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Abstract: In this paper, we investigate the existence and nonexistence of positive solutions for a
system of Riemann–Liouville fractional differential equations with r-Laplacian operators, subject to
nonlocal uncoupled boundary conditions that contain Riemann–Stieltjes integrals, various fractional
derivatives and positive parameters. We first change the unknown functions such that the new
boundary conditions have no positive parameters, and then, by using the corresponding Green
functions, we equivalently write this new problem as a system of nonlinear integral equations. By
constructing an appropriate operator A, the solutions of the integral system are the fixed points of
A. Following some assumptions regarding the nonlinearities of the system, we show (by applying
the Schauder fixed-point theorem) that operator A has at least one fixed point, which is a positive
solution of our problem, when the positive parameters belong to some intervals. Then, we present
intervals for the parameters for which our problem has no positive solution.

Keywords: Riemann–Liouville fractional differential equations; nonlocal boundary conditions; posi-
tive parameters; positive solutions; existence; nonexistence
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1. Introduction

We consider the system of fractional differential equations with r1-Laplacian and
r2-Laplacian operators{

Dα1
0+(ϕr1(Dβ1

0+u(t))) + a(t)f(v(t)) = 0, t ∈ (0, 1),
Dα2

0+(ϕr2(Dβ2
0+v(t))) + b(t)g(u(t)) = 0, t ∈ (0, 1),

(1)

supplemented with the uncoupled nonlocal boundary conditions
u(j)(0) = 0, j = 0, . . . , n− 2; Dβ1

0+u(0) = 0, Dγ0
0+u(1) =

p

∑
j=1

∫ 1

0
D

γj
0+u(τ) dHj(τ) + a0,

v(j)(0) = 0, j = 0, . . . , m− 2; Dβ2
0+v(0) = 0, Dδ0

0+v(1) =
q

∑
j=1

∫ 1

0
D

δj
0+v(τ) dKj(τ) + b0,

(2)

where α1, α2 ∈ (0, 1], β1 ∈ (n − 1, n], β2 ∈ (m − 1, m], n, m ∈ N, n, m ≥ 3, p, q ∈ N,
γj ∈ R for all j = 0, 1, . . . , p, 0 ≤ γ1 < γ2 < · · · < γp ≤ γ0 < β1 − 1, γ0 ≥ 1, δj ∈ R
for all j = 0, 1, . . . , q, 0 ≤ δ1 < δ2 < · · · < δq ≤ δ0 < β2 − 1, δ0 ≥ 1, r1, r2 > 1,
ϕrj(ζ) = |ζ|rj−2ζ, ϕ−1

rj
= ϕ$j , $j =

rj
rj−1 , j = 1, 2, a0 and b0 are positive parameters, the

functions a, b : [0, 1]→ R+ and f, g : R+ → R+ are continuous, (R+ = [0, ∞)), the integrals
from (2) are Riemann–Stieltjes integrals with Hi, i = 1, . . . , p and Kj, j = 1, · · · , q functions
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of bounded variation, and Dκ
0+ denotes the Riemann–Liouville derivative of order κ (for

κ = α1, β1, α2, β2, γi for i = 0, 1, . . . , p, δj for j = 0, 1, . . . , q). This paper is motivated by the
applications of r-Laplacian operators in various fields such as fluid flow through porous
media, nonlinear elasticity, nonlinear electrorheological fluid and glaciology, (for details,
see [1] and its references).

In this paper, we provide sufficient conditions for the functions f and g, and intervals
for the parameters a0 and b0 such that problem (1), (2) has at least one positive solution
or no positive solution. For the proof of the main existence result, we use the Schauder
fixed-point theorem. Using a positive solution of (1), (2) we understand a pair of functions
(u, v) ∈ (C([0, 1];R+))2, satisfying the system (1) and the boundary conditions (2), with
u(t) > 0 and v(t) > 0 for all t ∈ (0, 1]. The method for studying problem (1), (2) consists of
the following stages. First, we make a change in the unknown functions such that the new
boundary conditions have no positive parameters, and then, by using the corresponding
Green functions, we equivalently write this new problem as a system of nonlinear integral
equations. By constructing an appropriate operator A, the solutions of the integral system
are the fixed points of A. Following some assumptions regarding the nonlinearities of the
system, we show that operatorA has at least one fixed point, which is a positive solution of
our problem, when the positive parameters belong to certain intervals. Then, we provide
intervals for the parameters for which problem (1), (2) has no positive solution. We now
present some recent results related to our problem. In [2], by using Guo-Krasnosel’skii
fixed-point theorem, the author studied the system of fractional differential equations{

Dα1
0+(ϕr1(Dβ1

0+u(t))) + λ f (t, u(t), v(t)) = 0, t ∈ (0, 1),
Dα2

0+(ϕr2(Dβ2
0+v(t))) + µg(t, u(t), v(t)) = 0, t ∈ (0, 1),

(3)

subject to the boundary conditions (2) with a0 = b0 = 0, where f , g ∈ C([0, 1]× R+ ×
R+,R+), and λ, µ are positive parameters. The author presented various intervals for λ
and µ, such that problem (3), (2) with a0 = b0 = 0 has at least one positive solution (u(t) > 0
for all t ∈ (0, 1], or v(t) > 0 for all t ∈ (0, 1]). The author also investigated the nonexistence
of positive solutions. In [3], the authors studied the existence and nonexistence of positive
solutions for the system (3) with the coupled boundary conditions

u(j)(0) = 0, j = 0, . . . , n− 2; Dβ1
0+u(0) = 0, Dγ0

0+u(1) =
p

∑
j=1

∫ 1

0
D

γj
0+v(τ) dHj(τ),

v(j)(0) = 0, j = 0, . . . , m− 2; Dβ2
0+v(0) = 0, Dδ0

0+v(1) =
q

∑
j=1

∫ 1

0
D

δj
0+u(τ) dKj(τ),

where γj ∈ R for all j = 0, 1, . . . , p, 0 ≤ γ1 < γ2 < · · · < γp ≤ δ0 < β2 − 1, δ0 ≥ 1, δj ∈ R
for all j = 0, 1, . . . , q, 0 ≤ δ1 < δ2 < · · · < δq ≤ γ0 < β1 − 1, γ0 ≥ 1, Hi, i = 1, . . . , p and Kj,
j = 1, . . . , q are functions of bounded variation. In [4], the authors investigated the positive
solutions for the system of fractional differential equations{

Dα
0+u(t) + a(t)f(v(t)) = 0, t ∈ (0, 1),

Dβ
0+v(t) + b(t)g(u(t)) = 0, t ∈ (0, 1),

supplemented with the integral boundary conditions
u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

∫ 1

0
u(τ)dH(τ) + a0,

v(0) = v′(0) = · · · = v(m−2)(0) = 0, v(1) =
∫ 1

0
v(τ)dK(τ) + b0,

where n − 1 < α ≤ n, m − 1 < β ≤ m, n, m ∈ N, n, m ≥ 3, a, b, f, g are nonnegative
continuous functions, H and K are bounded variation functions, and a0, b0 are positive
parameters. Other recent research regarding fractional differential equations and systems of
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fractional differential equations with or without Laplacian operators and their applications
can be found in the papers [5–9], and in the monographs [10–12]. In comparison with
other papers, the novelty of our work consists of the combination between the system
of fractional differential equations (1), in which sequential fractional derivatives with r-
Laplacian operators are considered, and the existence of positive parameters in the general
integro-differential boundary conditions (2).

The paper has the following structure. In Section 2, we provide some preliminary
results, including the Green functions associated with our problem (1), (2) and their prop-
erties. In Section 3, we present the main theorems for the existence and nonexistence of
positive solutions for (1), (2). Section 4 contains an example to illustrate our results, and in
Section 5, we provide our conclusions.

2. Auxiliary Results

In this section, we present some auxiliary results related to our problem (1), (2) from [2].
We first consider the fractional differential equation

Dα1
0+(ϕr1(Dβ1

0+u(t))) + h(t) = 0, t ∈ (0, 1), (4)

with the boundary conditions

u(j)(0) = 0, j = 0, . . . , n− 2; Dβ1
0+u(0) = 0, Dγ0

0+u(1) =
p

∑
j=1

∫ 1

0
D

γj
0+u(τ) dHj(τ), (5)

where α1 ∈ (0, 1], β1 ∈ (n − 1, n], n ∈ N, n ≥ 3, p ∈ N, γj ∈ R for all j = 0, 1, . . . , p,
0 ≤ γ1 < γ2 < · · · < γp ≤ γ0 < β1 − 1, γ0 ≥ 1, Hj, j = 1, . . . , p are bounded variation
functions, and h ∈ C[0, 1]. We denote using

∆1 =
Γ(β1)

Γ(β1 − γ0)
−

p

∑
j=1

Γ(β1)

Γ(β1 − γj)

∫ 1

0
ζβ1−γj−1 dHj(ζ).

Lemma 1. If ∆1 6= 0, then the unique solution u ∈ C[0, 1] of problem (4), (5) is

u(t) =
∫ 1

0
G1(t, s)ϕ$1(Iα1

0+h(s)) ds, t ∈ [0, 1], (6)

where the Green function G1 is given by

G1(t, s) = g1(t, s) +
tβ1−1

∆1

p

∑
i=1

(∫ 1

0
g2i(τ, s) dHi(τ)

)
, t, s ∈ [0, 1], (7)

with

g1(t, s) =
1

Γ(β1)

{
tβ1−1(1− s)β1−γ0−1 − (t− s)β1−1, 0 ≤ s ≤ t ≤ 1,
tβ1−1(1− s)β1−γ0−1, 0 ≤ t ≤ s ≤ 1,

g2i(τ, s) =
1

Γ(β1 − γi)

{
τβ1−γi−1(1− s)β1−γ0−1 − (τ − s)β1−γi−1, 0 ≤ s ≤ τ ≤ 1,
τβ1−γi−1(1− s)β1−γ0−1, 0 ≤ τ ≤ s ≤ 1,

i = 1, . . . , p.

Now, we consider the nonlinear fractional differential equation

Dα2
0+(ϕr2(Dβ2

0+v(t))) + y(t) = 0, t ∈ (0, 1), (8)
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with the boundary conditions

v(j)(0) = 0, j = 0, . . . , m− 2; Dβ2
0+v(0) = 0, Dδ0

0+v(1) =
q

∑
i=1

∫ 1

0
Dδi

0+v(t) dKi(t), (9)

where α2 ∈ (0, 1], β2 ∈ (m − 1, m], m ∈ N, m ≥ 3, q ∈ N, δi ∈ R for all i = 0, . . . , q,
0 ≤ δ1 < δ2 < · · · < δq ≤ δ0 < β2 − 1, δ0 ≥ 1, Ki, i = 1, . . . , q are bounded variation
functions, and y ∈ C[0, 1]. We denote using

∆2 =
Γ(β2)

Γ(β2 − δ0)
−

q

∑
j=1

Γ(β2)

Γ(β2 − δj)

∫ 1

0
ζβ2−δj−1 dKj(ζ).

Lemma 2. If ∆2 6= 0, then the unique solution v ∈ C[0, 1] of problem (8), (9) is

v(t) =
∫ 1

0
G2(t, s)ϕ$2(Iα2

0+y(s)) ds, t ∈ [0, 1], (10)

where the Green function G2 is given by

G2(t, s) = g3(t, s) +
tβ2−1

∆2

q

∑
i=1

(∫ 1

0
g4i(τ, s) dKi(τ)

)
, t, s ∈ [0, 1], (11)

with

g3(t, s) =
1

Γ(β2)

{
tβ2−1(1− s)β2−δ0−1 − (t− s)β2−1, 0 ≤ s ≤ t ≤ 1,
tβ2−1(1− s)β2−δ0−1, 0 ≤ t ≤ s ≤ 1,

g4i(τ, s) =
1

Γ(β2 − δi)

{
τβ2−δi−1(1− s)β2−δ0−1 − (τ − s)β2−δi−1, 0 ≤ s ≤ τ ≤ 1,
τβ2−δi−1(1− s)β2−δ0−1, 0 ≤ τ ≤ s ≤ 1,

i = 1, . . . , q.

Lemma 3. Assume that Hi : [0, 1] → R, i = 1, . . . , p, and Ki : [0, 1] → R, i = 1, . . . , q are
nondecreasing functions and ∆1 > 0, ∆2 > 0. Then, the Green functions G1 and G2 given by (7)
and (11) have the following properties:

(a) G1, G2 : [0, 1]× [0, 1]→ R+ are continuous functions;
(b) G1(t, s) ≤ J1(s) for all t, s ∈ [0, 1], where J1(s) = h1(s) + 1

∆1
∑

p
i=1

∫ 1
0 g2i(τ, s) dHi(τ),

and h1(s) = 1
Γ(β1)

[(1− s)β1−γ0−1 − (1− s)β1−1], s ∈ [0, 1];

(c) G1(t, s) ≥ tβ1−1J1(s) for all t, s ∈ [0, 1];
(d) G2(t, s) ≤ J2(s) for all t, s ∈ [0, 1], where J2(s) = h2(s) + 1

∆2
∑

q
i=1

∫ 1
0 g4i(τ, s) dKi(τ),

and h2(s) = 1
Γ(β2)

[(1− s)β2−δ0−1 − (1− s)β2−1], s ∈ [0, 1];

(e) G2(t, s) ≥ tβ2−1J2(s) for all t, s ∈ [0, 1].

Lemma 4. Assume that Hi : [0, 1] → R, i = 1, . . . , p, and Ki : [0, 1] → R, i = 1, . . . , q are
nondecreasing functions, ∆1 > 0, ∆2 > 0, and h, y ∈ C([0, 1],R+). Then, the solutions u and v
of problems (4), (5) and (8), (9), respectively, given by (6) and (10) satisfy the inequalities u(t) ≥ 0,
v(t) ≥ 0, u(t) ≥ tβ1−1u(τ), v(t) ≥ tβ2−1v(τ) for all t, τ ∈ [0, 1].

3. Main Results

In this section, we study the existence and nonexistence of positive solutions for
problem (1), (2) by imposing various conditions on the functions a, b, f and g. We present
the assumptions that we will use in the sequel.

(I1) α1, α2 ∈ (0, 1], β1 ∈ (n− 1, n], β2 ∈ (m− 1, m], n, m ∈ N, n, m ≥ 3, p, q ∈ N, γj ∈ R
for all j = 0, 1, . . . , p, 0 ≤ γ1 < γ2 < · · · < γp ≤ γ0 < β1 − 1, γ0 ≥ 1, δj ∈ R
for all j = 0, 1, . . . , q, 0 ≤ δ1 < δ2 < · · · < δq ≤ δ0 < β2 − 1, δ0 ≥ 1, r1, r2 > 1,
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ϕrj(ζ) = |ζ|
rj−2ζ, ϕ−1

rj
= ϕ$j , $j =

rj
rj−1 , j = 1, 2, a0 > 0, b0 > 0, Hi, i = 1, . . . , p and

Kj, j = 1, . . . , q are nondecreasing functions, ∆1 > 0 and ∆2 > 0.
(I2) The functions a, b : [0, 1]→ R+ are continuous and there exist t1, t2 ∈ (0, 1) such that

a(t1) > 0, b(t2) > 0.
(I3) The functions f, g : R+ → R+ are continuous, and there exists c0 > 0 such that

f(z) < c
r1−1
0
L , g(z) < c

r2−1
0
L for all z ∈ [0, c0], where

L = max

{
Λi

Γ(αi + 1)

(∫ 1

0
sαi($i−1)Ji(s) ds

)ri−1

, i = 1, 2

}
,

with Λ1 = supt∈[0,1] a(t), Λ2 = supt∈[0,1] b(t).

(I4) The functions f, g : R+ → R+ are continuous and satisfy the conditions limz→∞
f(z)

zr1−1 =

∞, limz→∞
g(z)
zr2−1 = ∞.

Using (I1), (I2) and Lemma 3, we deduce that the constant L from assumption (I3) is
positive.

We consider the problems
Dα1

0+

(
ϕr1(Dβ1

0+x(t))
)
= 0, t ∈ (0, 1),

x(j)(0) = 0, j = 0, . . . , n− 2, Dβ1
0+x(0) = 0, Dγ0

0+x(1) =
p

∑
i=1

∫ 1

0
Dγi

0+x(τ) dHi(τ) + 1,
(12)


Dα2

0+

(
ϕr2(Dβ2

0+y(t))
)
= 0, t ∈ (0, 1),

y(j)(0) = 0, j = 0, . . . , m− 2, Dβ2
0+y(0) = 0, Dδ0

0+y(1) =
q

∑
i=1

∫ 1

0
Dδi

0+y(τ) dKi(τ) + 1,
(13)

The aforementioned problems (12) and (13) have the solutions x(t) = tβ1−1

∆1
and

y(t) = tβ2−1

∆2
, t ∈ [0, 1], respectively. Using (I1), we have x(t) > 0 and y(t) > 0 for

all t ∈ (0, 1]. For a solution (u, v) of problem (1), (2), we define the functions h(t) =

u(t) − a0x(t) = u(t) − a0tβ1−1

∆1
, and k(t) = v(t) − b0y(t) = v(t) − b0tβ2−1

∆2
, for t ∈ [0, 1].

Then (1), (2) can equivalently be written as the system of fractional differential equations Dα1
0+

(
ϕr1(Dβ1

0+h(t))
)
+ a(t)f(k(t) + b0y(t)) = 0, t ∈ (0, 1),

Dα2
0+

(
ϕr2(Dβ2

0+k(t))
)
+ b(t)g(h(t) + a0x(t)) = 0, t ∈ (0, 1),

(14)

with the boundary conditions
h(j)(0) = 0, j = 0, . . . , n− 2; Dβ1

0+h(0) = 0, Dγ0
0+h(1) =

p

∑
j=1

∫ 1

0
D

γj
0+h(τ) dHj(τ),

k(j)(0) = 0, j = 0, . . . , m− 2; Dβ2
0+k(0) = 0, Dδ0

0+k(1) =
q

∑
j=1

∫ 1

0
D

δj
0+k(τ) dKj(τ).

(15)

Using the Green functions G1 and G2, Lemmas 1 and 2, a pair of functions (h, k) is a
solution of problem (14), (15) if, and only if, (h, k) is a solution of the system of nonlinear
integral equations

h(t) =
∫ 1

0
G1(t, s)ϕ$1(Iα1

0+(a(s)f(k(s) + b0y(s)))) ds, t ∈ [0, 1],

k(t) =
∫ 1

0
G2(t, s)ϕ$2(Iα2

0+(b(s)g(h(s) + a0x(s)))) ds, t ∈ [0, 1].
(16)
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We consider the Banach space X = C[0, 1] with the supremum norm ‖h‖ = supτ∈[0,1]
|h(τ)| for h ∈ X , and the Banach space Y = X ×X with the norm ‖(h, k)‖Y = max{‖h‖,
‖k‖} for (h, k) ∈ Y . We define the set E = {(h, k) ∈ Y , 0 ≤ h(t) ≤ c0, 0 ≤ k(t) ≤ c0}. We
also define the operator A : E → Y , A = (A1,A2),

A1(h, k)(t) =
∫ 1

0
G1(t, s)ϕ$1(Iα1

0+(a(s)f(k(s) + b0y(s)))) ds, t ∈ [0, 1],

A2(h, k)(t) =
∫ 1

0
G2(t, s)ϕ$2(Iα2

0+(b(s)g(h(s) + a0x(s)))) ds, t ∈ [0, 1],

for (h, k) ∈ E . We remark that (h, k) is a solution of system (16) if and only if (h, k) is a fixed
point of operator A.

Our Theorem 1 is the following existence result for problem (1), (2).

Theorem 1. We suppose that assumptions (I1)− (I3) are satisfied. Then, there exist a1 > 0
and b1 > 0 such that for any a0 ∈ (0, a1] and b0 ∈ (0, b1], the problem (1), (2) has at least one
positive solution.

Proof. By assumption (I3), we find that there exist p0 > 0 and q0 > 0 such that f(z) ≤ c
r1−1
0
L

for all z ∈ [0, c0 + p0], and g(z) ≤ cr2−1
0
L for all z ∈ [0, c0 + q0]. We define a1 = q0∆1 and

b1 = p0∆2. Let a0 ∈ (0, a1] and b0 ∈ (0, b1]. Then, we obtain

f(k(s) + b0y(s)) ≤
c

r1−1
0
L

, g(h(s) + a0x(s)) ≤
cr2−1

0
L

,

for all s ∈ [0, 1] and (h, k) ∈ E . Hence, by using Lemma 4, we deduce that Ai(h, k)(t) ≥ 0,
i = 1, 2, for all t ∈ [0, 1] and (h, k) ∈ E . By Lemma 3, for all (h, k) ∈ E , we obtain

Iα1
0+(a(s)f(k(s) + b0y(s))) =

1
Γ(α1)

∫ s

0
(s− τ)α1−1a(τ)f(k(τ) + b0y(τ)) dτ

≤
c

r1−1
0

LΓ(α1)

∫ s

0
(s− τ)α1−1a(τ) dτ ≤

Λ1c
r1−1
0

LΓ(α1)

∫ s

0
(s− τ)α1−1 dτ =

Λ1c
r1−1
0 sα1

LΓ(α1 + 1)
, ∀ s ∈ [0, 1],

and then,

A1(h, k)(t) ≤
∫ 1

0
J1(s)ϕ$1

(
Λ1c

r1−1
0 sα1

LΓ(α1 + 1)

)
ds

=

(
Λ1c

r1−1
0

LΓ(α1 + 1)

)$1−1 ∫ 1

0
J1(s)sα1($1−1) ds ≤ c0, ∀ t ∈ [0, 1].

In a similar manner, for all (h, k) ∈ E we have

Iα2
0+(b(s)g(h(s) + a0x(s))) ≤

Λ2c
r2−1
0 sα2

LΓ(α2 + 1)
, ∀ s ∈ [0, 1],

and

A2(h, k)(t) ≤
∫ 1

0
J2(s)ϕ$2

(
Λ2c

r2−1
0 sα2

LΓ(α2 + 1)

)
ds ≤ c0, ∀ t ∈ [0, 1].

Therefore, we find that A(E) ⊂ E . By using standard arguments, we deduce that A
is a completely continuous operator. Therefore, using the Schauder fixed-point theorem,
we conclude that A has a fixed point (h, k) ∈ E , which is a nonnegative solution for
problem (16) or, equivalently, for problem (14), (15). Therefore, (u, v), where u(t) = h(t) +
a0x(t) = h(t) + a0

tβ1−1

∆1
, v(t) = k(t) + b0y(t) = k(t) + b0

tβ2−1

∆2
for t ∈ [0, 1], is a positive
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solution of problem (1), (2). This solution (u, v) satisfies the conditions a0tβ1−1

∆1
≤ u(t) ≤

a0tβ1−1

∆1
+ c0 and b0tβ2−1

∆2
≤ v(t) ≤ b0tβ2−1

∆2
+ c0 for all t ∈ [0, 1].

Theorem 2 is the following nonexistence result for problem (1), (2).

Theorem 2. We suppose that assumptions (I1), (I2) and (I4) are satisfied. Then, there exist
a2 > 0 and b2 > 0 such that, for any a0 ≥ a2 and b0 ≥ b2, the problem (1), (2) has no
positive solution.

Proof. By (I2), there exist [θ1, θ2] ⊂ (0, 1), θ1 < θ2 such that t1, t2 ∈ (θ1, θ2), and then

Ξ1 :=
∫ θ2

θ1

J1(s)
(∫ s

θ1

a(τ)(s− τ)α1−1 dτ

)$1−1
ds > 0,

Ξ2 :=
∫ θ2

θ1

J2(s)
(∫ s

θ1

b(τ)(s− τ)α2−1 dτ

)$2−1
ds > 0.

We consider

R = max
{

2ri−1Γ(αi)
(

Ξiθ
β1+β2−1
1

)1−ri
, i = 1, 2

}
.

By using (I4), for teh R defined above, we deduce that there exists M0 > 0 such
that f(z) ≥ Rzr1−1, g(z) ≥ Rzr2−1 for all z ≥ M0. We define a2 = M0∆1

θ
β1
1

and b2 = M0∆2

θ
β2−1
1

.

Let a0 ≥ a2 and b0 ≥ b2. We assume that (u, v) is a positive solution of (1), (2). Then,
(h, k) where h(t) = u(t)− a0x(t) = u(t)− a0

tβ1−1

∆1
, k(t) = v(t)− b0y(t) = v(t)− b0

tβ2−1

∆2
for t ∈ [0, 1], is a solution for (14), (15) or equivalently for (16). By using Lemma 4, we
have h(t) ≥ tβ1−1‖h‖, k(t) ≥ tβ2−1‖k‖ for all t ∈ [0, 1]. Then, inft∈[θ1,θ2]

h(t) ≥ θ
β1−1
1 ‖h‖,

inft∈[θ1,θ2]
k(t) ≥ θ

β2−1
1 ‖k‖. Using the definition of x and y, we obtain inft∈[θ1,θ2]

x(t) =

θ
β1−1
1
∆1

= θ
β1−1
1 ‖x‖ and inft∈[θ1,θ2]

y(t) = θ
β2−1
1
∆2

= θ
β2−1
1 ‖y‖. Therefore, we find

inf
t∈[θ1,θ2]

(h(t) + a0x(t)) ≥ inf
t∈[θ1,θ2]

h(t) + a0 inf
t∈[θ1,θ2]

x(t)

≥ θ
β1−1
1 ‖h‖+ a0θ

β1−1
1 ‖x‖ ≥ θ

β1−1
1 ‖h + a0x‖,

inf
t∈[θ1,θ2]

(k(t) + b0y(t)) ≥ inf
t∈[θ1,θ2]

k(t) + b0 inf
t∈[θ1,θ2]

y(t)

≥ θ
β2−1
1 ‖k‖+ b0θ

β2−1|
1 ‖y‖ ≥ θ

β2−1
1 ‖k + b0y‖.

In addition, we have

inf
t∈[θ1,θ2]

(h(t) + a0x(t)) ≥ θ
β1−1
1 ‖h‖+

a0θ
β1−1
1

∆1
≥

a0θ
β1−1
1

∆1
≥

a2θ
β1−1
1

∆1
= M0,

inf
t∈[θ1,θ2]

(k(t) + a0y(t)) ≥ θ
β2−1
1 ‖k‖+

b0θ
β2−1
1

∆2
≥

b0θ
β2−1
1

∆2
≥

b2θ
β2−1
1

∆2
= M0.

Now, by using Lemma 4 and the above inequalities, we obtain
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Iα1
0+(a(s)f(k(s) + b0y(s)))

≥ 1
Γ(α1)

∫ s

θ1

(s− τ)α1−1a(τ)f(k(τ) + b0y(τ)) dτ

≥ R
Γ(α1)

∫ s

θ1

(s− τ)α1−1a(τ)(k(τ) + b0y(τ))r1−1 dτ

≥ R
Γ(α1)

∫ s

θ1

(s− τ)α1−1a(τ)

(
inf

τ∈[θ1,θ2]
(k(τ) + b0y(τ))

)r1−1
dτ

≥
RMr1−1

0
Γ(α1)

∫ s

θ1

(s− τ)α1−1a(τ) dτ, ∀ s ∈ [θ1, θ2],

and then

h(θ1) ≥
∫ 1

0
θ

β1−1
1 J1(s)ϕ$1

(
Iα1
0+(a(s)f(k(s) + b0y(s)))

)
ds

≥
∫ θ2

θ1

θ
β1−1
1 J1(s)ϕ$1

(
RMr1−1

0
Γ(α1)

∫ s

θ1

(s− τ)α1−1a(τ) dτ

)
ds

=
R$1−1M0θ

β1−1
1

(Γ(α1))$1−1

∫ θ2

θ1

J1(s)
(∫ s

θ1

(s− τ)α1−1a(τ) dτ

)$1−1
ds

=
R$1−1M0θ

β1−1
1 Ξ1

(Γ(α1))$1−1 > 0.

We deduce that ‖h‖ ≥ h(θ1) > 0. In a similar manner, we find

Iα2
0+(b(s)g(h(s) + a0x(s)))

≥ R
Γ(α2)

∫ s

θ1

(s− τ)α2−1b(τ)

(
inf

τ∈[θ1,θ2]
(h(τ) + a0x(τ))

)r2−1
dτ

≥
RMr2−1

0
Γ(α2)

∫ s

θ1

(s− τ)α2−1b(τ) dτ, ∀ s ∈ [θ1, θ2],

and so

k(θ1) ≥
R$2−1M0θ

β2−1
1 Ξ2

(Γ(α2))$2−1 > 0.

Therefore, ‖k‖ ≥ k(θ1) > 0.
Besides, from the above inequalities, we obtain

Iα1
0+(a(s)f(k(s) + b0y(s)))

≥ R
Γ(α1)

∫ s

θ1

(s− τ)α1−1a(τ)

(
inf

τ∈[θ1,θ2]
(k(τ) + b0y(τ))

)r1−1
dτ

≥
Rθ

(β2−1)(r1−1)
1

Γ(α1)
‖k + b0y‖r1−1

∫ s

θ1

(s− τ)α1−1a(τ) dτ, ∀ s ∈ [θ1, θ2],

and then

h(θ1) ≥
∫ θ2

θ1

θ
β1−1
1 J1(s)

(
Rθ

(β2−1)(r1−1)
1

Γ(α1)

)$1−1

‖k + b0y‖
(∫ s

θ1

(s− τ)α1−1a(τ) dτ

)$1−1
ds

=
θ

β1+β2−2
1 R$1−1

(Γ(α1))$1−1 ‖k + b0y‖
∫ θ2

θ1

J1(s)
(∫ s

θ1

(s− τ)α1−1a(τ) dτ

)$1−1
ds

=
θ

β1+β2−2
1 R$1−1

(Γ(α1))$1−1 Ξ1‖k + b0y‖ ≥ 2‖k + b0y‖ ≥ 2‖k‖.

Hence,

‖k‖ ≤ h(θ1)

2
≤ ‖h‖

2
. (17)
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In a similar manner, we deduce

Iα2
0+(b(s)g(h(s) + a0x(s)))

≥ R
Γ(α2)

∫ s

θ1

(s− τ)α2−1b(τ)

(
inf

τ∈[θ1,θ2]
(h(τ) + a0x(τ))

)r2−1
dτ

≥
Rθ

(β1−1)(r2−1)
1

Γ(α2)
‖h + a0x‖r2−1

∫ s

θ1

(s− τ)α2−1b(τ) dτ, ∀ s ∈ [θ1, θ2],

and so

k(θ1) ≥
∫ θ2

θ1

θ
β2−1
1 J2(s)

(
Rθ

(β1−1)(r2−1)
1

Γ(α2)

)$2−1

‖h + a0x‖
(∫ s

θ1

(s− τ)α2−1b(τ) dτ

)$2−1
ds

=
θ

β1+β2−2
1 R$2−1

(Γ(α2))$2−1 ‖h + a0x‖
∫ θ2

θ1

J2(s)
(∫ s

θ1

(s− τ)α2−1b(τ) dτ

)$2−1
ds

=
θ

β1+β2−2
1 R$2−1

(Γ(α2))$2−1 Ξ2‖h + a0x‖ ≥ 2‖h + a0x‖ ≥ 2‖h‖.

Hence,

‖h‖ ≤ k(θ1)

2
≤ ‖k‖

2
. (18)

Therefore, using (17) and (18), we conclude that ‖h‖ ≤ ‖k‖2 ≤
‖h‖

4 , which contradicts
the inequality ‖h‖ > 0. Then, problem (1), (2) has no positive solution.

4. An Example

We consider α1 = 1/2, α2 = 1/3, β1 = 9/4, n = 3, β2 = 17/5, m = 4, p = 2, q = 1,
γ0 = 8/7, γ1 = 1/5, γ2 = 2/3, δ0 = 11/6, δ1 = 3/4, r1 = 21/5, $1 = 21/16, r2 = 11/2,
$2 = 11/9, a(t) = 1, b(t) = 1 for all t ∈ [0, 1], H1(t) = 7t/6 for all t ∈ [0, 1], H2(t) =
{1/2, t ∈ [0, 11/23); 17/18, t ∈ [11/23, 1]}, K1(t) = {2, t ∈ [0, 2/5); 61/21, t ∈ [2/5, 1]}.
We also consider the functions f(z) = σ1zω1

zω2+σ2
, g(z) = σ3zω3

zω4+σ4
for all z ∈ R+, with σi > 0,

ωi > 0, i = 1, . . . , 4, ω1 > ω2 + 16/5, ω3 > ω4 + 9/2. We have limz→∞
f(z)

zr1−1 = ∞ and

limz→∞
g(z)
zr2−1 = ∞.

Hence, we consider the system of Riemann–Liouville fractional differential equations
D1/2

0+

(
ϕ21/5(D9/4

0+ u(t))
)
+

σ1(v(t))ω1

(v(t))ω2 + σ2
= 0, t ∈ (0, 1),

D1/3
0+

(
ϕ11/2(D17/5

0+ v(t))
)
+

σ3(u(t))ω3

(u(t))ω4 + σ4
= 0, t ∈ (0, 1),

(19)

with the boundary conditions
u(0) = u′(0) = 0, D9/4

0+ u(0) = 0, D8/7
0+ u(1) =

7
6

∫ 1

0
D1/5

0+ u(τ) dτ +
4
9

D2/3
0+ u

(
11
23

)
+ a0,

v(0) = v′(0) = v′′(0) = 0, D17/5
0+ v(0) = 0, D11/6

0+ v(1) =
19
21

D3/4
0+ v

(
2
5

)
+ b0.

(20)

We obtain ∆1 ≈ 0.19646507 > 0, ∆2 ≈ 2.94848267 > 0. Therefore, assumptions (I1),
(I2) and (I4) are satisfied. In addition, we find
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g1(t, s) =
1

Γ(9/4)

{
t5/4(1− s)3/28 − (t− s)5/4, 0 ≤ s ≤ t ≤ 1,
t5/4(1− s)3/28, 0 ≤ t ≤ s ≤ 1,

g21(t, s) =
1

Γ(41/20)

{
t21/20(1− s)3/28 − (t− s)21/20, 0 ≤ s ≤ t ≤ 1,
t21/20(1− s)3/28, 0 ≤ t ≤ s ≤ 1,

g22(t, s) =
1

Γ(19/12)

{
t7/12(1− s)3/28 − (t− s)7/12, 0 ≤ s ≤ t ≤ 1,
t7/12(1− s)3/28, 0 ≤ t ≤ s ≤ 1,

g3(t, s) =
1

Γ(17/5)

{
t12/5(1− s)17/30 − (t− s)12/5, 0 ≤ s ≤ t ≤ 1,
t12/5(1− s)17/30, 0 ≤ t ≤ s ≤ 1,

g41(t, s) =
1

Γ(53/20)

{
t33/20(1− s)17/30 − (t− s)33/20, 0 ≤ s ≤ t ≤ 1,
t33/20(1− s)17/30, 0 ≤ t ≤ s ≤ 1,

G1(t, s) = g1(t, s) +
t5/4

∆1

[
7
6

∫ 1

0
g21(τ, s) dτ +

4
9
g22

(
11
23

, s
)]

,

G2(t, s) = g3(t, s) +
19t12/5

21∆2
g41

(
2
5

, s
)

,

h1(s) =
1

Γ(9/4)

[
(1− s)3/28 − (1− s)5/4

]
,

h2(s) =
1

Γ(17/5)

[
(1− s)17/30 − (1− s)12/5

]
,

for all t, s ∈ [0, 1]. In addition, we deduce

J1(s) =



h1(s) +
1

∆1

{
7

6Γ(61/20)
(1− s)3/28 − 7

6Γ(61/20)
(1− s)41/20

+
4

9Γ(19/12)

[(
11
23

)7/12
(1− s)3/28 −

(
11
23
− s
)7/12

]}
, 0 ≤ s <

11
23

,

h1(s) +
1

∆1

{
7

6Γ(61/20)
(1− s)3/28 − 7

6Γ(61/20)
(1− s)41/20

+
4

9Γ(19/12)

(
11
23

)7/12
(1− s)3/28

]
,

11
23
≤ s ≤ 1,

J2(s) =


h2(s) +

19
21∆2Γ(53/20)

[(
2
5

)33/20
(1− s)17/30 −

(
2
5
− s
)33/20

]
, 0 ≤ s <

2
5

,

h2(s) +
19

21∆2Γ(53/20)

(
2
5

)33/20
(1− s)17/30,

2
5
≤ s ≤ 1,

After some computations, we obtain
∫ 1

0 s5/32J1(s) ds ≈ 2.7671383,
∫ 1

0 s2/27J2(s) ds ≈
0.12990129, Λ1 = 1, Λ2 = 1 and L ≈ 29.30581677. We take c0 = 1 and, if we choose
σi, i = 1, . . . , 4 which satisfy the conditions σ1 < 1+σ2

L and σ3 < 1+σ4
L , then we deduce

f(z) ≤ σ1
1+σ2

< 1
L and g(z) ≤ σ3

1+σ4
< 1

L for all z ∈ [0, 1]. For example, if σ2 = 1 and σ4 = 2,
then for σ1 ≤ 0.068 and σ3 ≤ 0.102, the above conditions for f and g are satisfied. Hence,
assumption (I3) is also satisfied. Using Theorems 1 and 2, we conclude that there exist
a1, b1, a2, b2 such that, for any a0 ∈ (0, a1] and b0 ∈ (0, b1] there exists at least one positive
solution of problem (19), (20), and, for any a0 ≥ a2 and b0 ≥ b2, there exists no positive
solution of (19), (20).

5. Conclusions

In this paper, we studied the system of Riemann–Liouville fractional differential
Equation (1) with r1-Laplacian and r2-Laplacian operators, supplemented with the nonlocal
uncoupled boundary conditions (2), which contain fractional derivatives of various orders,
Riemann–Stieltjes integrals, and two positive parameters. The functions a, b, f and g from
the system are continuous ones and satisfy some additional assumptions. We presented
some auxiliary results, including the associated Green functions with their properties. Then,
we investigated problem (1), (2) in some stages. First, we made a change in the unknown
functions, such that the new boundary conditions have no positive parameters, and then,
by using the Green functions, we equivalently wrote this new problem as the system of
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nonlinear integral equations (16). By constructing an appropriate operator A, the solutions
of the integral system are the fixed points of A. By applying the Schauder fixed-point
theorem, we showed that the operator A has at least one fixed point, which is a positive
solution of our problem, when the positive parameters belong to some intervals. Then, we
provided intervals for the parameters for which problem (1), (2) has no positive solution.
We also presented an example to illustrate our obtained results.
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