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Abstract: The WENO-NIP scheme was obtained by developing a class of L1-norm smoothness
indicators based on Newton interpolation polynomial. It recovers the optimal convergence order in
smooth regions regardless of critical points and achieves better resolution than the classical WENO-JS
scheme. However, the WENO-NIP scheme produces severe spurious oscillations when solving 1D
linear advection problems with discontinuities at long output times, and it is also very oscillatory
near discontinuities for 1D Riemann problems. In this paper, we find that the spectral property of
WENO-NIP exhibits the negative dissipation characteristic, and this is the reason why WENO-NIP is
unstable near discontinuities. Using this knowledge, we develop a way of improving the WENO-NIP
scheme by introducing an additional term to eliminate the negative dissipation interval. The proposed
scheme, denoted as WENO-NIP+, maintains the same convergence property, as well as the same
low-dissipation property, as the corresponding WENO-NIP scheme. Numerical examples confirm
that the proposed scheme is much more stable near discontinuities for 1D linear advection problems
with large output times and 1D Riemann problems than the WENO-NIP scheme. Furthermore,
the new scheme is far less dissipative in the region with high-frequency waves. In addition, the
improved WENO-NIP+ scheme can remove or at least greatly decrease the post-shock oscillations
that are commonly produced by the WENO-NIP scheme when simulating 2D Euler equations with
strong shocks.

Keywords: hyperbolic problems; WENO; high order; high resolution; shock capturing scheme

MSC: 35L25; 35L35; 35L52; 35L65

1. Introduction

Weighted essentially non-oscillatory (WENO) conservative schemes [1–12] have been
studied widely since the 1990s for solving hyperbolic conservation laws, especially prob-
lems with both smooth fine-scale structures and discontinuities. Besides, the WENO
schemes have also been widely used to solve other partial differential equations [13–16].
In addition, many WENO reconstructions that reconstruct entire polynomials, which can
easily be evaluated and differentiated at any point instead of reconstructing point-values,
have been proposed, and we refer to [17–20] for more details.

Liu et al. [1] devised the (r + 1)th-order accurate WENO scheme, which was an
improvement of the famous essentially non-oscillatory (ENO) schemes [21–24] and was
the first WENO scheme. To improve the convergence order further, Jiang and Shu [2]
developed the classical WENO scheme, dubbed WENO-JS, by proposing a new local
smoothness indicator (LSI), which is a measurement of the smoothness of a solution over a
particular substencil. As it can maintain the ENO property near discontinuities and achieve
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the optimal convergence orders in most smooth regions, WENO-JS has become the most
popular among the family of WENO schemes.

However, it was reported by Henrick et al. [10] that WENO-JS may fail to recover the
optimal convergence rate of accuracy near critical points. To fix this issue, they proposed
the first mapped WENO scheme, dubbed WENO-M, by introducing a mapping function
to satisfy the sufficient condition for obtaining optimal convergence orders near critical
points. Since then, a series of mapping functions have been designed [5–8,12,25,26] by
obeying principles similar to WENO-M. It is well known [8,11,27] that most of the mapped
WENO schemes suffer from expensive extra computational costs resulting from their com-
plicated mapping procedures. A very different way of recovering the optimal convergence
orders near critical points by WENO schemes is to use the higher-order information of
the global stencil to construct the nonlinear weights. This idea was originally proposed
by Borges et al. [11]. They introduced the global smoothness indicator (GSI) and hence
devised the new nonlinear weights formula, which also satisfies the sufficient condition
of optimal convergence. The resultant scheme was denoted as WENO-Z. If the power q
of the weights of WENO-Z is set to be 2, the fifth-order WENO-Z scheme can achieve the
optimal convergence orders regardless of critical points. In addition, as it is less dissipative,
WENO-Z achieves better results than WENO-M. Moreover, the computational cost of
WENO-Z is very cheap, and it is almost the same as that of WENO-JS. Inspired by the
work of Borges et al. [11], many different WENO-Z-type schemes have been proposed by
constructing different LSIs and GSIs.

Recently, Yuan [9] proposed a new WENO-Z-type scheme, dubbed WENO-NIP. Based
on Newton interpolation polynomials, a class of smoothness indicators, including both LSI
and GSI, was developed in the L1 sense. One can easily check that the LSI of WENO-NIP is
more succinct than that of the classical WENO-JS scheme. Yuan verified numerically that
WENO-NIP can recover the fifth-order convergence rate of accuracy in smooth regions
even in the presence of critical points. It was claimed [9] that WENO-NIP can resolve
discontinuities sharply while keeping an essential non-oscillatory performance. However,
closer examinations of solutions of the 1D Riemann problems used by Yuan (see Figures 4
and 5 of [9]) indicate that WENO-NIP produces evident spurious oscillations near discon-
tinuities. In other words, WENO-NIP was unstable in some sense. Actually, our further
calculations also show that WENO-NIP generates clear spurious oscillations (see examples
in Section 4.3) and severe post-shock oscillations (see examples in Section 5.3) when solving
1D linear advection equation for long output times and 2D Euler equations with strong
shock waves, respectively. In this paper, we try to analyze the reason why WENO-NIP
suffers from these troubles and improve it accordingly.

The rest of the paper is organized as follows. In Section 2, the finite volume method-
ology and several different WENO schemes, including WENO-JS [2], WENO-Z [11], and
WENO-NIP [9], are briefly described. In Section 3, we analyze the spectral property of
WENO-NIP by using the ADR technique. The negative-dissipation interval of WENO-NIP
will also be shown and discussed in this section. In Section 4, the design of the improved
WENO-NIP scheme, termed WENO-NIP+, is proposed, as well as its basic properties and
advantages for long-run simulations. Numerical experiments are conducted to demonstrate
the enhancements of the proposed scheme in Section 5. Section 6 concludes this paper.

2. Brief Description of the WENO Schemes

In this section, we briefly describe the basic concepts of several fifth-order WENO
schemes. Before that, we first review the finite volume methodology.

2.1. Finite Volume Methodology

For simplicity, we consider the one-dimensional hyperbolic conservation law

∂u
∂t

+
∂

∂x
f (u) = 0, x ∈ [xl , xr], t > 0, (1)
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with the initial condition u(x, 0) = u0(x). For illustrative purposes in the present study, we
consider the uniform meshes without loss of generality. Suppose that there are N uniform
mesh cells, say, Ij := [xj−1/2, xj+1/2], j = 1, · · · , N. The mesh size is ∆x = (xr − xl)/N, the
cell centers are xj = xl + (j− 1/2)∆x, and the cell boundaries are xj±1/2 = xj ± ∆x/2. In
numerical simulations, the objective is to calculate the approximations to the cell averages
ū(xj, t) = 1

∆x
∫ xj+1/2

xj−1/2
u(x, t)dx.

Taking Ij as the control volumes, the associated semi-discretization of Equation (1) can
be reformulated as

dūj(t)
dt

≈ − 1
∆x

(
f̂
(

u−j+1/2, u+
j+1/2

)
− f̂

(
u−j−1/2, u+

j−1/2

))
, (2)

where ūj(t) is the numerical approximation to ū(xj, t), and f̂
(

u−j±1/2, u+
j±1/2

)
are the nu-

merical fluxes, with u±j±1/2 referring to the limits of u at cell boundaries xj±1/2. In this

work, we compute u±j±1/2 by WENO reconstructions, as narrated later. The following global
Lax–Friedrichs flux will be used in our calculations:

f̂ (a, b) =
1
2
[ f (a) + f (b)− α(b− a)],

where α = maxu| f ′(u)| is a constant, and the maximum is taken over the whole range of u.
Let

L(uj) = −
1

∆x

(
f̂
(

u−j+1/2, u+
j+1/2

)
− f̂

(
u−j−1/2, u+

j−1/2

))
,

then, the semi-discretization scheme Equation (2) can be marched in time using a suitable
time discretization method. In this paper, the following widely used third-order TVD
Runge–Kutta method [28–30] is chosen:

u(1)
j = un

j + ∆tL(un
j ),

u(2)
j =

3
4

un
j +

1
4

u(1)
j +

1
4

∆tL(u(1)
j ),

un+1
j =

1
3

un
j +

2
3

u(2)
j +

2
3

∆tL(u(2)
j ),

where u(i)
j , i = 1, 2 are the intermediate stages, and un

j is the value of u at time level
tn = n∆t.

It should be noted that, instead of using Runge–Kutta technique for time integration,
the ADER schemes (such as those proposed by Toro and Titarev [31–33]) could also be used.
Readers may refer to [34–39] for more details.

2.2. Classical WENO-JS and WENO-Z Reconstructions

Taking u−j+1/2 as an example, we will review several classical WENO reconstruction
procedures. For brevity of presentation but without causing any confusion, we drop the
superscript “−” in the discussion below.

The fifth-order WENO reconstructions build uj+1/2 through the convex combination
of three ENO [21–24] reconstructions on three substencils, taking the form

uj+1/2 =
2

∑
l=0

ωsus
j+1/2, (3)

where us
j+1/2 = ∑2

l=0 csl ūj−s+l with csl are the Lagrangian interpolation coefficients (see [2]),
which depend on the parameter s = 0, 1, 2, but not on the values ūj. Explicitly, we have
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u0
j+1/2 =

1
6
(2ūj−2 − 7ūj−1 + 11ūj),

u1
j+1/2 =

1
6
(−ūj−1 + 5ūj + 2ūj+1),

u2
j+1/2 =

1
6
(2ūj + 5ūj+1 − ūj+2).

(4)

For the classical WENO-JS scheme [2], the nonlinear weights are computed by

ωJS
s =

αJS
s

∑2
l=0 αJS

l

, αJS
s =

ds

(βs + ε)2 , (5)

where βs are the local smoothness indicators, and ε is a very small positive real number
introduced to prevent the denominator from becoming 0. For the fifth-order WENO-JS
scheme, the explicit formulae of βs in terms of the cell-averaged value of u are as follows:

β0 =
13
12
(
ūj−2 − 2ūj−1 + ūj

)2
+

1
4
(
ūj−2 − 4ūj−1 + 3ūj

)2,

β1 =
13
12
(
ūj−1 − 2ūj + ūj+1

)2
+

1
4
(
ūj−1 − ūj+1

)2,

β2 =
13
12
(
ūj − 2ūj+1 + ūj+2

)2
+

1
4
(
3ūj − 4ūj+1 + ūj+2

)2.

(6)

It was reported that WENO-JS was only third-order convergence order near criti-
cal points [10], and it was too dissipative. To recover the optimal convergence orders,
Borges et al. [11] developed the classical WENO-Z scheme by introducing a higher-
order global smoothness indicator, say, τ = |β2 − β0|, resulting in the following nonlin-
ear weights formula:

ωZ
s =

αZ
s

∑2
l=0 αZ

l

, αZ
s = ds

(
1 +

(
τ

βs + ε

)2
)

. (7)

It is well known that τ measures the smoothness of the global stencil. Thus, WENO-Z
is less dissipative than WENO-JS, as it assigns larger weights to the less smooth substencils.
Furthermore, if taking p = 2, WENO-Z can recover the fifth-order convergence rate of
accuracy even at critical points.

2.3. The WENO-NIP Reconstruction

Yuan [9] constructs a new local smoothness indicator by using Newton interpolation
polynomials based on L1 norm. The new local smoothness indicator for the fifth-order
scheme was defined as

χs = θ|∆xN(1)
s (xj+1/2)|+ |∆x2N(2)

s (xj+1/2)|,

where θ is a parameter that governs the trade-off between the accuracies around the smooth
regions and discontinuous regions, and N(i)

s , i = 1, 2 is the ith-order derivative of a Newton
interpolation polynomial, which was defined carefully in [9]. For more details, we refer
readers to the reference. Here, we decide to explicitly state these local smoothness indicators
as follows:

χ0 = θ
∣∣ūj−2 − 3ūj−1 + 2ūj

∣∣+ ∣∣ūj−2 − 2ūj−1 + ūj
∣∣,

χ1 = θ
∣∣ūj+1 − ūj

∣∣+ ∣∣ūj−1 − 2ūj + ūj+1
∣∣,

χ2 = θ
∣∣ūj+1 − ūj

∣∣+ ∣∣ūj − 2ūj+1 + ūj+2
∣∣.

In [9], θ = 0.1 was recommended.
The nonlinear weights for the WENO-NIP scheme are defined as
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ωNIP
s =

αNIP
s

∑2
l=0 αNIP

l

,

with

αNIP
s = ds

(
1 +

τNIP

(χs + ε)2

)
, (8)

where τNIP is the global smoothness indicator of WENO-NIP, and it was defined as
τNIP =

∣∣ūj−2 − 4ūj−1 + 6ūj − 4ūj+1 + ūj+2
∣∣J . In [9], J = 2.0 was recommended.

3. Analysis of the WENO-NIP Scheme

In this section, we analyze the dispersion and dissipation properties of WENO-NIP. It
is well known that, for a nonlinear scheme, there is no analytical formula for the spectral
relations. However, the spectral properties of the nonlinear scheme can be analyzed by
using the approximate dispersion relation (ADR) proposed by Pirozzoli [40].

The ADR is the relationship between the reduced wavenumber ϕ and the modified
wavenumber Φ(ϕ), which can be computed by the technique of Pirozzoli [40]. Note that
Φ(ϕ) is a complex number, and its real part and imaginary part indicate the dispersion
property and the dissipation property of the nonlinear scheme, respectively.

In Figure 1, we plot the main results of the WENO-NIP scheme using the ADR
method [40] in terms of the real and the imaginary part of the modified wavenumber
Φ(ϕ). We focus our attention on the dissipation property of the WENO-NIP scheme as
shown in Figure 1b. It can be seen that the WENO-NIP scheme causes negative dissipation,
say, Im(Φ(ϕ)) > 0 for wave components within a certain wavenumber interval. In other
words, the WENO-NIP scheme enjoys very low dissipation. This finding can be used to
explain why the WENO-NIP scheme generates greatly improved results in some numerical
test cases. However, the low dissipation also significantly increases the risk of instability.
Indeed, as mentioned before, WENO-NIP generates clear spurious oscillations near discon-
tinuities when solving 1D linear advection equations and 1D Riemann problems. In this
sense, the goal of this paper is to eliminate the negative dissipation to improve the stability
and other performances of the WENO-NIP scheme.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

R
e(

(
))

 Spectral
 WENO-NIP

Dispersion(a)

0.8 0.9 1.0 1.1 1.2 1.3

0.8

0.9

1.0

1.1

1.2

1.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.0

(b) Dissipation

Im
(

(
))

 Spectral
 WENO-NIP

0.5 0.6 0.7 0.8 0.9 1.0 1.1

-0.004

-0.002

0.000

0.002

0.004

Figure 1. (a) The dispersion properties of WENO-NIP. (b) The dissipation properties of WENO-NIP.
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4. The Improved WENO-NIP Scheme
4.1. The Improved Nonlinear Weights

Now, we try to improve the WENO-NIP scheme by eliminating its negative dissipation
characteristic. The idea is to add a new term to the WENO-NIP non-normalized nonlinear
weights formula Equation (8), resulting in the following formula:

αNIP+
s = ds

(
1 +

τNIP

(χs + ε)2 + ζNIP+
s

)
. (9)

The additional term ζNIP+
s should be able to remove the negative-dissipation interval of

WENO-NIP. After extensive numerical experiments, we find a simple way of defining such
a ζNIP+

s , as follows:

ζNIP+
s =

1− µ

(χs + ε)2

((
χs + ε

βs + ε

)2
− (χs + ε)2 − τNIP

)
, (10)

where βs is computed by Equation (6), and µ is defined by

µ =

{
1, if κ > 0,

0, otherwise,
(11)

with
κ = min

0≤m,n≤2
m 6=n

λ(m, n), λ(m, n) =
(

ωJS
m −ωJS

n

)(
ωNIP

m −ωNIP
n

)
.

Finally, we obtain the improved nonlinear weights

ωNIP+
s =

αNIP+
s

∑2
l=0 αNIP+

l

. (12)

The associated improved scheme is denoted as WENO-NIP+.
Thus far, introducing the additional term seems to be an empirical treatment. However,

the ADR analysis below will confirm that it indeed satisfies our requirement of removing
the negative-dissipation interval of WENO-NIP. Moreover, extensive numerical tests will
demonstrate that this modification brings about the desired improvement of removing
spurious oscillations and other remarkable enhancements in many aspects.

4.2. The ADR Analysis

In this subsection, we study the spectral properties of the WENO-NIP+ scheme. For
comparison purposes, we also consider the spectral properties of the WENO-NIP, WENO-JS,
WENO-Z, and the fifth-order upwind (UW5) schemes. As before, we perform ADR analysis
of these considered WENO schemes, since the ADR reveals the numerical performance of
the scheme in the whole wavenumber space.

Figure 2 shows the ADR of the WENO-NIP+ scheme and its associated WENO-NIP
scheme, as well as the WENO-JS, WENO-Z, and UW5 schemes. As expected, the dispersion
and dissipation of WENO-NIP+ are smaller than that of WENO-JS.

We pay special attention to the dissipation property of WENO-NIP+ given in Figure 2b.
Obviously, WENO-NIP+ has successfully eliminated the negative-dissipation interval,
which is about ϕ ∈ (0.619, 1.056), observed in the results of WENO-NIP. In the region of low
reduced wavenumbers of ϕ < 1.216, as well as the region of high reduced wavenumbers
of ϕ > 1.8, the dissipation of WENO-NIP+ is smaller than that of WENO-Z. Therefore,
the WENO-NIP+ scheme is less dissipative than the WENO-Z scheme. Indeed, in the
region of low reduced wavenumbers of ϕ < 1.216, the dissipation of WENO-NIP+ is even
smaller than that of UW5. It should be noted that the dissipation property of the ADR of
WENO-NIP+ is inferior to those of WENO-NIP and UW5 in the region of medium and high
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reduced wavenumbers. However, WENO-NIP and UW5 are unstable near discontinuities
where WENO-NIP+ is much more stable. This fact indicates that the anti-dissipation of
WENO-NIP+ is helpful to avoid spurious oscillations for discontinuous solutions.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

R
e(

(
))

 Spectral
 UW5
 WENO-JS
 WENO-Z
 WENO-NIP
 WENO-NIP+

Dispersion(a)

0.8 1.0 1.2 1.4 1.6 1.8
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

R
e(

(
))

 Spectral
 UW5
 WENO-JS
 WENO-Z
 WENO-NIP
 WENO-NIP+

Dispersion(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.0

(c) Dissipation

Im
(

(
))

 Spectral
 UW5
 WENO-JS
 WENO-Z
 WENO-NIP
 WENO-NIP+

0.6 0.8 1.0 1.2 1.4
-0.06

-0.04

-0.02

0.00

  0.619 

  1.056 

(d) Dissipation

Im
(

(
))

 Spectral
 UW5
 WENO-JS
 WENO-Z
 WENO-NIP
 WENO-NIP+

  1.216 

Figure 2. (a) Comparison of the dispersion properties of different schemes. (b) Zoomed-in view of (a).
(c) Comparison of the dissipation properties of different schemes. (d) Zoomed-in view of (c).

4.3. Long-Run Simulations of the 1D Linear Advection Equation

To demonstrate the competitive advantage of the proposed WENO-NIP+ scheme,
and that it is able to attain high resolutions and prevent spurious oscillations for long-run
calculations, we solve the following standard 1D linear advection equation:{

ut + ux = 0, x ∈ (xL, xR),

u(x, 0) = u0(x),

with two different initial conditions. For all tests in this subsection, the CFL number is set
as 0.1.

4.3.1. The Gaussian-Square-Triangle-Ellipse Linear Test

Example 1. In the first example, we solve the widely used Gaussian-square-triangle-ellipse test
proposed in [2]. The computational domain is (xL, xR) = (−1, 1), and it is initialized by
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u0(x) =



1
6
[
G(x, β, z− δ̂) + 4G(x, β, z) + G(x, β, z + δ̂)

]
, x ∈ [−0.8,−0.6],

1, x ∈ [−0.4,−0.2],

1−
∣∣10(x− 0.1)

∣∣, x ∈ [0.0, 0.2],

1
6
[
F(x, α, a− δ̂) + 4F(x, α, a) + F(x, α, a + δ̂)

]
, x ∈ [0.4, 0.6],

0, otherwise,

where G(x, β, z) = e−β(x−z)2
, F(x, α, a) =

√
max

(
1− α2(x− a)2, 0

)
, and the constants are

z = −0.7, δ̂ = 0.005, β =
log 2
36δ̂2

, a = 0.5, and α = 10. The periodic boundary conditions are used

at x = ±1.

The solutions of WENO-NIP+ and its associated WENO-NIP, as well as WENO-JS
and WENO-Z, at t = 2000 (1000 cycles) for N = 800 are plotted in Figure 3. Clearly,
WENO-NIP generates severe spurious oscillations, while WENO-NIP+ can avoid these
oscillations. Moreover, WENO-NIP+ can attain considerably high resolution. Actually, its
resolution is noticeably improved compared to that of WENO-Z and much higher than that
of WENO-JS.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 (b)

(c)

(a)

u

x

 Exact
 WENO-JS
 WENO-Z
 WENO-NIP
 WNEO-NIP+

-0.40 -0.35 -0.30 -0.25 -0.20
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
(b)

u

x
0.60 0.65 0.70 0.75

-0.05

0.00

0.05

0.10

0.15
(c)

u

x

Figure 3. (a) Results of the Gaussian-square-triangle-ellipse linear test with t = 2000 (1000 cycles)
and N = 800. (b) Zoomed-in view of the top of the square wave. (c) Zoomed-in view of right bottom
of the ellipse wave.

We also calculate this problem using refined meshes of N = 1600 and N = 3200 with
a shortened but still large output time of t = 200 (100 cycles). The results are plotted in
Figure 4 and Figure 5, respectively. As expected, WENO-NIP+ obtains better resolutions
than WENO-Z and WENO-JS, and it can still prevent spurious oscillations regardless of
the meshes. However, WENO-NIP produces evident spurious oscillations.

4.3.2. The Modified Linear Test

Example 2. To further explain the advantage of WENO-NIP+ on long-run simulations, in
this example, we solve a modified version of the Gaussian-square-triangle-ellipse test. This
is a more complicated test, and we call it ZWACM for brevity in the discussion. Let Ω0 =
[−1.25,−1.2]

⋃
(−0.9, 0.6]

⋃
(−0.1,−0.06]

⋃
(0.2, 0.25]

⋃
(0.75, 0.8]

⋃
(1.2, 1.25], Ω1 = (−1.2,

−0.9]
⋃
(−0.6,−0.55]

⋃
(−0.15,−0.1]; then, the computational domain (xL, xR) = (−1.25, 1.25)

is initialized by
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u(x, 0) =



0, x ∈ Ω0,

1−
∣∣10(x + 0.55)

∣∣, x ∈ (−0.55,−0.45],

1−
∣∣10(x + 0.35)

∣∣, x ∈ (−0.45,−0.25],

1−
∣∣10(x + 0.15)

∣∣, x ∈ (−0.25,−0.15],
1
6
[
G(x, β, z− δ̂) + 4G(x, β, z) + G(x, β, z + δ̂)

]
, x ∈ [−0.06, 0.2],

1
6
[
F(x, α, a− δ̂) + 4F(x, α, a) + F(x, α, a + δ̂)

]
, x ∈ [0.25, 0.75],

1−
∣∣10(x− 0.9)

∣∣, x ∈ (0.8, 1.0],

1−
∣∣10(x− 1.1)

∣∣, x ∈ (1.0, 1.2],

1, x ∈ Ω1,

where the functions G(x, β, z), F(x, α, a) and the constants z, δ̂, β, a, α are the same as given in
Example 1. The periodic boundary conditions are used at x = ±1.25.
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Figure 4. (a) Results of the Gaussian-square-triangle-ellipse linear test with t = 200 (100 cycles) and
N = 1600. (b) Zoomed-in view of the top of the square wave. (c) Zoomed-in view of right bottom of
the ellipse wave.
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Figure 5. (a) Results of the Gaussian-square-triangle-ellipse linear test with t = 200 (100 cycles) and
N = 3200. (b) Zoomed-in view of the top of the square wave. (c) Zoomed-in view of right bottom of
the ellipse wave.

Figure 6 presents the solutions of WENO-NIP+ and its associated WENO-NIP, as well
as WENO-JS and WENO-Z, at t = 2500 (1000 cycles) for N = 800. As before, we can
observe that WENO-NIP generates severe spurious oscillations. However, these spurious
oscillations have been removed in the results of WENO-NIP+. Moreover, it is clear that
the resolution of WENO-NIP+ is greatly improved compared to that of WENO-Z, and of
course, it is much higher than that of WENO-JS. Besides, the resolution of WENO-NIP+ is
even better than that of WENO-NIP in some special regions, as shown in Figure 6c.
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Figure 6. (a) Results of the ZWACM linear test with t = 2500 (1000 cycles) and N = 800. (b) Zoomed-
in view of the top of the square wave. (c) Zoomed-in view of the concerned region as marked
in (a).

Similarly, we also compute this problem using refined meshes of N = 1600 and
N = 3200 with a shortened but still large output time of t = 200 (80 cycles). In
Figures 7 and 8, we plot the solutions of the considered schemes. As expected, WENO-JS
gives the lowest resolutions among all considered schemes due to its largest dissipation.
The resolution of WENO-NIP appears to be very high, while WENO-NIP also produces
unfavorable spurious oscillations. It is clear that WENO-NIP+ achieves considerably high
resolutions which are better than those of WENO-Z. Most importantly, WENO-NIP+ can
successfully remove the spurious oscillations of WENO-NIP.
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Figure 7. (a) Results of the ZWACM linear test with t = 200 (80 cycles) and N = 1600. (b) Zoomed-in
view of the top of the square wave. (c) Zoomed-in view of the concerned region as marked in (a).
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Figure 8. (a) Results of the ZWACM linear test with t = 200 (80 cycles) and N = 3200. (b) Zoomed-in
view of the top of the square wave. (c) Zoomed-in view of the concerned region as marked in (a).
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To summarize, we can conclude that the improved WENO-NIP+ scheme can achieve
considerably high resolutions on the premise of preventing spurious oscillations for long-
run simulations of problems with discontinuities.

4.3.3. Comparison with the CWENO Schemes

Next, we compare the behavior of the WENO-NIP+ scheme with the CWENO schemes
(central WENO approaches). The well-validated WENO-NW6 [41], WENO-CU6 [42], and
WENO-θ6 [43] schemes are considered in the present work.

Example 3. Firstly, we solve the following problem with periodic boundary conditions.{
ut + ux = 0, x ∈ (−1, 1),
u(x, 0) = max(− sin(πx), 0).

(13)

The solutions are advanced to t = 2.4 with a uniform mesh size of N = 200.

Figure 9 shows the solutions of this problem computed by the sixth-order central
schemes of WENO-NW6, WENO-CU6, and WENO-θ6 and the proposed WENO-NIP+
scheme. For comparison purposes, we also plot the results of the WENO-JS, WENO-Z,
and WENO-NIP schemes. From Figure 9, we can see that the WENO-NIP+ scheme, as
well as the WENO-JS, WENO-Z, and WENO-NIP schemes, outperforms the sixth-order
central WENO schemes of WENO-NW6 and WENO-CU6 on resolution. As indicated by
Jung et al. [43], the loss of resolution from the results of the WENO-NW6 and WENO-CU6
schemes is an important issue, since there are many problems whose solution often exhibits
the same behavior as this example. In other words, we can conclude that the proposed
WENO-NIP+ scheme is more favorable than the sixth-order central WENO schemes of
WENO-NW6 and WENO-CU6 for this kind of problem. It should be pointed out that
the the central WENO scheme of WENO-θ6 gives comparable results to the WENO-NIP+
scheme. Of course, this is good for this test. However, we find that it presents greatly lower
resolution than the WENO-NIP+ scheme when simulating problems with discontinuities
at long output times.
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Figure 9. (a) Numerical solutions of Equation (13) at time t = 2.4 computed by different WENO
schemes. (b) Zoom near the critical region.

Taking the previously used Gaussian-square-triangle-ellipse linear test (see Example 1)
as an example, we now further compare the behavior of the WENO-NIP+ scheme with the
WENO-NW6, WENO-CU6, and WENO-θ6 schemes.

Figure 10 plots the solutions of the Gaussian-square-triangle-ellipse linear test solved by
the sixth-order central schemes of WENO-NW6, WENO-CU6, and WENO-θ6, as well as the
WENO-NIP and WENO-NIP+ schemes, with a uniform mesh size of N = 3200 at t = 200.
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As expected, Figure 10 shows that the resolutions of the WENO-NW6 and WENO-θ6
schemes are much lower than that of the WENO-NIP+ scheme in general. Although the
resolution of the WENO-CU6 scheme appears to be equivalent to, or even better than,
that of the WENO-NIP+ scheme in most regions, it produces evident spurious oscillations.
Clearly, the WENO-NIP+ scheme can successfully avoid these spurious oscillations. In
addition, as shown in Figure 10e, the resolution of the WENO-CU6 scheme is also lower
than that of the WENO-NIP+ scheme on the top of the ellipse wave.
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Figure 10. (a) Results of the Gaussian-square-triangle-ellipse linear test (see Example 1) computed by
the WENO-NW6, WENO-CU6, WENO-θ6, WENO-NIP, and WENO-NIP+ schemes with t = 200 and
N = 3200. (b) Zoomed in view of the left bottom of the square wave. (c) Zoomed in view of the top
of the square wave. (d) Zoomed in view of the top of the triangle wave. (e) Zoomed in view of the
top of the ellipse wave.

5. Numerical Results

Now, we conduct numerical experiments to demonstrate the enhancements of the
proposed WENO-NIP+ scheme. For the purpose of comparison, we also present the numer-
ical results of the WENO-JS, WENO-Z, and WENO-NIP schemes. Unless otherwise noted,
the CFL number will be set as 0.5, and for the Euler systems, we use the decomposition
through the local characteristic variables [2]. All WENO schemes are applied dimension by
dimension to solve 2D problems together with the third Runge–Kutta methods.
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5.1. Accuracy Test

Example 4. In order to verify that the proposed WENO-NIP+ scheme is indeed fifth-order accurate
in space and time, the “oblique” linear advection problem [44] with the following initial condition
is computed: 

∂C
∂t

+
∂C
∂x

+
∂C
∂y

= 0, (x, y) ∈ [0, 1]× [0, 1], t > 0,

C0(x, y) = sin
(

2π(x + y)
)

, (x, y) ∈ [0, 1]× [0, 1], t = 0.
(14)

The periodic boundary condition is used. Denote h = hx = hy, and the CFL number is taken
to be h2/3. It is trivial to know that the exact solution to Equation (14) is simply C(x, y, t) =

sin
(

2π
(

x + y− 2t
))

.

In Table 1, we give the L2- and L∞-norm accuracy and orders of convergence of the
WENO-JS, WENO-Z, WENO-NIP, and WENO-NIP+ schemes with a final time of t = 2.0.
As displayed in Table 1, all schemes achieve the fifth-order convergence orders. As expected,
WENO-JS generates the largest numerical errors. Most importantly, the numerical errors of
WENO-NIP+ are identical to those of WENO-NIP. Figure 11 shows the overall L2 and L∞
convergence behavior of different schemes. From Figure 11, we can intuitively see that the
solutions of all the considered schemes converge at the optimal order, as evidenced by the
slopes of the lines, especially for slightly larger grid numbers.

We examine the CPU time consumed by different considered schemes for this test.
Figure 12 plots the graphs for the CPU time versus the L2- and L∞-norm computing errors.
It can be seen that the WENO-NIP+ scheme has much better efficiency than the WENO-JS
scheme, although it consumes more CPU time than the WENO-Z and WENO-NIP schemes.

Table 1. Numerical errors and convergence orders of accuracy when solving Example 4, t = 2.0,
CFL = h2/3.

WENO-JS WENO-Z

Nx × Ny L2 Error L2
Order L∞ Error L∞

Order L2 Error L2
Order L∞ Error L∞

Order

32 × 32 9.14867 ×10−4 - 1.30212 × 10−3 - 1.37189 × 10−4 - 1.93670 × 10−4 -
64 × 64 2.89801 × 10−5 4.9804 4.60009 × 10−5 4.8231 4.30223 × 10−6 4.9949 6.08057 × 10−6 4.9933

128 × 128 9.01604 × 10−7 5.0064 1.47194 × 10−6 4.9659 1.34593 × 10−7 4.9984 1.90308 × 10−7 4.9978
256 × 256 2.80641 × 10−8 5.0057 4.55154 × 10−8 5.0152 4.21019 × 10−9 4.9986 5.95384 × 10−9 4.9984

WENO-NIP WENO-NIP+

Nx × Ny L2 Error L2
Order L∞ Error L∞

Order L2 Error L2
Order L∞ Error L∞

Order

32 × 32 1.36590 × 10−4 - 1.91790 × 10−4 - 1.36590 × 10−4 - 1.91790 × 10−4 -
64 × 64 4.30186 × 10−6 4.9887 6.07712 × 10−6 4.9800 4.30186 × 10−6 4.9887 6.07712 × 10−6 4.9800

128 × 128 1.34592 × 10−7 4.9983 1.90302 × 10−7 4.9970 1.34592 × 10−7 4.9983 1.90302 × 10−7 4.9970
256 × 256 4.21019 × 10−9 4.9986 5.95383 × 10−9 4.9983 4.21019 × 10−9 4.9986 5.95383 × 10−9 4.9983
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Figure 11. Plots of computing errors for different WENO schemes for Example 4: (a) L2-norm error;
(b) L∞-norm error.
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Figure 12. Comparison of various WENO schemes for Example 4 in CPU time and computing errors:
(a) L2-norm error; (b) L∞-norm error.

Example 5. We also compute the “oblique” linear advection problem but with a different initial
condition. The problem is defined by

∂C
∂t

+
∂C
∂x

+
∂C
∂y

= 0, (x, y) ∈ [0, 1]× [0, 1], t > 0,

C0(x, y) = sin

[
2π(x + y)−

sin
(
2π(x + y)

)
2π

]
, (x, y) ∈ [0, 1]× [0, 1], t = 0.

(15)

In addition, the periodic boundary condition is used, and the CFL number is taken to be h2/3.

We know that the exact solution to Equation (15) is simply C(x, y, t) = sin
(

2π(x + y− 2t)−

sin
(
2π(x + y− 2t)

)
/2π

)
.
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For this problem, we give the L2- and L∞-norm accuracy and orders of convergence of
WENO-JS, WENO-Z, WENO-NIP, and WENO-NIP+ in Table 2. It can be found that the
L∞-norm convergence orders of WENO-JS decrease to third-order with refined meshes,
and the L∞-norm convergence orders drop to less than fourth-order accordingly. However,
the WENO-NIP+ scheme and the associated WENO-NIP scheme can achieve the fifth-order
convergence orders, and they still have almost the same accuracy. Similarly, we plot the
overall L2 and L∞ convergence behavior of different schemes in Figure 13, and the slopes of
the lines indicate that the solutions of WENO-NIP+ and WENO-NIP, as well as WENO-Z,
converge at the optimal order, especially for slightly larger grid numbers. Clearly, Figure 13
illustrates that WENO-JS fails to recover the optimal convergence order for this test.

Table 2. Numerical errors and convergence orders of accuracy when solving Example 5, t = 2.0,
CFL = h2/3.

WENO-JS WENO-Z

Nx × Ny L2 Error L2
Order L∞ Error L∞

Order L2 Error L2
Order L∞ Error L∞

Order

32 × 32 2.03062 × 10−3 - 4.04906 × 10−3 - 6.86957 × 10−4 - 1.34742 × 10−3 -
64 × 64 1.01926 × 10−4 4.3163 2.20372 × 10−4 4.1996 2.30572 × 10−5 4.8969 4.54011 × 10−5 4.8913

128 × 128 5.18485 × 10−6 4.2971 1.87594 × 10−5 3.5543 7.28369 × 10−7 4.9844 1.41758 × 10−6 5.0012
256 × 256 3.34442 × 10−7 3.9545 1.79724 × 10−6 3.3838 2.28079 × 10−8 4.9971 4.44483 × 10−8 4.9952

WENO-NIP WENO-NIP+

Nx × Ny L2 Error L2
Order L∞ Error L∞

Order L2 Error L2
Order L∞ Error L∞

Order

32 × 32 7.11568 × 10−4 - 1.36979 × 10−3 - 7.11568 × 10−4 - 1.36979 × 10−3 -
64 × 64 2.31851 × 10−5 4.9397 4.50977 × 10−5 4.9248 2.31851 × 10−5 4.9397 4.50977 × 10−5 4.9248

128 × 128 7.28894 × 10−7 4.9913 1.41780 × 10−6 4.9913 7.28894 × 10−7 4.9913 1.41780 × 10−6 4.9913
256 × 256 2.28100 × 10−8 4.9980 4.44482 × 10−8 4.9954 2.28100 × 10−8 4.9980 4.44482 × 10−8 4.9954
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Figure 13. Plots of computing errors for different WENO schemes for Example 5: (a) L2-norm error;
(b) L∞-norm error.
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Similarly, we examine the CPU time consumed by different considered schemes for
this test. As before, Figure 14 indicates that the WENO-NIP+ scheme has much better
efficiency than the WENO-JS scheme, and its efficiency is lower than those of the WENO-Z
and WENO-NIP schemes.
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Figure 14. Comparison of various WENO schemes for Example 5 in CPU time and computing errors:
(a) L2-norm error; (b) L∞-norm error.

5.2. 1D Euler Equations

The system of 1D Euler equations with strong conservative form is given as

∂ρ

∂t
+

∂(ρu)
∂x

= 0,

∂(ρu)
∂t

+
∂(ρu2 + p)

∂x
= 0,

∂E
∂t

+
∂(uE + up)

∂x
= 0,

(16)

where ρ, u, p, E are the density, velocity, pressure, and total energy, respectively. Equation (16)
is closed by the following equation of state:

E =
p

γ− 1
+

1
2

ρu2, γ = 1.4.

Example 6. We first compute the standard shock-tube problem of Sod [45]. Its initial condition is
specified by (

ρ, u, p
)
(x, 0) =

{
(1.0, 0.0, 1.0), x ∈ [0.0, 0.5],
(0.125, 0.0, 0.1), x ∈ [0.5, 1.0].

At x = 0 and x = 1, the transmissive boundary conditions are used. The computation is advanced
until t = 0.25.

Figure 15 presents the results of density profiles computed by WENO-JS, WENO-Z,
WENO-NIP, and WENO-NIP+ with various uniform mesh cells of N = 300, 900. For
simplicity, we only show the zoom near the discontinuity for the case of N = 900. By taking
a close observation, we can find that WENO-NIP+, as well as WENO-JS and WENO-Z, can
successfully avoid spurious oscillations. However, it can be seen that WENO-NIP produces
evident spurious oscillations.
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Figure 15. (a) Results of Sod’s shock-tube problem computed by WENO-JS, WENO-Z, WENO-NIP,
and WENO-NIP+ at t = 0.25 with N = 300. (b) Zoom in near the discontinuity with N = 300. (c)
Zoom in near the discontinuity with N = 900.

Example 7. Next, we compute the standard shock-tube problem of Lax [46]. Its initial condition is
specified by (

ρ, u, p
)
(x, 0) =

{
(0.445, 0.698, 3.528), x ∈ [−5, 0],
(0.500, 0.000, 0.571), x ∈ [0, 5].

At x = ±5, the transmissive boundary conditions are used. The computation is advanced until
t = 1.3.

The computed density profiles of WENO-JS, WENO-Z, WENO-NIP, and WENO-NIP+
with various uniform mesh cells of N = 300, 900 are shown in Figure 16. Again, we only
show the zoom near the discontinuity for the case of N = 900. Similarly, we can observe
that WENO-NIP generates unfavorable spurious oscillations, while WENO-NIP+ can
successfully remove them. The WENO-JS and WENO-Z schemes can also avoid spurious
oscillations, and they can perform as well as WENO-NIP+.

Example 8. In this test, we solve the shock-density wave interaction of Shu and Osher [47]. The
initial condition is given as

(
ρ, u, p

)
(x, 0) =

{
(3.857143, 2.629369, 10.333333), x ∈ [−5.0,−4.0],
(1.0 + 0.2 sin(5x), 0, 1), x ∈ [−4.0, 5.0].

At x = ±5, the zero-gradient boundary conditions are used. The computation is advanced until
t = 1.8, and the uniform cell number is chosen to be N = 300.

-5 -4 -3 -2 -1 0 1 2 3 4 5
0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
en

sit
y

x

 Exact
 WENO-JS
 WENO-Z
 WENO-NIP
 WENO-NIP+

(a) N = 300

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
1.26

1.27

1.28

1.29

1.30

1.31

D
en

sit
y

x

 Exact
 WENO-JS
 WENO-Z
 WENO-NIP
 WENO-NIP+

(b) N = 300

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
1.26

1.27

1.28

1.29

1.30

1.31

D
en

sit
y

x

 Exact
 WENO-JS
 WENO-Z
 WENO-NIP
 WENO-NIP+

(c) N = 900

Figure 16. (a) Results of Lax’s shock-tube problem computed by WENO-JS, WENO-Z, WENO-NIP,
and WENO-NIP+ at t = 1.3 with N = 300. (b) Zoom in near the top with N = 300. (c) Zoom in near
the top with N = 900.
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In Figure 17, the solutions of the density computed by WENO-JS, WENO-Z, WENO-
NIP, and WENO-NIP+ are plotted. The reference solution is obtained by using the WENO-
JS scheme with a refined mesh of N = 10,000. It can be seen that WENO-NIP falsely
amplifies the waves behind the high-frequency wave region, while WENO-NIP+ can
properly prevent this false amplifications, as shown in Figure 17b. Clearly, the resolution
of the high-frequency smooth waves of WENO-NIP+ is remarkably higher than those
of WENO-JS and WENO-Z. It seems that the peaks of WENO-NIP are, to some extent,
higher than those of the WENO-NIP+ solution. This is because WENO-NIP allows negative
dissipation (see Figure 2d), but as discussed earlier, this is harmful to the stability of
the scheme.
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Figure 17. (a) Numerical solutions of the shock-density wave interaction of Shu and Osher calculated
by WENO-JS, WENO-Z, WENO-NIP, and WENO-NIP+ at t = 1.8 with N = 300. (b) Zoom in near
the region behind the high-frequency waves. (c) Zoom in near the high-frequency waves.

Example 9. As a more severe version of the previous Shu–Osher shock-density wave interaction
problem [47], this shock-density wave interaction of Titarev and Toro [48–50] is broadly taken
to measure the ability to capture both shocks and short-wavelength oscillations of the numerical
schemes. The computational domain is [−5.0, 5.0], and it is initialized by

(
ρ, u, p

)
(x, 0) =

{
(1.515695, 0.523346, 1.805000), x ∈ [−5.0,−4.5],
(1.0 + 0.1 sin(20πx), 0, 1), x ∈ [−4.5, 5.0].

At x = ±5, the zero-gradient boundary conditions are used. The computation is advanced until
t = 5.0, and the uniform cell number is chosen to be N = 1500.

The computed results of the density of WENO-JS, WENO-Z, WENO-NIP, and WENO-
NIP+ are presented in Figure 18, where the reference solution is obtained by WENO-JS
with a refined mesh of N = 10,000. It can be found that the resolution of WENO-JS is lowest,
and then that of WENO-Z. The resolution of WENO-NIP+ is much better than those of
WENO-JS and WENO-Z. Actually, the resolution of the high-frequency smooth waves of
WENO-NIP+ is almost identical to (see Figure 18c), or very close to (albeit very slightly
lower, see Figure 18b), that of WENO-NIP.

Example 10. In this final test of 1D Euler equations, we try to show the advantage of WENO-NIP+
with regard to decreasing numerical oscillations when solving hyperbolic conservation systems in
the component-wise framework. To do this, we choose to calculate the Woodward–Colella interacting
blast wave problem [51]. Its initial condition is given by

(
ρ, u, p

)
(x, 0) =


(1, 0, 1000), x ∈ [0, 0.1),
(1, 0, 0.01), x ∈ [0.1, 0.9),
(1, 0, 100), x ∈ [0.9, 1.0].
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At x = 0 and x = 1, the reflective boundary conditions are used. It is run with N = 600 uniform
cells until t = 0.038.
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Figure 18. (a) Numerical solutions of the shock-density wave interaction of Titarev and Toro calcu-
lated by WENO-JS, WENO-Z, WENO-NIP, and WENO-NIP+ at t = 5.0 with N = 1500. (b) Zoomed-in
view of the high-frequency waves. (c) Zoomed-in view of the region before the high-frequency waves.

Figure 19 plots the simulated density profiles of WENO-JS, WENO-Z, WENO-NIP,
and WENO-NIP+. The reference solution is obtained by WENO-JS in the charateristic-
wise framework with a refined uniform mesh of N = 10,000. It is evident that WENO-
NIP generates severe spurious oscillations and falsely amplifies the solution. However,
WENO-NIP+ almost removes the spurious oscillations and avoids the false amplification
successfully. Furthermore, it appears that WENO-NIP+ performs slightly better than
WENO-JS and WENO-Z for this test.
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Figure 19. (a) Numerical solutions of the interacting blast wave problem calculated by WENO-JS,
WENO-Z, WENO-NIP, and WENO-NIP+ in component-wise framework at t = 0.038 with N = 600.
(b) Zoomed-in view of the interacting region.
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5.3. 2D Euler Equations

The system of 2D Euler equations with strong conservative form is given as

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)

∂y
= 0,

∂(ρu)
∂t

+
∂(ρu2 + p)

∂x
+

∂(ρuv)
∂y

= 0,

∂(ρv)
∂t

+
∂(ρvu)

∂x
+

∂(ρv2 + p)
∂y

= 0,

∂E
∂t

+
∂(uE + up)

∂x
+

∂(vE + vp)
∂y

= 0,

(17)

where y, v are the other direction and the velocity component in this direction, respectively.
Equation (17) is closed by the following equation of state:

E =
p

γ− 1
+

1
2

ρ
(

u2 + v2
)

,

Unless indicated otherwise, γ is chosen to be 1.4.

Example 11. We first simulate the 2D shock-density wave interaction of Titarev and Toro. Its
initial condition is given as

(
ρ, u, v, p

)
(x, y, 0) =

 (1.515695, 0.523346, 0, 1.805000), x ∈ [−5,−4.5),(
1.0 + 0.1 sin

(
20πx cos

π

6
+ 20πy sin

π

6

)
, 0, 0, 1

)
, x ∈ [−4.5, 5],

with the initial sine waves making an angle of π/6 in the x× y plane. At x = ±5, the transmissive
boundary conditions are used, and at the top and bottom boundaries, the periodic conditions are used.
The output time is set to be t = 5.0, and a uniform mesh size of Nx × Ny = 1500× 300 is taken.

In Figures 20 and 21, we present the density contours and the cross-sectional slices of
density plot along the plane y = 0.0 of the WENO-JS, WENO-Z, WENO-NIP, and WENO-
NIP+ schemes, respectively. It can be found that WENO-JS gives the lowest resolution, and
WENO-Z gives the second-lowest resolution. Figure 21b indicates that WENO-NIP falsely
amplifies the solution behind the region of the high-frequency wave, while WENO-NIP+
can fix this problem. Moreover, as shown in Figure 21c, the peaks of the high-frequency
waves of the WENO-NIP+ solution are, to some extent, higher than those of the WENO-NIP
solution, albeit on a small scale. As expected, the peaks of the high-frequency waves of
both the WENO-NIP+ and WENO-NIP solutions are significantly higher than those of the
WENO-JS and WENO-Z solutions.



Axioms 2022, 11, 190 21 of 27

Figure 20. Numerical solutions of the 2D shock-density wave interaction of Titarev and Toro using
1500× 300 cells at t = 5.0. Left upper corner, WENO-JS. Right upper corner, WENO-Z. Left lower
corner, WENO-NIP. Right lower corner, WENO-NIP+.
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Figure 21. (a) The cross-sectional slices of density plot along the plane y = 0.0 for the 2D shock-
density wave interaction of Titarev and Toro. (b) Zoom in near the region behind the high-frequency
waves. (c) Zoom in near the high-frequency waves.

Example 12. Next, we simulate the famous 2D Riemann problem [52–54]. Lax et al. [54] classified
a total of 19 genuinely different configurations for the 2D Riemann problem, and we consider
Configuration 4 here for the test. The computational domain [0, 1]× [0, 1] is initialized by

(
ρ, u, v, p

)
(x, y, 0) =


(1.1, 0.0, 0.0, 1.1), 0.5 ≤ x ≤ 1.0, 0.5 ≤ y ≤ 1.0,
(0.5065, 0.8939, 0.0, 0.35), 0.0 ≤ x ≤ 0.5, 0.5 ≤ y ≤ 1.0,
(1.1, 0.8939, 0.8939, 1.1), 0.0 ≤ x ≤ 0.5, 0.0 ≤ y ≤ 0.5,
(0.5065, 0.0, 0.8939, 0.35), 0.5 ≤ x ≤ 1.0, 0.0 ≤ y ≤ 0.5.

On all boundaries, the transmission boundary condition is used. We perform the numerical
calculations on a uniform mesh size of 800× 800, and all the computations proceed to t = 0.25.
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Figure 22 shows the density contours of the WENO-JS, WENO-Z, WENO-NIP, and
WENO-NIP+ schemes. It is clear that all these schemes can properly capture the main
structure of the complicated flow field. However, we can observe that there are obvious
post-shock oscillations (see Figure 22), which are unfavorable for the fidelity of the results,
in the solution of the WENO-NIP scheme. Noticeably, these oscillations have been removed
or greatly decreased by the WENO-NIP+ scheme. The WENO-JS and WENO-Z schemes
can also control the oscillations successfully.

Figure 22. Numerical solutions of the 2D Riemann problem using 800× 800 cells at t = 0.25. Left
upper corner, WENO-JS. Right upper corner, WENO-Z. Left lower corner, WENO-NIP. Right lower
corner, WENO-NIP+.

Example 13. The shock-vortex interaction problem [55,56] is a well-known 2D test for high-
resolution schemes. The initial condition is given as

(
ρ, u, v, p

)
(x, y, 0) =

{
UL, x < 0.5,
UR, x ≥ 0.5,

where UL = (ρL, uL, vL, pL) = (1,
√

γ, 0, 1), and UR = (ρR, uR, vR, pR), taking the form

pR = 1.3, ρR = ρL

(
γ− 1 + (γ + 1)pR

γ + 1 + (γ− 1)pR

)
, uR = uL

(
1− pR√

γ− 1 + pR(γ + 1)

)
, vR = 0.
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The following vortex δU defined by perturbations is superimposed onto the left state UL,

δU = (δρ, δu, δv, δp) =

(
ρ2

L
(γ− 1)pL

δT, ε
y− yc

rc
eα(1−r2),−ε

x− xc

rc
eα(1−r2),

γρ2
L

(γ− 1)ρL
δT

)
,

where ε = 0.3, rc = 0.05, α = 0.204, xc = 0.25, yc = 0.5, r =
√
((x− xc)2 + (y− yc)2)/r2

c ,
δT = −(γ− 1)ε2e2α(1−r2)/(4αγ). On all boundaries, the transmissive boundary condition is
used. We perform the simulations until t = 0.6 by using a uniform mesh size of 800× 800.

The computed density contours of the WENO-JS, WENO-Z, WENO-NIP, and WENO-
NIP+ schemes are plotted in Figure 23. As before, WENO-NIP+, as well as WENO-JS and
WENO-Z, can capture the main structure of the complicated flow field properly. However,
it is clear that WENO-NIP produces very severe numerical oscillations. Moreover, careful
examination (see the last column of Figure 23) indicates that WENO-NIP+ is less oscillatory
than WENO-Z, albeit very slightly.

Example 14. In the final numerical test, we consider the regular shock reflection, which was simu-
lated carefully in [57]. For this typical 2D steady flow, the computational domain of [0, 4]× [0, 1] is
initialized by (

ρ, u, v, p
)
(x, y, 0) = (1.0, 2.9, 0.0, 1.0/γ).

At the bottom and right boundaries, the reflection and transmissive boundary conditions are used,
respectively. At the top and left boundaries, the following Dirichlet boundary conditions are specified:

(
ρ, u, v, p

)
(x, y, t) =

{
(1.69997, 2.61934,−0.50632, 1.52819), where y = 1,
(1.0, 2.9, 0.0, 1.0/γ), where x = 0.

The computation proceeds to t = 2.5, and a uniform mesh size of 800× 200 is taken.

The density contours computed by WENO-JS, WENO-Z, WENO-NIP, and WENO-
NIP+ are presented in Figure 24. Generally speaking, all the considered schemes can
capture the main structure of the shock transitions for this problem. Clearly, the post-shock
numerical oscillations can be observed for all considered schemes. However, compared to
WENO-NIP, which generates very severe numerical oscillations, WENO-NIP+ can signifi-
cantly decrease these oscillations. To manifest this further, we plot the cross-sectional slices
of the density of WENO-NIP and WENO-NIP+ along the plane y = 0.5 over x ∈ (0.9, 1.1)
in Figure 25. For the purpose of comparison, the results of WENO-ZS [57] using two differ-
ent mesh sizes of Nx × Ny = 800× 200, 1600× 400 are also plotted. It was demonstrated
carefully that WENO-ZS is able to either remove or significantly reduce the post-shock
oscillations successfully. Obviously, the post-shock oscillations produced by WENO-NIP
are far more severe than that of WENO-NIP+. In other words, the post-shock oscillations
of WENO-NIP+ are considerably reduced compared to those of WENO-NIP. We conclude
that this should be an advantage of WENO-NIP+. In addition, although the post-shock
oscillations generated by WENO-NIP+ are slightly more severe than those of WENO-ZS,
WENO-NIP+ achieves higher resolutions than WENO-ZS under the same mesh resolution.
Indeed, the resolution of WENO-NIP+ with Nx × Ny = 800× 200 is comparable to that of
WENO-ZS with Nx × Ny = 1600× 400. In summary, this might be another advantage of
WENO-NIP+ in some ways.
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Figure 23. Numerical solutions of the shock-vortex interaction problem using 800× 800 cells at
t = 0.60. Left upper corner of the first two columns, WENO-JS. Right upper corner of the first two
columns, WENO-Z. Left lower corner of the first two columns, WENO-NIP. Right lower corner of
the first two columns, WENO-NIP+. Left upper corner of the last two columns, zoomed-in view
of WENO-JS. Right upper corner of the last two columns, zoomed-in view of WENO-Z. Left lower
corner of the last two columns, zoomed-in view of WENO-NIP. Right lower corner of the last two
columns, zoomed-in view of WENO-NIP+.

Figure 24. Density contours of the regular shock reflection of WENO-JS, WENO-Z, WENO-NIP, and
WENO-NIP+ using 30 contour lines with a range from 1.05 to 2.7. Left upper corner, WENO-JS. Right
upper corner, WENO-Z. Left lower corner, WENO-NIP. Right lower corner, WENO-NIP+.
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Figure 25. The cross-sectional slices of density plot of WENO-JS, WENO-Z, WENO-NIP, and WENO-
NIP+ along the plane y = 0.5, where x ∈ [0.9, 1.1].

6. Conclusions

It is the negative dissipation property that hinders improving the stability of the
WENO-NIP scheme. This is the reason why WENO-NIP produces spurious oscillations for
simulating problems with shocks or other discontinuities. Therefore, we propose a method
of enhancing the WENO-NIP scheme by adding a new term in the weights formula of
WENO-NIP to eliminate the negative dissipation. Numerical experiments demonstrate
that the performance of the proposed scheme, dubbed WENO-NIP+, is greatly improved.
It was numerically verified that WENO-NIP+ can obtain optimal convergence orders
in smooth regions regardless of critical points. For long-run simulations of 1D linear
advection problems with discontinuities, WENO-NIP+ can successfully avoid the spurious
oscillations that are generated by WENO-NIP. Similarly, for simulations of 1D shock-tube
problems, WENO-NIP+ properly prevents the spurious oscillations, while WENO-NIP
does not. Furthermore, the proposed scheme is able to achieve comparable or even better
results than WENO-NIP, WENO-JS, and WENO-Z in the regions with high-frequency
smooth waves, like the shock-density wave interaction of Shu and Oser, and Titarev and
Toro. Besides, it was demonstrated that WENO-NIP+ shows better performances than
WENO-NIP when simulating 2D Euler equations with strong shock waves, and it can
remove or noticeably decrease the post-shock oscillations. It should be pointed out that the
proposed WENO-NIP+ scheme can achieve better performance in reducing oscillations,
but at the price of higher computational cost, albeit not beyond an acceptable level.
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