
1,0 F′(x∗)F′(x∗)−1

∫ 1

0
[(M1,0(x0)− F′(x∗))

+(F′(x∗)−
∫ 1

0
F′(x∗ + θ(x0 − x∗))dθ](x0 − x∗), (15)

Then, in view of estimate (15) (for v = x0), conditions (A1), (A2), (A3), and identity (15), we
get

‖y0 − x∗‖ ≤
(`1‖x0 − x∗‖+ `0

2 ‖x0 − x∗‖)‖x0 − x∗‖
1− `1‖x0 − x∗‖

=
(`0 + 2`1)‖x0 − x∗‖2

2(1− `1‖x0 − x∗‖)
= ϕ1(‖x0 − x∗‖)‖x0 − x∗‖
≤ ‖x0 − x∗‖ < r, (16)

where we also used identity

F′(x∗)(x0 − x∗)− [F(x0)− F(x∗)] = [F′(x∗)−
∫ 1

0
F′(x0 + θ(x0 − x∗))dθ](x0 − x∗),

since F(x∗) = 0,
‖F′(x∗)−1(M1,0(x0)− F′(x∗))‖ ≤ `1‖x1 − x∗‖,

and

‖F′(x∗)−1(F′(x∗)−
∫ 1

0
F′(x0 + θ(x0 − x∗))dθ‖ ≤ `

2
‖x0 − x∗‖,

and the triangle inequality. It follows from (16), that iterate y0 ∈ U(x∗, r), and (11) holds
for n = 0. Then, using condition (A4),

‖F′(x∗)−1(M2,0 − F′(x∗))‖ ≤ `2‖x0 − x∗‖ ≤ `2r < 1.
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That is M−1
2,0 ∈ L(M1, M),

‖M−1
2,0 F′(x∗)‖ ≤ 1

1− `2‖x0 − x∗‖ , (17)

and iterate z0 exists by the second substep of method (2) for n = 0. Then, similarly to the
derivation of identity (15), we can also write by this substep

z0 − x∗ = y0 − x∗ −M−1
2,0 F(y0)

= M−1
2,0 [(M2,0 − F′(x∗))

+(F′(x∗)−
∫ 1

0
F′(x∗ + θ(y0 − x∗))dθ](x0 − x∗). (18)

Then, as in the derivation of estimate (16) but using (17), (A2) and (A4), we obtain

‖z0 − x∗‖ ≤
(`2‖x0 − x∗‖+ `0

2 ‖y0 − x∗‖)‖x0 − x∗‖
1− `2‖x0 − x∗‖

≤ ϕ2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖, (19)

Hence, iterate z0 ∈ U(x0, t∗) and (12) holds for n = 0. Then, by using (A5), we obtain

‖F′(x∗)−1(M3,0 − F′(x∗))‖ ≤ `3‖x0 − x∗‖ ≤ `3r < 1

Therefore, it follows that M−1
3,0 ∈ L(M1, M),

‖M−1
3,0 F′(x∗)‖ ≤ 1

1− `3‖x0 − x∗‖ , (20)

and iterate x1 is well defined by the third substep of scheme (2) for n = 0. Furthermore,
by this substep as in (15), we obtain the identity

x1 − x∗ = M−1
3,0 [(M3,0 − F′(x∗)) + (F′(x∗)−

∫ 1

0
F′(x∗ + θ(z0 − x∗))dθ](x0 − x∗). (21)

Then, using (20), (21), (A3) and (A5) as in (16), we have

‖x1 − x∗‖ ≤
(`3‖x0 − x∗‖+ `0

2 ‖z0 − x∗‖)‖x0 − x∗‖
1− `2‖x0 − x∗‖

= ϕ3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖. (22)

It then follows by estimate (22) that iterate x1 ∈ U(x∗, r) and (13) holds for n = 0. Therefore,
the induction for assertions (11)–(13) is completed if xi, yi, zi, xi+1 replace x0, y0, z0, x1,
respectively, in the previous calculations. Finally, from the calculation

‖xi+1 − x∗‖ ≤ λ‖xi − x∗‖ < r, (23)

where λ = ϕ3(‖x0− x∗‖ ∈ [0, 1), we conclude that limi−→∞ xi = x∗ and xi+1 ∈ U(x∗, r).

The uniqueness of the solution’s result follows.

Proposition 1. Suppose that there exists a simple solution x∗ ∈ D of equation F(x) = 0, and
(A3) holds. Set D2 = U(x∗, 2

`0
) ∩ D. Then, element x∗ is the only solution of equation F(x) = 0

in region D2.
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Proof. Consider x̃ ∈ D2 with F(x̃) = 0. Define the linear operator Q =
∫ 1

0 F′(x∗ + θ(x̃−
x∗))dθ. Then, by applying condition (A3)

‖F′(x∗)−1(Q− F′(x∗))‖ ≤ `0

∫ 1

0
‖x∗ + θ(x̃− x∗))− x∗‖dθ

`0

∫ 1

0
θ‖x̃− x∗‖dθ <

`0

2
2
`0

= 1. (24)

It follows that the linear operator Q is invertible. Then, the approximation Q(x̃− x∗) =
F(x̃)− F(x∗) = 0− 0 = 0, gives x̃− x = Q−1(0) = 0. Hence, we conclude that x̃ = x∗.

Remark 1. A similar result was given in ([15], Theorem 1) in the special case when M = M1 =
R and M1,n = F′(xn). However, this non-affine invariant form result is not correct, since it
corresponds to the (11) estimate which is

‖yn − x∗‖ ≤ `1‖xn − x∗‖2

2(1− `1‖xn − x∗‖)

but which is not implied by (A2). Hence, the proof of Theorem 1 in [15] breaks down at this point.
Notice also that in [15] they used M̄1,n = F′(xn)−1, M̄2,n = M−1

2,n and M̄3,n = M−1
3,n .

3. Semi-Local Analysis

The semi-local analysis of iterative scheme (2) is based on some Lipschitz-type conditions
relating operators F, F′, and linear operators Mj,n to some parameters. Moreover, sequence
{xn} is majorized by some scalar sequences depending on some parameters. Suppose:

(H1) There exist x0 ∈ D, η ≥ 0 such that F′(x0)
−1, M−1

1,0 ∈ L(M1, M) and ‖M−1
1,0 F(x0)‖ ≤ η.

(H2) ‖F′(x0)
−1(M1(x)− F′(x0))‖ ≤ a1‖x− x0‖ for all x ∈ D and some a1 > 0. Set D3 =

U(x0, 1
a1
) ∩ D.

(H3) ‖
∫ 1

0 F′(x0)
−1(F′(z + θ(x− z))−M3(x, y, z))dθ‖ ≤ b1

‖
∫ 1

0
F′(x0)

−1(F′(x + θ(y− x))−M1(x))dθ‖ ≤ b2,

‖
∫ 1

0
F′(x0)

−1(F′(y + θ(z− y))−M2(x, y))dθ‖ ≤ b3,

‖F′(x0)
−1(M2(x, y)− F′(x0))‖ ≤ a2‖y− x0‖,

‖F′(x0)
−1(M3(x, y, z)− F′(x0))‖ ≤ a3‖z− x0‖,

where for all θ ∈ [0, 1], x ∈ D3 and y, z are taken from method (26) (or for all y, z ∈ D3),
and b1, b2, b3, a2 and a3 are positive constants depending on operators F, F′ and Mj,n.

(H4) U[x0, ρ] ⊂ D for some ρ > 0 to be given later.

As can be seen by the proof of Theorem 2 that follows the iterates, {xn} lies in the set D3
which is a more accurate domain than D, since D3 ⊂ D. This way, at least as tight constants
are obtained than if conditions (H3) and (H4) hold only in D (see also the numerical section).

We chose the last two conditions in (H3) this way. However, other choices are also
possible [1–4]. Notice that if a1η < 1 and D̃ = U(y0, 1

a1
− η)∩D, then D̃ ⊂ D3,, respectively,

and even smaller constants “a” are obtained, if D̃ replaces D3.
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Moreover, we define the scalar sequence {tn} by

t0 = 0, s0 = η

un = sn +
b2(sn − tn)

1− a2sn
(25)

tn+1 = un +
b3(un − sn)

1− a3un
, (26)

sn+1 = tn+1 +
b1(tn+1 − un)

1− a1tn+1
.

This sequence shall be shown to be majorizing for scheme {xn} in Theorem 2. However,
first, a convergence result for it is needed.

We then develop results on the convergence of sequence {tn}.

Lemma 1. Suppose
a2sn < 1, a3un < 1 and a1tn+1 < 1 (27)

hold for all n = 0, 1, 2, . . . . Then, sequence {tn} is such that sn ≤ un ≤ tn+1 < 1
a1

and
limn−→∞ tn = t∗ ≤ 1

a1
.

Proof. It follows from (26) and (27) that sequence {tn} is nondecreasing, bounded from
above by 1

a1
and as such it converges to its unique least upper bound t∗ ∈ [0, 1

a1
].

The semi-local convergence of method (2) follows next.

Theorem 2. Under conditions (H1)–(H4), further suppose: conditions of Lemma 1 hold and ρ = t∗

in (H4). Then, the sequence {xn} generated by method (2) exists in U(x0, t∗), stays in U(x0, t∗)
and converges to a solution x∗ ∈ U[x0, t∗] of equation F(x) = 0. Moreover, the following estimates
hold

‖yn − xn‖ ≤ sn − tn (28)

‖zn − yn‖ ≤ un − sn, (29)

and
‖xn+1 − zn‖ ≤ tn+1 − un. (30)

Proof. Mathematical induction is used to show (29)–(31). Using (H1) and (27)

‖y0 − x0‖ = ‖M−1
1,0 F(x0)‖ ≤ η = s0 − t0,

so iterate y0 ∈ U(x0, t∗) and (56) holds for n = 0. Let v ∈ U(x0, t∗). It then follows from
(H3) that

‖F′(x0)
−1(M2(x0, y0)− F′(x0))‖ ≤ a2‖y0 − x0‖ < a2t∗ < 1.

That is, M2(x0, y0)
−1 ∈ L(M1, M),

‖M2(x0, y0)
−1F(x0)‖ ≤

1
1− a2‖y0 − x0‖

, (31)

and iterate z0 is well defined by the second substep of method (26) for n = 0. By the first
substep of method (2)

F(y0) = F(y0)− F(x0)−M1,0(y0 − x0),

F′(x0)
−1F(y0) =

∫ 1

0
F′(x0)

−1(F′(x0 + θ(y0 − x0))−M1(x0))dθ(y0 − x0),
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‖F′(x0)
−1F(y0)‖ ≤ b2‖y0 − x0‖ ≤ b2(s0 − t0)

and
‖z0 − y0‖ ≤ ‖M2(x0, y0)

−1F′(x0)‖‖F′(x0)
−1F(y0)‖ ≤ u0 − s0.

Hence, (29) holds for n = 0 and

‖z0 − x0‖ ≤ ‖z0 − y0‖+ ‖y0 − x0‖ ≤ u0 − s0 + s0 − t0 = u0 < t∗.

Therefore, iterate, z0 ∈ U(x0, t∗). As in (31), we obtain

‖M3(x0, y0, z0)
−1F′(x0)‖ ≤

1
1− a3‖z0 − x0‖

.

By the second substep of method (2), we can write

F(z0) = F(z0)− F(y0) + F(y0)

=
∫ 1

0
(F′(y0 + θ(z0 − y0))dθ −M2,0)(z0 − y0).

Consequently
‖F′(x0)

−1F(z0)‖ ≤ b3‖z0 − y0‖ ≤ b3(u0 − s0).

Then, we obtain

‖x1 − z0‖ ≤ ‖M3(x0, y0, z0)
−1F′(x0)‖‖F′(x0)

−1F(z0) ≤ t1 − u0,

and

‖x1 − x0‖ ≤ ‖x1 − z0‖+ ‖z0 − y0‖+ ‖y0 − x0‖
≤ t1 − u0 + u0 − s0 + s0 − t0 = t1 < t∗.

That is, iterate x1 ∈ U(x0, t∗) and (31) holds for n = 0. Moreover, we can write

F(x1) = F(x1)− F(z0)−M3,0(x1 − z0)

=
∫ 1

0
[F′(z0 + θ(x1 − z0))dθ −M3,0](x1 − x0),

‖F′(x0)
−1F(x1)‖ ≤ b1‖x1 − x0 ≤ b1(t1 − u0),

‖y1 − x1‖ ≤ ‖M−1
1,0 (x0)F′(x0)‖‖F′(x0)

−1F(x1)‖ ≤ s1 − t1

and
‖y1 − x0‖ ≤ ‖y1 − x1‖+ ‖x1 − z0‖ ≤ s1 − t1 + t1 − u0 ≤ s1 < t∗,

so y1 ∈ U(x0, t∗) and (29) holds for n = 0. Simply revisit the preceding estimations
with xk, yk, zk, xk+1 replacing x0, y0, z0, x1, respectively, to terminate the induction for items
(29)–(31). Sequence {tk} is complete as convergent. In view of (29)–(31), sequence {xn}
is also complete and as such, it converges to some x∗ ∈ U[x0, t∗]. By letting k −→ ∞ in
the estimate

‖F′(x0)
−1F(xk)‖ ≤ b1(tk − uk−1)

and using the continuity of F, we conclude that F(x∗) = 0.

A uniqueness result follows.

Proposition 2. Under the conditions of Theorem 2, further suppose that there exists R ≥ t∗

such that
`0

2
(R + t∗) < 1.
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Set D4 = U[x0, t∗] ∩ D. Then, the element x∗ is the only solution of equation F(x) = 0 in the
region D4.

Proof. Let x̃ ∈ D4 be such that F(x̃) = 0. Then, as in Proposition 1, we obtain

‖F′(x0)
−1(Q− F′(x0))‖ ≤ `0

∫ 1

0
((1− θ)‖x0 − x∗‖+ θ‖x0 − x̃‖)dθ

≤ `0

2
(t∗ + R) < 1.

Therefore, we deduce that x̃ = x∗.

4. Special Cases

Let M1,n = F′(xn), M2,n = F′(yn) and M3,n = F′(zn). Then, method (2) reduces to

yn = xn − F′(xn)
−1F(xn)

zn = yn − F′(yn)
−1F(yn) (32)

xn+1 = zn − F′(zn)
−1F(zn).

This is Newton’s three-step method also called by some Traub’s extended three-step method.
It seems to be the most interesting special case of method (2) to consider as an application.
Moreover, the semi-local convergence of it uses our new idea of recurrent functions, and the
resulting convergence criteria are weaker than those in earlier works for method (32) using
the Kantorovich condition 2L1η ≤ 1 [2,4,7,8] (as can also be seen in Example 5.2). Moreover,
the error bounds are tighter and the information on the location of the solution is more
precise than in the aforementioned works. Finally, in Lemma 2, we gave even weaker
convergence criteria for method (32). Hence, this is clearly a most revealing special case to
consider, since it can also be connected to earlier works and improve them too.

The following conditions are used.
Suppose:

(H1) There exists x0 ∈ D, η ≥ 0 such that F′(x0)
−1 ∈ L(M1, M) and

‖F′(x0)
−1F(x0)‖ ≤ η.

(H2)
‖F′(x0)

−1(F′(x)− F′(x0))‖ ≤ L0‖x− x0‖

for all x ∈ D and some L0 > 0. Set D5 = U(x0, 1
L0
) ∩ D.

(H3) For each x, y ∈ D5

‖F′(x0)
−1(F′(u)− F′(v))‖ ≤ L‖u− v‖

for all u ∈ D5 and v = u− F′(u)−1F(u) ∈ D (or all v ∈ D5) and some L > 0.
(H4) U[x0, t∗] ⊂ D for some t∗ to be given later.

Notice that condition (H3) was used for all u, v ∈ D and constants L1 [2,4,7,8] as well
as for all u, v ∈ D5 with constant K [1,3]. That is:

(M1) For each x, y ∈ D

‖F′(x0)
−1(x0)(F′(u)− F′(v))‖ ≤ L1‖u− v‖.

(M2) For each x, y ∈ D5

‖F′(x0)
−1(F′(u)− F′(v))‖ ≤ K‖u− v‖.
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It follows by these definitions that

L ≤ K ≤ L1 and ≤ L1. (33)

Hence, any analysis using L improves earlier ones using L1 or K (see also the numerical
section). The sequence {tn} defined by

t0 = 0, s0 = η,

un = sn +
L(sn − tn)2

2(1− L0sn)
,

tn+1 = un +
L(un − sn)2

2(1− L0un)
, (34)

sn+1 = tn+1 +
L(tn+1 − un)2

2(1− L0tn+1)
,

shall be shown to be majorizing for method (32). However, first we need some
convergence results for it.

Notice that the corresponding sequences are

t̄0 = 0, s̄0 = η

ūn = s̄n +
K(s̄n − t̄n)2

2(1− L0 s̄n)
, (35)

t̄n+1 = ūn +
K(ūn − ūn)2

2(1− L0ūn)
,

s̄n+1 = t̄n+1 +
K(t̄n+1 − ūn)2

2(1− L0 t̄n+1)
,

¯̄t0 = 0, ¯̄s0 = η

¯̄un = ¯̄sn +
L1( ¯̄sn − ¯̄tn)2

2(1− L1 ¯̄sn)
, (36)

¯̄tn+1 = ¯̄un +
L1( ¯̄un − ¯̄un)2

2(1− L1 ¯̄un)
,

¯̄sn+1 = ¯̄tn+1 +
L1( ¯̄tn+1 − ¯̄un)2

2(1− L1
¯̄tn+1)

.

We assume that L0 ≤ K. Otherwise, replace K by L0 in sequence (35). If follows from (34)
and these definitions that

tn ≤ t̄n ≤ ¯̄tn,

sn ≤ s̄n ≤ ¯̄sn,

un ≤ ūn ≤ ¯̄un (37)

and
t∗ = lim

n−→∞
tn ≤ s∗ = lim

n−→∞
sn ≤ u∗ = lim

n−→∞
un

(if these limits exist). Hence, the new majorizing sequence is more precise. The convergence
criteria for sequences (35) [1,3] and (36) [2,4,7,8] are:

2Kη ≤ 1 (38)

and
2L1η ≤ 1, (39)
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respectively. However, the convergence criterion for sequence (34) is

2Lη ≤ 1. (40)

Notice that
2L1η ≤ 1⇒ 2Kη ≤ 1⇒ 2Lη ≤ 1. (41)

Condition (40) is weakened further in Lemma 3. It is worth noticing that these benefits
are obtained under the same computational cost, since in practice, the computation of the
Lipschitz constant L1 requires that of L0, K and L as special cases. Notice that criterion (39)
is due to Kantorovich [2].

Then, two convergence results for sequence (34) are presented.

Lemma 2. Suppose
L0sn < 1, L0un < 1 and L0tn+1 < 1. (42)

Then, sequence {tn} is such that 0 ≤ tn ≤ sn ≤ tn+1 and limn−→∞ tn = t∗ ≤ 1
L0

.

Proof. See Lemma 1.

Next, some stronger conditions than (42) are given but are easier to show. However,
first, we define polynomials on the interval [0, 1) by

f (1)n (t) =
L
2

t2n−1η + L0(1 + t + . . . + t2n)η − 1,

f (2)n (t) =
L
2

t2nη + L0(1 + t + . . . + t2n+1)η − 1,

f (3)n (t) =
L
2

t2n+1η + L0(1 + t + . . . + t2n+2)η − 1,

p(t) = L0t3 + (L0 +
L
2
)t2 − L

2
.

and parameter γ by

γ =
2L

L +
√

L2 + 8L0L
.

Notice that γ ∈ (0, 1), p(γ) = 0, whereas the other two roots of p are negative by the
Descarte’s rule of signs. Define the parameters

a =
Lη

2(1− L0η)
, b =

L(u0 − s0)

2(1− L0u0)
, c =

L(t1 − u0)

2(1− L0t1)
and d = max{a, b, c}.

Then, we show:

Lemma 3. Suppose that
0 ≤ d ≤ δ < 1− L0η. (43)

Then, the sequence {tn} generated by (34) is nondecreasing, bounded from above by t∗∗ = η
1−δ and

converges to its unique least upper bound t∗ ∈ [0, t∗∗]. Moreover, the following items hold

0 ≤ sn − tn ≤ δ(tn − sn−1) ≤ δ2n(s0 − t0), (44)

0 ≤ un − sn ≤ δ(sn − tn) ≤ δ2n+1(s0 − t0), (45)

and
0 ≤ tn+1 − sn ≤ δ(un − sn) ≤ δ2n+2(s0 − t0). (46)
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Proof. Induction is utilized for items

0 ≤ L(sk − tk)

2(1− L0sk)
≤ γ, (47)

0 ≤ L(uk − sk)

2(1− L0uk)
≤ γ, (48)

0 ≤ L(tk+1 − uk)

2(1− L0tk+1)
≤ γ, (49)

and
tk ≤ sk ≤ uk ≤ tk+1. (50)

These estimates hold for k = 0 by (34) and (43). Suppose they hold for all integers smaller
or equal to k. Then, we obtain

tk+1 ≤ uk + γ2k+2η ≤ sk + γ2k+1η + γ2k+2η

≤ tk + γ2kη + γ2k+1η + γ2k+2η

...

≤ t0 + γη + · · ·+ γ2k+2η

=
1− γ2k+3

1− γ
η <

η

1− γ
= t∗∗,

similarly,

sk ≤
1− γ2k+1

1− γ
η and uk =

1− γ2k+2

1− γ
η.

Then, evidently, (47) holds if

L
2

γ2kη + L0γ
1− γ2k+1

1− γ
η − γ ≤ 0

or
f (1)k (t) ≤ 0 at t = γ. (51)

By the definition of f (1)k , we can find a relationship between two consecutive functions:

f (1)k+1(t) = f (1)k+1(t)− f (1)k (t) + f (1)k (t)

= f (1)k (t) +
L
2

t2k+1η + L0(1 + t + . . . + t2k+2)η − 1

− L
2

t2k+1η − L0(1 + t + . . . + t2k)η + 1

= f (1)k (t) + p(t)t2k+1η. (52)

In particular, by the definition of p, we obtain

f (1)k+1 = f (1)k (t) at t = γ. (53)

Let function
f (1)∞ (t) = lim

k−→∞
f (1)k (t). (54)

It follows by the definition of f (1)k and (54) that

f (1)∞ (t) =
L0η

1− t
− 1.
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Consequently, assertion (51) holds if

f (1)∞ (t) ≤ 0 at t = γ,

which is true by the right hand side of inequality (43). Similarly, to show (48)

L
2

γ2k+1η + L0γ
1− γ2k+2

1− γ
η − γ ≤ 0

or
f (2)k (t) ≤ 0 at t = γ.

This time, we also have
f (2)k+1(t) = f (2)k (t) + p(t)t2kη,

and for
f (2)∞ (t) = lim

k−→∞
f (2)k (t) =

L0η

1− t
− 1 ≤ 0

at t = γ. Moreover, (49) holds if

L
2

γ2k+2η + γL0
1− γ2k+3

1− γ
η − γ ≤ 0

or
f (3)k (t) ≤ 0 at t = γ. (55)

However, we have
f (3)k+1(t) = f (3)k (t) + p(t)t2k+1γ,

so
f (3)k+1(t) = f (3)k (t), at t = γ.

That is, (55) holds if f (3)∞ (t) = limk−→∞ f (3)k (t) ≤ 0, at t = γ. However, again, we obtain

f (3)∞ (t) =
L0η

1− t
− 1.

Therefore, assertion (55) holds again by (45). Furthermore, (50) holds by (34) and (47)–(49).
The induction for items (47)–(50) is completed. Hence, we deduce tk ≤ sk ≤ tk+1 and
limk−→∞ tk = t∗.

5. Numerical Example

We verify convergence criteria using method (32). Moreover, we compare Lipschitz
constants L0, L, L1 and K. In particular, the first example is used to show that the ratio L0

L1
can be arbitrarily small.

Example 1. Let M = M1 = R. Define function

ψ(t) = δ0t + δ1 + δ2 sin δ3t, t0 = 0,

where δj, j = 0, 1, 2, 3 are fixed parameters. Then, clearly for δ3 large and δ2 small, L0
L1

can be

(arbitrarily) small, so that L0
L1
−→ 0.

The parameters L0, L, K and L1 are computed in the next example. Moreover, the con-
vergence criteria (46)–(48) and those of Lemma 3 are compared.
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Example 2. Let M = M1 = R. Let us consider a scalar function F defined on the set D = U[x0, 1− q]
for q ∈ (0, 1

2 ) by
F(x) = x3 − q.

Choose x0 = 1. Then, we obtain the estimates η = 1−q
3 ,

|F′(x0)
−1(F′(x)− F′(x0))| = |x2 − x2

0|
≤ |x + x0||x− x0| ≤ (|x− x0|+ 2|x0|)|x− x0|
= (1− q + 2)|x− x0| = (3− q)|x− x0|,

for all x ∈ D, so L0 = 3− q, D0 = U(x0, 1
L0
) ∩ D = U(x0, 1

L0
),

|F′(x0)
−1(F′(y)− F′(x)| = |y2 − x2|

≤ |y + x||y− x| ≤ (|y− x0 + x− x0 + 2x0)||y− x|
= (|y− x0|+ |x− x0|+ 2|x0|)|y− x|

≤ (
1
L0

+
1
L0

+ 2)|y− x| = 2(1 +
1
L0

)|y− x|,

for all x, y ∈ D and so K = 2(1 + 1
L0
).

|F′(x0)
−1(F′(y)− F′(x)| = (|y− x0|+ |x− x0|+ 2|x0|)|y− x|

≤ (1− q + 1− q + 2)|y− x| = 2(2− q)|y− x|,

for all x, y ∈ D and L1 = 2(2− q).
Notice that for all q ∈ (0, 1

2 )
L0 < K < L1.

Next, set y = x− F′(x)−1F(x), x ∈ D. Then, we have

y + x = x− F′(x)−1F(x) + x =
5x3 + q

3x2 .

Define function F̄ on the interval D = [q, 2− q] by

F̄(x) =
5x3 + q

3x2 .

Then, we obtain by this definition that

F̄′(x) =
15x4 − 6xq

9x4

=
5(x− q)(x2 + xq + q2)

3x3 ,

where p = 3
√

2q
5 is the critical point of function F̄. Notice that q < p < 2− q. It follows that

this function is decreasing on the interval (q, p) and increasing on the interval (q, 2− q), since
x2 + xq + q2 > 0 and x3 > 0. So, we can set

K2 =
5(2− q)2 + q

9(2− q)2

and
K2 < L0.
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However, if x ∈ D0 = [1− 1
L0

, 1 + 1
L0
], then

L =
5$3 + q

9$2 ,

where $ = 4−q
3−q and K < K1 for all q ∈ (0, 1

2 ). Then, criterion (39) is not satisfied for all q ∈ (0, 1
2 ).

Hence, there is no guarantee that scheme (34) converges to x∗ = 3
√

q. Moreover, our earlier
criterion (38) holds for q ∈ (0.4620, 1]. Furthermore, the new criterion by solving becomes

2L̄η ≤ 1,

where L̄ = 1
8 (4L0 + L +

√
L2 + 8L0L). This condition holds for q ∈ (0.4047, 1). Clearly, the new

results extend the range of values q for which scheme (34) converges.
This range can be extended even further if we apply Lemma 2. Indeed, choose q = 0.4, and we

have the following Table 1, showing that the conditions of Lemma 2 are satisfied.

Table 1. Sequence (32).

n 1 2 3 4 5 6

ui 0.2330 0.2945 0.3008 0.3009 0.3009 0.3009

si 0.2000 0.2896 0.3008 0.3009 0.3009 0.3009

tn+1 0.2341 0.2946 0.3008 0.3009 0.3009 0.3009

L0si 0.5200 0.7530 0.7820 0.7824 0.7824 0.7824

L0ui 0.6058 0.7658 0.7822 0.7824 0.7824 0.7824

L0ti+1 0.6087 0.7659 0.7822 0.7824 0.7824 0.7824

Example 3. Consider M = M1 = C[0, 1] and D = U[0, 1]. Then, the boundary value problem
(BVP) [4]

ς(0) = 0, ς(1) = 1,

ς′′ = −ς− σς2

can be also given as

ς(s) = s +
∫ 1

0
G(s, t)(ς3(t) + σς2(t))dt

where σ is a constant and G(s, t) is the Green’s function

G(s, t) =
{

t(1− s), t ≤ s
s(1− t), s < t.

Consider F : D −→ M1 as

[F(x)](s) = x(s)− s−
∫ 1

0
G(s, t)(x3(t) + σx2(t))dt.

Let us set ς0(s) = s and D = U(ς0, ρ0). Then, clearly U(ς0, ρ0) ⊂ U(0, ρ0 + 1), since ‖ς0‖ = 1.
If 2σ < 5. Then, conditions (H1)–(H4) are satisfied for

L0 =
2σ + 3ρ0 + 6

8
, L =

σ + 6ρ0 + 3
4

.

Hence, L0 < L1.

The next two examples concern the local convergence of method (34) and the radii rj, r
were computed using Formula (6) and the functions ϕj.
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Example 4. If M = M1 = C[0, 1] is equipped with the max-norm, D = U[0, 1], consider
Q : D −→ M1 given as

Q(λ)(x) = ϕ(x)− 5
∫ 1

0
xτλ(τ)3dτ. (56)

We obtain

Q′(λ(ξ))(x) = ξ(x)− 15
∫ 1

0
xτλ(τ)2ξ(τ)dτ, for each ξ ∈ D.

Then, since x∗ = 0, conditions (A1)–(A5) hold provided that `0 = `1 = `2 = `3 = 7.5. Then, the
radii are:

r1 = 0.0533 = r, r2 = 0.1499, and r3 = 0.1660.

Example 5. Consider the motion system

H′1(w1) = ew1 , H′2(w2) = (e− 1)w2 + 1, H′3(w3) = 1

with H1(0) = H2(0) = H3(0) = 0. Let H = (H1,H2,H3). Let M = M1 = R3, D = U[0, 1],
x∗ = (0, 0, 0)tr. Let functionH on D for w = (w1, w2, w3)

tr given as

H(w) = (ew1 − 1,
e− 1

2
w2

2 + w2, w3)
tr.

The Fréchet derivative is given by

H′(w) =

 ex 0 0
0 (e− 1)w2 + 1 0
0 0 1

.

Notice thatH′(x∗) = I. Let w ∈ R3 with w = (w1, w2, w3)
tr. Moreover, the nor for M ∈ R3×R3 is

‖M‖ = max
1≤k≤3

3

∑
i=1
‖mk,i‖.

We need to verify conditions (A1)–(A5). To achieve this, we study G(t) = et − 1 on D = [−1, 1].
We have t∗ = 1, hence G ′(t∗) = 1, and

|G ′(t)− G ′(t∗)| = |t + t2

2
+ . . . +

tn

n!
+ . . . |

= |1 + t− 0
2!

+ . . . +
(t− 0)n−1

n!
+ . . . ||t− o|

so `1 = e− 1. Then, D1 = U(x∗, 1
e−1 ) ∩ D = U(x∗, 1

e−1 ). This time we obtain

|G ′(t)− G ′(t∗)| ≤ `0|t− 0|,

where
`0 = 1 +

1
(e− 1)2!

+ . . . +
1

(e− 1)n−1n!
+ . . . ≈ 1.43 < `1.

Then, we have for t ∈ D1

|s| = |t− G ′(t)−1G(t)| = |t− 1 + e−t|

= | (−t)2

2!
+ . . . +

(−t)n

n!
+ . . . |

= |t|( |t|
2!

+ . . . +
|t|n−1

n!
+ . . .) ≤ `0 − 1

e− 1
.
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Moreover,

|F′(s)− F′(t∗)| = |es − 1|

≤ |s|(1 + |s|
2!

+ . . . +
|s|n−1

n!
+ . . .)

≤ |t| `0 − 1
e− 1

(1 +
`0 − 1

(e− 1)2!
+ . . . +

(
`0 − 1
e− 1

)n−1 1
n!

+ . . .)

= `2(t− 0),

where `2 ≈ 0.49 < `1. We can set `3 = `2.
Then, the radii are:

r1 = 0.2409 = r, r2 = 0.3101, and r3 = 0.3588.

In the last example, we revisit the motivational example given in the introduction,
where we apply scheme (32).

Example 6. The iterates for the motivational example with x0 = 0.85 are given in Table 2.

Table 2. Sequence (32).

n 1 2 3 4 5 6

yi 1.1609 0.2067 0.0846 0.0377 0.0174 0.0081

zi 0.3121 0.1640 0.0695 0.0313 0.0145 0.0068

xi 0.8500 0.3985 0.1399 0.0605 0.0274 0.0127

6. Conclusions

Conditions for the convergence of generalized three-step schemes are presented for
both the local as well as semi-local case. The sequences generated by these schemes
approximate solutions of equation F(x) = 0 that are locally unique. The convergence
conditions depend on the divided difference of the order of one or the derivative, which
appears on the schemes. However, this is not the case with earlier articles utilizing high-
order derivatives, which do not appear in the schemes. Moreover, the error analysis
is tighter because we show that the iterates remain in a stricter domain than in earlier
articles. Hence, the utilization of these schemes is extended with the same or even weaker
conditions. Our process does not depend on these schemes. Therefore, it can be employed
similarly to extend the usage of the other schemes [9,10,15–18].
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