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Abstract: A fractional-order compartmental model was recently used to describe real data of the
first wave of the COVID-19 pandemic in Portugal [Chaos Solitons Fractals 144 (2021), Art. 110652].
Here, we modify that model in order to correct time dimensions and use it to investigate the third
wave of COVID-19 that occurred in Portugal from December 2020 to February 2021, and that has
surpassed all previous waves, both in number and consequences. A new fractional optimal control
problem is then formulated and solved, with vaccination and preventive measures as controls. A
cost-effectiveness analysis is carried out, and the obtained results are discussed.

Keywords: compartmental models; COVID-19 pandemic; third wave of COVID-19 in Portugal;
fractional-order calculus; optimal control
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1. Introduction

In January 2020, the World Health Organization (WHO) announced the existence of a
significant number of pneumonia cases in Wuhan. Against all the predictions, COVID-19
(COrona VIrus Disease-19) spread quickly across the globe and, on 11th of March, was
declared as a pandemic [1]. Caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome
Corona Virus 2), COVID-19 is the first pandemic in the digital era from which very few
territories of the world are untouched. Many governments were forced to decree measures
that seemed to be outdated, such as the isolation of individuals and the complete lockdown
of regions and even countries, that compromise individual freedoms, damage business and
economy, and threaten a significant number of jobs.

To fight COVID-19 and its harmful effects, a multidisciplinary approach is needed. In
particular, mathematical modelling plays an important role in the prediction of possible
scenarios and in its effective control [2,3]. Readers interested in fractional modelling are
referred to [4,5] and references therein.

The pandemic numbers have put national health systems under pressure. Many
reported cases were not reported on time, but with a delay of days. Hence, in this paper,
we do not use the number of daily reported cases but the means of the previous five days
of reported cases, as suggested in [6].

The mean of five days of daily reported cases induces memory into the model. Frac-
tional derivatives have been intensively used to obtain models of infectious diseases that
take into account the memory effects. Many researchers have focused particular attention
in modelling real-world phenomena using non-integer order derivatives. Those dynamics
have been modelled and studied by using the concept of fractional-order derivatives. These
problems appear in a range of diversified fields of applied sciences, including biology,
physics, ecology, and engineering [7,8].
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A classical compartmental model with a super-spreader class was firstly applied to
give an estimation of infected subjects and fatalities in Wuhan, China, in [9]. The first-order
derivative was then substituted by a derivative of a fractional order, resulting in a model
investigated with Caputo fractional derivatives [6]. Here, this fractional model is corrected
and then used to model the third wave of COVID-19 in Portugal. We start by the estimation
of parameters that best fit the real data. The sensitivity analysis to the fractional-order
model is performed in order to identify which model parameters are most influential on
the dynamics of the disease. Afterwards, fractional optimal control is applied, showing the
effectiveness of our approach.

This paper is organized as follows. In Section 2, the fractional order model is formu-
lated. Our main results are then given in Section 3: parameter estimation of the COVID-19
model with real data of Portugal (Section 3.1); sensitivity analysis of the parameters of the
model, without forgetting the effect of the order of fractional differentiation (Section 3.2);
fractional optimal control of the model (Section 3.3); and, finally, numerical simulations
and cost-effectiveness of the fractional model (Section 3.4). We end with Section 4, which
states the conclusions. Our main theoretical contributions consist of fractional-order model
consistency and the mathematical problem rearrangement according to the Pontryagin
theory. Moreover, we solve the fractional optimal control problem numerically by a method
of Adams—-Basforth-Moulton.

2. Fractional-Order COVID-19 Model

Since the time interval considered in this study is small, we assume that population is
invariant. In addition, population is divided in eight classes: (i) susceptible individuals, S;
(ii) exposed individuals, E; (iii) symptomatic infectious individuals, I; (iv) super-spreader
individuals, P; (v) asymptomatic infectious individuals, A; (vi) hospitalized individuals,
H; (vii) recovered individuals, R; and (viii) fatality class, F. Our fractional-order model is
derived from the one presented in Ndairou et al. [6], which gives a generalization of an
integer-order model that was used to study the start of the pandemic in Wuhan [9]. We
use the fractional derivative in the sense of Caputo. Fractional differential equations are an
active area of research and are adequate to incorporate the history of the processes. The
model system of equations for COVID-19 proposed in [6] is given by

Dis = —pr—IpnC —F,

SDYE = ﬁ%ﬂﬁ%erﬁ’%s—xE,

DFT = xkp1E— (va+7:i)I =31,

DrFP = xp2E — (7a+7:)P —6pP, 1)
DfA= x(1—p1—p2)E

DYH = v,(I+P) — 7,H — 6,H,

DFR = 7i(I+P)+H,

SDYF = &1+ 6,P + 8,H,

where §D¥ denotes the left Caputo fractional-order derivative with derivative order «
(0 < & < 1). A description of the parameters of Model (1) can be found in Table 1.
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Table 1. Description and values of the parameters of Model (1) taken from [9,10].
Name Description Value
B human-to-human transmission coefficient 2.55
I transmissibility of hospitalized patients 1.56
B transmission coefficient of super-spreaders 7.65
rate at which an individual leaves the exposed
K . . 0.25
class to become infectious
proportion of progression from class E
P1 s . 0.58
to symptomatic infectious class I
02 rate at which exposed ind. become super-spreaders 0.001
rate at which symptomatic and super-spreaders
Ya e 0.94
become hospitalized
Yi recovery rate without being hospitalized 0.27
Yr recovery rate of hospitalized patients 0.5
6 disease induced death rate due to infected ind. 1/23
Op disease induced death rate due to super-spreader ind. 1/23
On disease induced death rate due to hospitalized ind. 1/23

We note that the equations of Model (1) do not have appropriate time dimensions. In-
deed, on the left-hand side, dimension is (time)™*, while on the right-hand side, dimension
is (time) 1. This means that Model (1) is only consistent when a = 1. For the importance to
be consistent with dimensions, we refer the reader, e.g., to [11,12]. Thus, here, we correct
System (1) as follows:

IS HS PS
cag _ pa _Jpu _Rpmx
oDFS = B N ' N p N’

IS HS PS
Cpar o o« & o
DIE= P +I1p" 55 +B 5 —<E

D= x*01E — (74 + i) =3¢,
DIP = xk*02E — (7§ + )P — 93P,
DfA = x*(1—-p1—p2)E,

DfH = ~§(I+P)—¢H—6;H,
SDYR = 9%(I+P)+9"H,

SDEF = M +06%P + 03 H.

2

A flow diagram of Model (2) is given in Figure 1. Note that, in the particular case
« = 1, both Models (1) and (2) coincide with the classical COVID-19 model first introduced
in [9]. System (2) will be investigated in Section 3.

B, B, 1

K (1-p1—pp)

ﬂk“fi‘\i‘z‘.lﬁﬁ.!—i
EJP]ILJWL%_I R

]

Figure 1. Flow diagram of the disease dynamics according to Model (2).
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3. Main Results

We begin by discussing the adherence of the corrected Model (2) introduced in
Section 2 with respect to COVID-19 and real data from the third wave that occurred in
Portugal. For that, we need an adequate estimation of the parameter values.

3.1. Parameter Estimation

The uncorrected model (1) was used to study the dynamics of COVID-19 at the early
stage of the pandemic, between 3 March 2020 and 27 April 2020, in [6]. During that period,
government decreed a general lockdown of the country that was well accepted by the
population due to the impact of the disease in other countries where it started earlier. With
limited knowledge, this revealed to be an effective measure to reduce contacts and control
the disease in a relatively short period of time.

That initial stage ended in May 2020, with the gradual release of the country from
COVID-19 container measures and the cancelling of the State of Emergency. In that date,
preventive measures were adopted to control the disease. One of the most important was
the use of masks in confined spaces, made mandatory by Portuguese Decreto-Lei n.° 20/2020.

In October 2020, due to autumn weather conditions, the number of infected individuals
started to be worrisome. In order to control it and to protect the Portuguese National Health
Service, in November 2020, a new series of States of Emergency began. In January 2021,
the cold weather, some relaxation among the population concerning preventive measures
(being in crowds or poorly ventilated spaces, the misuse of masks, ...) combined with new
variants of COVID-19—more contagious than ever— that started circulating, forced the
government to declare a new lockdown with the closure of schools in 22 January 2021.

Due to the implementation of the preventive measures, during our model fitting,
we assume that parameters have the same values of the first wave, with the exception
of contact rates. The period we chose starts in 27 December 2020 and ends 16 February
2021, covering the third wave of the pandemic in Portugal. During that period, the closure
of schools was declared, and that most certainly had an impact on contact rates. Hence,
we consider that the transmission coefficient f is replaced by B(1 — m(t)), and that ' is
replaced by p'(1 — m(t)), where m(t) is a continuous function that represents the rate of
reduction of the contacts, and that varies with time according to Figure 2.

0.6

0.5
=041
03
02r

0.1F

0
Dec 27 Jan 2 Jan10 Jan17 Jan25 Fev 1 Fev 8 Fev 16
time

Figure 2. Evolution function m(t).

The values of two parameters were determined by the fitting of the model: (i) deriva-
tive order of the model, «, and (ii) a scaling factor s. See Table 2 for the resulting values and
errors associated with the fitting.
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Table 2. Results of model fitting.
Derivative Order s Absolute Error Relative Error (%)
1.0 21.08 8595 14.13
0.99 19.87 8135 13.37

The fitting curves are presented in Figure 3, where real data was obtained from [13,14].
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Figure 3. (left) The number of confirmed cases per day in Portugal versus the ones predicted by
Model (2) with parameters given by Table 1. The blue line corresponds to the real data (I 4+ P + H)
and the remaining lines have been obtained solving numerically the system of fractional differential
equations (2). (right) The difference between the number of confirmed cases per day and the number
of estimated cases, the solution of (2).

It is known that the available data has some mistakes. Frequently, days reporting few
cases are followed by days reporting many new cases, without correspondence with reality.
Due to the stress that the pandemic imposed over doctors and health professionals, these
data do not flow as quickly and effectively as expected. Therefore, the numbers of new
cases are not correctly determined by reported daily numbers. Thus, the number of new
cases considered in this manuscript is, as suggested in [6], the mean of the previous five
days of reported cases.

Following [15], our data fitting consisted in minimization of the /; norm of the differ-
ence between the real values and predictive cases of COVID-19 infection given by Model (2).
Due to the oscillation of the number of confirmed cases per day, the fitting curves observed
in Figure 3 (left) have significant gaps in comparison with real data. Figure 3 (right) presents
the difference between the number of confirmed cases per day and the number of estimated
cases, showing that the proposed model approximates well the average number of cases.

Consequently, fitting errors are quite high, being 14.13% for the classical integer-order
model (¢« = 1) and 13.37% for the fractional-order model with « = 0.99, according to Table 2.
The difference between the two derivative orders, in terms of absolute errors, justifies the
preference for the fractional-order model with respect to the classical one.

3.2. Sensitivity Analysis

An important threshold, while studying infectious disease models, is the basic repro-
duction number. Following [9,10], we conclude that the basic reproduction number of the
COVID-19 model (2) is

R, = Beival @) (B3l + B )ps
0 a;ay apay !

®)

where a; = v; + { +0f, ap = v5 + 7 + 0, and ay = 97 + 5.
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The impact of the variation of the derivative order «, in the evolution of Ry, is presented
in Figure 4. We observe in Figure 4 that Ry > 1, that is, we have an endemic scenario
regardless of the value of «.

451

0 0.1 02 03 04 05 06 07 08 09 1

Figure 4. Impact of the variation of the derivative order, «, in the evolution of the basic reproduction
number R, of the COVID-19 model (2).

Sensitivity analysis measures the importance of each parameter of the model in the
disease transmission.

Definition 1 (The sensitivity index [16,17]). Let Rq be differentiable with respect to a given
parameter p. The sensitivity of the model with respect to that parameter p can be measured by the
index Y?O given by

yRo _ 9Ro p

P 9p Ry’

The sensitivity analysis of the classical COVID-19 model was presented in [9], that is,
in the particular situation « = 1 in (2). In it, the authors concluded that the most sensitive
parameters to the basic reproduction number Ry are 3, p1, and [. Therefore, special attention
should be paid to the estimation of those parameters. In contrast, the estimation of f/, pa,
Ya, 6i, 0p, and &), does not require as much attention because of its low sensitivity.

In the general situation of our fractional-order model (2), it should be emphasized that
the sensitivity depends on the derivative order « of the fractional operator. We can observe
this in Figure 5, where one clearly sees that the variation of a influences the sensitivity
index of parameters S, p1, ¥i, ¥r, and .

Tr 1r

09 09F

08 08
0.7 07
06 06
Cg:* 0.5 f} 0.5
0.4 04
03F 03
0.2 02
04 0.1

0 : : : : : : : : : : 0 : : : : : : : : : :

01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1

Figure 5. Cont.



Axioms 2022, 11,170 7 of 15

0
0.1 \
0.2

-0.3r

04t

‘fj-o.s— ‘i
061
0.7
081 081
09 09
1 ; -
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
« «
.
09
08
07
06
g;70.5

0.‘1 0.‘2 0.‘3 0.‘4 0.‘5 0.‘6 017 0.‘8 0.‘9 ‘;
Figure 5. Impact of the variation of « in the sensitivity indexes of , p1, i, ¥+, and [, in agreement
with Definition 1.

We see in Figure 5 that the sensitivity indexes of § and p; exhibit a quite similar
evolution with respect to &, being very sensitive to the variation of a. On the opposite
side, the sensitivity indexes of 7; and [ are much less sensitive to the variation of the
fractional-order a. The graphics with respect to the remaining parameters of the model are
omitted here because, using the same scale, their curves do not go far from the x-axis.

The evolution of the sensitivity index for the basic reproduction number Ry with the
variation of the derivative order « is presented in Figure 6. We observe that the sensitivity
index decreases with the decrease of «.

151

@

TR,

05

01 02 03 04 05 06 07 08 09 1

«
Figure 6. The sensitivity of Model (2) with respect to the fractional order of differentiation «, in
agreement with Definition 1.

Figures 5 and 6 also show that the sensitivity of the model decreases in absolute value
with the decrease in the derivative order. This means that the fractional-order model is less
sensitive than the classical one, which is an advantage of our model.
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3.3. Fractional Optimal Control of the Model

In this section, we aim to minimize the number of COVID-19-infected individuals and
reduce the cost of control measures. This is carried out through (i) the use of vaccination as
an effective measure time-dependent control v(t) and (ii) the use of the preventive measure
control m(t) (representing the use of masks, limitations of the number of individuals in
closed confined spaces, etc.), in order to control person-to-person contact. Therefore, the
following fractional-order optimal control problem is considered:

t
min J (I, P,v,m) = /f<k11—|—k2P—|—k302 +k4m2> dt 4)
0
subject to
IS HS PS
CPHXC — _RE(1 _ )2 _ JRY(1 _ _BI%(1 o)

I H P
DAE — Br(1 m)ﬁs g (1— m)WS + R — m)ﬁs — KOE,

(DFL = 101 E — (7§ +9§)1 — oL,

¢DIP = x*0E — (v§ +9¥)P — opP, (5)
DfA=x%(1—p1 —p2)E,

¢DFH = 94(1+P) —7}H — 6,H,

¢DIR = 9%(I1 4+ P) 4 v¢H + S,

SDEF = 081 + 03P + 03 H,

with given initial conditions
(5(0), E(0),1(0), P(0), A(0), H(0), R(0), F(0)) = (So, Eo, Lo, Po, Ao, Ho, Ro, Fo) = 0. (6)

Parameters 0 < ky, ..., ks < 400 are positive numbers that balance the size of the linear
and quadratic terms in the cost, and ¢t is the duration of the control program. Moreover, k3
and k4 represent the costs of applying the control measures v and m, respectively. The set
of admissible control functions is

U= {(U(~),m(-)) € L%(0,t7) : 0 < 0(t) < Umax, 0 < m(E) < Mimax V £ € (0, tf)}. @)

Pontryagin’s minimum principle (PMP) for fractional optimal control [18] is used
to determine the solution of the problem. The Hamiltonian associated with our optimal
control problem is given by

H= k11+k2P+k3vz+k4m2+Cl(—,B“(1 —m) i)

B 1w — oS ) &P+ 18- m) R0

PS
+B (1= m) 5~ K"‘E) +¢3 (K"‘plE — (va + 71— 5?‘1)
®)
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and the adjoint system of PMP asserts that the co-state variables é&Git),i=1,...,8, satisfy

_ (mfl)(ﬁ“(lﬁfﬁﬂgl P)(¢1—62) + (&7 —&1)

Drg1 () v,

D2 (t') = k% (=82 + §a3p1 + Cap2 — Gs(p1 + 02 — 1)),

SDRES(H) = Ky — (7 + 4G + e + G 401G — 8) + FUEIRE,
DI Ca(t)) = ka — (vF +9§)Ga + 7586 + 787 + 05 (85 — Ca) + w
Dies(t') = §Dfer (t) = §Digs(t) = 0,

SDR6(t) = 77 (&7 — Co) + 0} (6 — G) — PUTREITEE,

with ' = t; —t. In turn, the minimality conditions of PMP establish that the optimal
controls v* and m* are given by

1) = minmax{o, @O ZBOISOL 1,

2ks
“(I(t) +1H “p S 1o
o (t) = mind max o, E-UE) FHHE) + B P(H) @) —&E)SHY -
2ksN
Finally, according to PMP, the following transversality conditions also hold true:
(:l'(i’f):(), i=1,...,8. (11)

In Section 3.4, we use the necessary optimality conditions (9)-(11) to numerically solve
the optimal control problem (4)—(7), both in classical and fractional cases.

3.4. Numerical Results and Cost-Effectiveness of the Fractional Optimal Control Problem

Pontryagin Minimum Principle (PMP) is utilized to numerically solve the optimal
control problem as discussed in Section 3.3. For that we use the predict-evaluate-correct-
evaluate (PECE) method of Adams-Basforth-Moulton [19], implemented by us in MATLAB.
Firstly, we solve System (5) by the PECE procedure, with the initial values for the state
variables (6) given, and a guess for the controls over the time interval [0, ¢¢], thus obtaining
the values of the state variables. Analogously to [20], a change in variables is employed in
the adjoint system and in the transversality conditions, obtaining a fractional initial value
problem (IVP) from (9)—(11). The resulting IVP is also solved with the PECE algorithm,
and the values of the co-state variables ¢;, i =1, ..., 8, are obtained. The controls are then
updated by a convex combination of the controls of the previous iteration and the current
values, computed according to (10). This procedure is iteratively repeated until the values
of all the variables and the values of the controls are almost coincident with the ones of
the previous iteration, that is, until convergence is achieved. The solutions of the classical
model (i.e., the case a = 1) were successfully confirmed by a classical forward-backward
scheme, also implemented by us in MATLAB.

As estimated in [21], we consider that 10% of infected individuals are super-spreaders.

According with [22], the initial number of asymptomatic persons is estimated to be

I+ Py
0.15 °

In what follows, we assume that the total population is equal to 10,280,000 (N). Based
on real data obtained from [13] and on the above assumptions, the initial conditions are
Ro = 278776, Ey = 92069, Py = 68208 x 0.1, Iy = 68208 x 0.9, Ag = 68208/0.15, Fy = 34,
HO :2366and50 ZN—R()—E()—P()—I()—A()—H().

The maximum number of effective daily vaccinated is estimated to be 30,000 (60,000
vaccine doses for two-dose vaccines), which corresponds to 0.003 in percentage, and this is
the value of vmax.
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In addition, we consider that the maximum rate of reduction in contacts is the max-
imum value of function m(t), mmax, exhibited in Figure 2 and considered during the
modelling phase.

Following [23], the relevance of the two control measures considered in the control
of the disease is calculated using the sensitivity index, as presented in Definition 1. With
this purpose, the basic reproduction number of the model, now incorporating the two
controls, needs to be determined. For that, we look to the controls as parameters. Using the
next-generation matrix method of [24], we obtain that the basic reproduction number is
now given by

o o _ s o A0 _
Ry = At 7aDB m =) (anp” + B*v5])(m —1)p2. 12)
apa;o apapo

where a; = v§ + 7} +0F, ap = 7§ + ¢ + 6, and ay, = 7 + 5}, The sensitivity indices are
presented as functions of the control parameters in Figure 7, using the parametric values
from Table 1 and the classical derivative.

02f
041
06

-0.81 \

) 0 O.‘1 0‘2 0.‘3 O.‘4 0‘5 0.‘6 O.‘7 O‘E 0.‘9 1‘ 0 0.‘1 012 0‘3 0.‘4 O.‘S O‘G 0.‘7 0.‘8 0‘9 1‘
Figure 7. Sensitivity index of the basic reproduction number (12) with respect to the control variables
v (left) and m (right).

The plots of Figure 7 show the following: (i) the curve of vaccination is constant and
equal to —1, meaning that the vaccination program has a substantial impact, even for small
rates of application; (ii) the curve of preventive measures rapidly moves away from zero,
meaning that a preventive programme has a substantial impact only if its rate of application
is high. Thus, the use of masks and the limitation of individuals in confined spaces (shops,
schools, and other public spaces) have to be mandatory and should be monitored by the
authorities, when it is possible.

The weights of the cost functional (4) balance the relative importance of quadratic
control terms. Since super-spreaders have a greater impact in the dynamics of the disease,
we consider that super-spreaders are more expensive to control than regular infected indi-
viduals. Because the preventive measures need a high rate of application to be effective, we
consider that preventive measures are more expensive than vaccination. In our numerical
experiments, weights are ky =1, k, =5, k3 = 1, and k4 = 10.

In Figure 8, the trajectories of the fractional optimal control problem (FOCP) for
a = 0.99 are exhibited along with the solution of the classical optimal control problem (i.e.,
with « = 1) and the original (uncontrolled) model (2).



Axioms 2022, 11,170

110f15

5500 -
5000 -
4500
4000
© 3500 -
3000 -
2500 -
2000 -

1500
0

20

40

20

30
time

40

60

50

40+

Unc.

a=1

a=0.99
\

250

200

150 |-

100 |-

20 30 40 50 60

time

10 20 30 40 50 60
time

Figure 8. Evolution of susceptible individuals S (top left), symptomatic infected individuals I + P
(top right), hospitalized individuals H (bottom left), and fatalities F (bottom right) for the solutions
of the uncontrolled model (2) and the optimal solutions of the FOCP (4)-(7) with fractional-order
derivatives @ = 1.0 and « = 0.99 and the parameter values of Table 1.

The corresponding Pontryagin controls are shown in Figure 9.

5 x10°
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time

Figure 9. Pontryagin controls v (left) and m (right) for the FOCP (4)—(7) using the values in Table 1

and fractional order derivatives « = 1.0 and & = 0.99. The extremal controls v take their maximum

value vmax almost everywhere.

We can see in Figures 8 and 9 that a change in the value of a corresponds to varia-
tions in the state and control variables. Moreover, comparing the solution of the origi-
nal/uncontrolled model with the solution of the optimal control problem obtained from the
application of the Pontryagin principle, we conclude that the considered control measures
are effective in the management of COVID-19.
Figure 10 exhibits the efficacy function, defined in [25] by

Ef(t) =

i(0) — (1) _
i(0)

_ Py
)’ =
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where i*(t) = I*(t) + P*(¢) is the optimal solution associated with the fractional optimal
control, and i(0) = I(0) + P(0) is the correspondent initial condition.
09
0.8
07f

0.6

0 16 éo 3‘0 46 50 éo

time
Figure 10. Evolution of the efficacy function (13) for the FOCP (4)—(7) with values in Table 1 and
fractional-order derivatives « = 1.0 and &« = 0.99.

The efficacy function E¢(t) measures the proportional variation in the number of
infected individuals after the application of the control measures, {v*, m*}, by comparing
the number of infectious individuals at time ¢ with its initial value i(0).

To assess the cost and the effectiveness of the proposed fractional control measures
during the intervention period, some summary measures are now presented.

The total cases averted by the intervention during the time period ¢ is defined by

t
AV = £4i(0) — / (1) dt, (14)

0
where i*(t) is the optimal solution associated with the fractional optimal controls, and
i(0) is the correspondent initial condition [25]. Note that this initial condition is obtained
as the equilibrium proportion i of System (2), which is independent of time, so that

. t = . . . .
tri(0) = fof i dt represents the total infectious cases over a given period of {7 days.
Effectiveness is defined as the proportion of cases averted to the total cases possible
under no intervention [25]:

ir . J
*(t) dt
AV _1_/0’() .

F= = 1
10 10 (15
The total cost associated with the intervention is defined in [25] by
t
TC — / T (€1t (D)s* (1) + Com* (£)i* (1)) dt, (16)
0

where s*(t) = S*(t), and C; corresponds to the per person unit cost of the two possible
interventions: (i) vaccination at time ¢ of susceptible individuals (C;) and (ii) the imple-
mentation of preventive measures, such as the use of masks and the physical distancing of
susceptible individuals (Cy).

Finally, the average cost-effectiveness ratio is given by

TC
ACER = S (17)

(see [25,26]).
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Table 3 summarizes the presented cost-effectiveness measures (13)—(17). The results
clearly show the effectiveness of the controls in the reduction of COVID-19 infections and
the advantage of using the fractional model.

Table 3. Summary of cost-effectiveness measures (13)-(17) for classical (¢ = 1) and fractional
(0 < a < 1) COVID-19 disease optimal control problems. Parameters according to Table 1 and
C1 =C, =1in(16).

o A TC ACER F
0.99 1870.08 1116.43 0.596998 0.79967
1.0 1865.95 1114.53 0.597296 0.79791

To conclude, Figure 11 exhibits the dynamics of the infected population, I + P+ H,
and of fatalities, F, in three scenarios: (i) when the two controls are used; (ii) when only control
m is used (v = 0); and (iii) when only control v is used (m = 0). Due to low vaccination
rates, considering v = 0, one obtains almost the same solution as the one obtained using
both controls. On the other hand, erasing preventive measures leads to a serious healthcare
problem. Preventive measures are in this case more effective than vaccination.

300

Two controls
Only m
Only v 250 |

Two controls
only m
only v

400 -

350 [~
300 - 200
E 250 [~
a L 150 F
+ 200
150 100 -

100 -

50
50 [
L L L . L L L L L )

10 20 30 40 50 60 10 20 30 40 50 60
time time

Figure 11. Comparison of the solution of the FOCP (4)—(7) with the fractional-order derivative
a = 0.99, considering the two controls with the two other cases where there is only one control used.
(left) Variation of infected individuals I + P + H. (right) Evolution of fatalities F.

4. Conclusions

A classical compartmental model with super-spreaders was firstly proposed and
applied to provide an estimation of infected individuals and deaths in Wuhan, China,
in [9], and this model was later extended to the fractional-order case in order to include
memory effects and better describe the realities of Spain and Portugal [6]. Unfortunately, the
fractional-order model of [6] is inconsistent, in the sense that it does not satisfy appropriate
time dimensions. Here, the fractional model of [6] was corrected and then used, for
the first time in the literature, to model the third wave of the COVID-19 pandemic in
Portugal, which occurred between 27 December 2020 and 16 February 2021. Our data
fitting consisted in the minimization of the [ norm of the difference between the real values
reported from the Health Authorities and the predictive cases of COVID-19 infection given
by our model (2), showing that, in terms of absolute errors, the fractional-order model
is better than the classical integer-order one. Another advantage of the fractional-order
model was found from a sensitivity analysis, measuring the importance of each parameter
in COVID-19 transmission, which allowed us to show that the sensitivity of the model
decreases in absolute value with the decrease in the fractional-order a of differentiation,
i.e., the fractional-order model is less sensitive to disturbances in the parameters than the
classical one. Moreover, we introduced into the corrected model the use of vaccination and
preventive control measures, investigating the use of fractional-order optimal control theory
to minimize the number of COVID-19-infected individuals and reduce the associated costs.
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A post-optimal cost-effectiveness analysis has shown the effectiveness of controls to combat
COVID-19 and the advantage of using the fractional-order model. Finally, it is shown that
preventive measures are essential in the control of the pandemic.

The model investigated here is deterministic. For future work, it would be interesting
to take into account the effect of noise. For integer-order models, one can refer to the
works [27,28], where some COVID-19 stochastic differential equations are proposed that
take into account noises derived from environmental fluctuations. Fractional stochastic
models for COVID-19 are scarce and still need further investigations.
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