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Abstract: In this paper, we investigate the existence and nonexistence of positive solutions for a
system of Riemann-Liouville fractional differential equations with r-Laplacian operators, subject to
nonlocal uncoupled boundary conditions that contain Riemann-Stieltjes integrals, various fractional
derivatives and positive parameters. We first change the unknown functions such that the new
boundary conditions have no positive parameters, and then, by using the corresponding Green
functions, we equivalently write this new problem as a system of nonlinear integral equations. By
constructing an appropriate operator A, the solutions of the integral system are the fixed points of
A. Following some assumptions regarding the nonlinearities of the system, we show (by applying
the Schauder fixed-point theorem) that operator A has at least one fixed point, which is a positive
solution of our problem, when the positive parameters belong to some intervals. Then, we present
intervals for the parameters for which our problem has no positive solution.
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1. Introduction

We consider the system of fractional differential equations with r;-Laplacian and
rp-Laplacian operators

{ DEL (¢r, (DELu(1))) + a()f(0() = 0, t € (0,1), o
D2 (¢, (DF2 0(1))) + b(t)g(u(t)) =0, t € (0,1),

supplemented with the uncoupled nonlocal boundary conditions

. 4 1 )
ul)(0)=0,j=0,...,n—-2; Dgiu(o) =0, DJ0u(l) = 2/0 Dy, u(7) d$H;(7) + ag,
j=1

2

. q 1

o (0) =0, j=0,...,m—2; D0(0) =0, DX o(1)= Z/O Dggz;(r) d&;(T) + b,
j=1

where a1, ap € (0,1], p1 € (n—1,n], pp € (m—1,m|,n,m € N,n,m > 3, p,q € N,
vj € Rforallj =0,1,...,p, 0 < <m < <7 <71<p1—-17% > 1,(5/- eR
forallj =01...,0 <6 < < -+ < 5,7 < < Ba—1,060 21,1, 10 >1,
(Prj(g) _ |€|rj*2€’ 90;1 = g, 0j = r]r—il,] = 1,2, ag and by are positive parameters, the
functions a, b : [0,1] — R4 and §, g : R4 — R are continuous, (R4 = [0, c0)), the integrals
from (2) are Riemann-Stieltjes integrals with $;,i =1,...,pand R, j =1, - - , g functions
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of bounded variation, and D  denotes the Riemann-Liouville derivative of order « (for
K = w1, B1, &2, B2, vifori=0,1,...,p, by forj =0,1,...,q). This paper is motivated by the
applications of r-Laplacian operators in various fields such as fluid flow through porous
media, nonlinear elasticity, nonlinear electrorheological fluid and glaciology, (for details,
see [1] and its references).

In this paper, we provide sufficient conditions for the functions f and g, and intervals
for the parameters ag and by such that problem (1), (2) has at least one positive solution
or no positive solution. For the proof of the main existence result, we use the Schauder
fixed-point theorem. Using a positive solution of (1), (2) we understand a pair of functions
(u,0) € (C(]0,1];R4))?, satisfying the system (1) and the boundary conditions (2), with
u(t) > 0and v(t) > 0 forall t € (0,1]. The method for studying problem (1), (2) consists of
the following stages. First, we make a change in the unknown functions such that the new
boundary conditions have no positive parameters, and then, by using the corresponding
Green functions, we equivalently write this new problem as a system of nonlinear integral
equations. By constructing an appropriate operator .4, the solutions of the integral system
are the fixed points of A. Following some assumptions regarding the nonlinearities of the
system, we show that operator .4 has at least one fixed point, which is a positive solution of
our problem, when the positive parameters belong to certain intervals. Then, we provide
intervals for the parameters for which problem (1), (2) has no positive solution. We now
present some recent results related to our problem. In [2], by using Guo-Krasnosel’skii
fixed-point theorem, the author studied the system of fractional differential equations

{ DL (@n (DELu(b)) + Af(t,u(t), 0(H) =0, t € (0,1), .
D2 (¢r, (DY20(1))) + gt u(b), 0(£) = 0, e (0,1),

subject to the boundary conditions (2) with ag = by = 0, where f,g € C([0,1] x R4 X
R4+, Ry), and A, y are positive parameters. The author presented various intervals for A
and y1, such that problem (3), (2) with ap = by = 0 has at least one positive solution (u(t) > 0
forall t € (0,1], or v(t) > 0 forall t € (0,1]). The author also investigated the nonexistence
of positive solutions. In [3], the authors studied the existence and nonexistence of positive
solutions for the system (3) with the coupled boundary conditions

. P )
u(0) =0, j=0,...,n—2; D u(0) =0, DYPu(1) = 2/0 DY o(t) dH;(7),
j=1
. q 1 )
o)(0) =0, j=0,...,m—2; DE2o(0) =0, D¥ 0(1) = Z/O DY, u(t) dsy(7),
=1

where'y]- €Rforallj=0,1,...,p,0 <1 <712 <+ <7yp < d < P2—1,6 > 1,9 €eR
forallj =0,1,...,9,0< 61 < < - <y <71<p1—Ly=>19,i=1,...,pand &,
j=1,...,q are functions of bounded variation. In [4], the authors investigated the positive
solutions for the system of fractional differential equations

D, u(t) + a(t)j(v(t)) =0, t € (0,1),
D, o(t) + b(t)g(u(f)) =0, t€ (0,1),

supplemented with the integral boundary conditions
1
w(0) = ' (0) = - -- = u™2)(0) = 0, u(1) :/0 w(T)dH(t) + a,
1
0(0) = '(0) = - -- = ™2 (0) = 0, v(1) = /O o(1)dR(T) + by,
wheren -1 <a <nm—-1<p<mmnmecN nm>3a,b,fgare nonnegative

continuous functions, $) and K are bounded variation functions, and ay, by are positive
parameters. Other recent research regarding fractional differential equations and systems of
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fractional differential equations with or without Laplacian operators and their applications
can be found in the papers [5-9], and in the monographs [10-12]. In comparison with
other papers, the novelty of our work consists of the combination between the system
of fractional differential equations (1), in which sequential fractional derivatives with r-
Laplacian operators are considered, and the existence of positive parameters in the general
integro-differential boundary conditions (2).

The paper has the following structure. In Section 2, we provide some preliminary
results, including the Green functions associated with our problem (1), (2) and their prop-
erties. In Section 3, we present the main theorems for the existence and nonexistence of
positive solutions for (1), (2). Section 4 contains an example to illustrate our results, and in
Section 5, we provide our conclusions.

2. Auxiliary Results

In this section, we present some auxiliary results related to our problem (1), (2) from [2].
We first consider the fractional differential equation

D& (¢, (DB u(t))) + (1) =0, € (0,1), @)

with the boundary conditions
) : B ot Pt
u(0) =0, j=0,...,n—2 DELu(0) =0, DY u(l) = ):;/0 DY u(t)ds;(t),  (5)
j:

where a; € (0,1], 81 € (n—1,n],n e N,n > 3,p € N, vj € Rforallj =0,1,...,p,
0<m<m<- <1 <rvn<pr1—17%= 1, 9;, j=1,...,p are bounded variation
functions, and h € C[0, 1]. We denote using

T'(B1) DOT(B) [ gy

A = — R d9i(0).

" T(B1—0) ]; T(B1—1)) /0 ¢ 9;(6)
Lemma 1. If A1 # 0, then the unique solution u € C[0, 1] of problem (4), (5) is

1
u(t) = [ &1(t:s)g0, (5 0())ds, te[01], ©

where the Green function &1 is given by

-1 P 1
&q (t, S) = gl(t,s) + A 2 (/O gzi(T,S) df)i(T)), t,s € [O, 1], (7)
i=1
with

(bs) = 1 th=1(1—s)Pr—m-1 _(t —s)fi71 0<s<t <1,
S = Ty th1(1—s)p1-1, 0<t<s<1,

( ) . 1 Tﬁl*"/ifl(l — S)ﬁ1*“m*1 — (T — 5)181*71'*1, 0<s<t<l1,
028U S) = Tg — ) | P11 —s)f-n0-1 0<T<s<1,

i=1,...,p.
Now, we consider the nonlinear fractional differential equation

D2 (¢,,(DE20(t))) +9(t) =0, t € (0,1), ®)
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with the boundary conditions
0 . 5, s 1
00)(0) =0, j=0,...,m—2; DP2o(0) =0, DY 0(1) = Z%/O DY, o(t) dSi(t),  (9)
1=

where ay € (0,1], o € (m—1,m|, m € N,m > 3,q € N, € Rforalli =0,...,q,
0<6 <& << <6<P2—-16>18%,i=1,...,4qare bounded variation
functions, and y € C[0, 1]. We denote using

q 1
Ay = | ePitas (o).
2 (/32—50 ; ﬁz—]) 0 i©)
Lemma 2. If Ay # 0, then the unique solution v € C|0, 1] of problem (8), (9) is

1
o(t) = | ®a(tis)ger(I52n(s) ds, t € [0,1], (10)
where the Green function ®, is given by
tho—1 14

i L[ o). vsepa, ap

i=

Bs(t,s) = gs(t,s) +

with
(bs) = 1 thr1(1 —s)Pr=0-1 _(t —s)f21 0<s<t <1,
BUS) = Tg) | thl(1—s)p0-1, 0<t<s<1,
( _ 1 Tﬁz*‘si’l(l — 5)52"50’1 —(t— 5)52"51"1, 0<s<t<1,
94 T,S) - F(,BZ 7 51') Tﬁzfo}fl(l o S)ﬁzféofl’ 0<1t<s<1,
i=1,...,q

Lemma 3. Assume that $; : [0,1] > R, i=1,...,p,and & : [0,1] - R, i =1,...,qgare
nondecreasing functions and Ay > 0, Ay > 0. Then, the Green functions &1 and &, given by (7)
and (11) have the following properties:

(a) &1, &, : [0,1] x [0,1] — R are continuous functions;

(b) &1(t, s) < J1(s) forall t, s € [0,1], where 31(s) = b1(s) + & X7y [y 02i(7,5) d5i(7),
and by (s) = T )[(1 —s)Pr=n-l (1 —s)A-1],5 € [0,1);
(c) B1(t,s) > th1=13(s) forall t, s € [0,1];

(d) B(t, s 2(s) forall t, s € [0,1], where Jo(s) = ha(s) + A%E?:l fol 04i(7,8) dR; (1),
and by(s) = 5 [(1 - )01 — (1 - )] s € [0,1;
(e) ®y(t,s) > tP2713,(s) forall t, s € [0,1].

>
<3J

Lemma 4. Assume that $; : [0,1] - R, i=1,...,p,and & : [0,1] - R, i =1,...,qgare
nondecreasing functions, Ay > 0, Ay > 0,and b, y € C([0,1],R). Then, the solutions u and v
of problems (4), (5) and (8), (9), respectively, given by (6) and (10) satisfy the inequalities u(t) > 0,
o(t) > 0, u(t) > thr1u(t), o(t) > th~Yo(1) forall t, T € [0,1].

3. Main Results

In this section, we study the existence and nonexistence of positive solutions for
problem (1), (2) by imposing various conditions on the functions a, b, f and g. We present
the assumptions that we will use in the sequel.

(I1) a1, € (0,1),p1 € n—1,n],Bp € (m—1,m|,n,meN,n,m>3,p,q € N, 7 €R

fOl‘aH]'IO,l,...,p,OS’)/l <2 << Yp < 7 <,B1*1,’)/0 > 1,(5]' eR
forallj =0,1,...,9,0 <6 <6 < - < <0 < Pp—1,80>1,1r,1m2 > 1,
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¢r,(0) = 17|72, q),]_ = 9y, 0 = rfl,j =1,2,a0>0,bp>0,9;,i=1,...,pand
£, j=1,...,qare nondecreasing functlons, A1 > 0and A, > 0.

(I2) The functions a, b : [0,1] — R, are continuous and there exist t1,t, € (0,1) such that
a(ty) > 0,b(tp) > 0.

(I3) The functions f, g : Ry — R are continuous, and there exists ¢y > 0 such that
r1—1 ry—1

Hz) < O, g(z) < @

A' 1 1 7‘1'—1
L = max 1—'(0{7;—1) (/0 Sai(gi7 )3l<s) ds) 7 l == 1,2 7
1

with Ay = sup, o) a(t), Ay = SUP;co1] b(f).

for all z € [0, ¢p], where

(I4) The functionsf, g : Ry — R are continuous and satisfy the conditions lim; Zfrgz,)l =

: 9(z) _
00, lim;_ 00 272(7)1 = 0.

Using (I1), (I2) and Lemma 3, we deduce that the constant L from assumption (I3) is
positive.
We consider the problems

D (@r (DfLx(1)) =0, t€ (0,1),

‘ | 12
x(0) =0, j=0,...,n—2, DF'x(0) =0, DI x(1) = 2/0 D x(7) d$H; (1) +1, (12)
=1
Dz (@ (DR2y(1) =0, t€ (0,1),
; . (13)
y(J)(O):O,]zo, ,m—2, Dﬁzy()—O D0+y Z/ D0+y T)dR;(T) +
The aforementioned problems (12) and (13) have the solutions x(t) = tﬁi;l and

y(t) = tﬁi_l € [0,1], respectively. Using (I1), we have x(t) > 0 and y(t) > 0 for

all t € (0,1]. For a solution (u,v) of problem (1), (2), we define the functions h(t) =

ut—aoxt:ut—i t—ot:vt—;,forteo,l.
aotﬁl d k b y bolf;

Then (1), (2) can equivalently be written as the system of fractional differential equations

Dt (@, (DFLA(1)) +a(Di(k(t) + boy(H) =0, t € (0,1), i~
D (@r, (DR (1)) + b(D)g(h(t) + agx(H)) = 0, t € (0,1),
with the boundary conditions
W) (0) =0, j=0,...,n—2 DER(0) =0, DX h(1 Z/ DY h(t) ds;(T),
(15)

K (0) =0, j=0,...,m—2; DEk(0) =0, DX k(1) /D (7).

Using the Green functions &; and &;, Lemmas 1 and 2, a pair of functions (/, k) is a
solution of problem (14), (15) if, and only if, (k, k) is a solution of the system of nonlinear
integral equations

h(t) =/ B1(t,5) o, (I} (a(s)f(k(s) + boy(s)))) ds, t € [0,1],

(16)
k(t) 2/0 65 (t,5) 9o, (I3 (b(s)g(h(s) + apx(s)))) ds, t € [0,1].
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We consider the Banach space & = C|0, 1] with the supremum norm ||| = sup, .y
|h(T)| for h € X, and the Banach space Y = X x X with the norm || (%, k)||y = max{||k]|,
Ik||} for (h, k) € V. We define the set £ = {(h, k) € Y, 0 <h(t) <cg, 0 <k(t) <co}. We
also define the operator A: & — ), A = (A1, A),

A R)(8) = [ ()0, (2 (a(s)fK(s) + buy(s)))) s, € [0,1],
Aol R)(0) = [ 62(4,8)0s 2 (0(5)a01(5) + awx(s)))) s, € 0.1],

for (h, k) € £. We remark that (I, k) is a solution of system (16) if and only if (%, k) is a fixed
point of operator A.
Our Theorem 1 is the following existence result for problem (1), (2).

Theorem 1. We suppose that assumptions (I1) — (I3) are satisfied. Then, there exist a; > 0
and by > 0 such that for any ag € (0, a1] and by € (0, by], the problem (1), (2) has at least one
positive solution.

rq—1

1
Proof. By assumption (I3), we find that there exist pg > 0 and go > 0 such that f(z) < 2 T

ro—1
forall z € [0,co + po], and g(z) < COT for all z € [0,co + qo]. We define a; = gpA; and
b1 = poA;. Letap € (0,a1] and by € (0, b1]. Then, we obtain

1’171 crz—l

f(k(s) + boy(s)) < 2—, g(h(s) +aox(s)) < T,

foralls € [0,1] and (h, k) € £. Hence, by using Lemma 4, we deduce that A;(h, k)(t) > 0,
i=1,2,forallt € [0,1] and (k) € £. By Lemma 3, for all (h, k) € £, we obtain

Igi(c:l(S)lf(k(s) +boy(s))) = r(;) /0 S(il—f)ﬂq—la(f)f(k(’() + boy(r)ﬁ) jr
< Lcig(oq) /o (s — 1) La(t) dr < /L\;‘c((j)q) /0 (s—7)ldr = I%’ Vs e [0,1],
and then,

1 Aqcl " lgm
Aq (b, k) (t) S/O J1(8) 9o, (Lrlﬂfq—f—l)>ds

T R (01-1)
- 31 ()1 @D ds < o, Wt € [0,1].
Ll"(le T 1) /0 J1 (S)S 5= ¢, Vte [O/ ]

In a similar manner, for all (h, k) € £ we have

r2_15062
B 0)alhs) + ax(s))) < [P0 5 e 0]

and . Azcngl §2
< 3 _ < .
As (1, k) (1) _/O 26090 | freTy )4 <@ Vie o]

Therefore, we find that A(€) C £. By using standard arguments, we deduce that A
is a completely continuous operator. Therefore, using the Schauder fixed-point theorem,
we conclude that A has a fixed point (h,k) € &, which is a nonnegative solution for
problem (16) or, equivalently, for problem (14), (15). Therefore, (1, v), where u(t) = h(t) +

apx(t) = h(t) + agti—;l, v(t) = k(t) + boy(t) = k(t) + bo HX;] for t € [0,1], is a positive
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solution of problem (1) (2). This solution (u, v) satisfies the conditions % <u(t) <
1

L 4 cpand W2 < o) < 2 4 e forall t € [0,1). O

Theorem 2 is the following nonexistence result for problem (1), (2).
Theorem 2. We suppose that assumptions (11), (12) and (I4) are satisfied. Then, there exist
ap > 0and by > 0 such that, for any ag > ay and by > by, the problem (1), (2) has no

positive solution.

Proof. By (12), there exist [01,62] C (0,1), 61 < 6 such that t1,t, € (61,62), and then

(/ (t)(s — 1)t dT) Ql_lds >0,
(/ (1)(s — 7)%2 ! dT> erds > 0.

Q?

[x]
-
i

[
i

C‘?

We consider
1-r;
R= max{Zri_ll"(oq) (Eiefﬁﬁfl) = 1,2}.

By using (I4), for teh R defined above, we deduce that there exists My > 0 such
that f(z) > Rz"1~1, g(z) > Rz27! for all z > M. We define a; = Ago and by = Aggé%

Let agp > ap and by > by. We assume that (,v) is a positive solutloln of (1), (2). TLen
(1 k) where h(t) = u(t) — agx(t) = u(t) — ags—, k() = v(t) — boy(t) = o(t) — bp!2
for t € [0,1], is a solution for (14), (15) or equ1valently for (16). By using Lemma 4, we
have h(t) > tP1=1|h|, k(t) > tP21||k| for all t € [0,1]. Then, infic(p, 6, H(t) > 91/3171||h||,
infyc(p, 0, k(£) > 91’3271 [k[|. Using the definition of x and y, we obtain inf;c(y, g,1 ¥(t) =

B1—-1 -1
it = 91/3 2-1 ly||. Therefore, we find

Bl . o2
A T 0y [lx[| and mfte[el,GZ] y(t) = A,

el M0 F0ox(8) 2 I, () + a0 Al X
> 05" |hl| + agf " |lx ]| > 65 Ik + agx,
nf (k) +boy(8) = inf (1) 0 inf (1)
> 072" k]| + 007> ly[| > 05>k + oyl

In addition, we have

aoeﬁl_l aoeﬁl_l azelﬁl

ot (h(: "y > ePrl, 1 > 1 > = My,

teaeﬂ( (£) + aox(t)) = 67" " [|h]| + A TN TN ’
) boeﬁrl 509’5271 bzeﬁzfl

inf (k(t) + agy(t)) > 052 k|| + —A— > L— > ZL— = M,

teg}/f)z]( (t) +aoy(t)) =07 [kl Ay T A T Ay 0

Now, by using Lemma 4 and the above inequalities, we obtain
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= r(lg) /:S(S — 0 (D) (k(T) + boy (1)) dT -
> r({il) g(s —7)Mlq(7) (wi@f,ez](k(r) + boy('{))> e
=z Rr]\fi; /ej s—1) la(t)dr, Vs € [61,02],
and then
hor) = /01 071131 (5) oy (15 (a(s)F(K(s) + boy(s))) ) ds
=z /: 6131 (s) 9o, (% /ej(s—r)“ﬂa(r) dT)ds

RQﬁlMngl‘l 0 s - a1
s WY g —1)a-lg(7)d d
T (ag)ya /91 J1(S)(/91(s ) (1) T> s
_ RaTIMe g
- (T(a))at
We deduce that ||h]| > h(61) > 0. In a similar manner, we find
I (b(s)a(h(s) + aox(s)))
R s 1’271
> )/e(s—r)"‘rlb(r)( inf (h(T)+a0x(T))) dt

4% 1 T€[01,6,]

RM”271 s
F(u(c)z) /9 (s — )2 lo(1)dt, Vs € [6y,60],
1

> 0.

—

>

and so )
R 1M6P 5,

k(61) > (T ()21

> 0.

Therefore, | k|| > k(61) > 0.
Besides, from the above inequalities, we obtain

I} (a(s)F(k(s) + boy(s)))

s m
> gy o6~ (it 0+ wy()) e

1 T€[01,6,)
- R9§52*1)(71 -1)

S
>———|k+5b rl_l/ s—1)4 la(t)dt, Vs € [0y,6,],
Ty A NCES RS 61,02

and then

-1
0 o Re(ﬁzfl)(rl—l) 01 . ot
h(61) 2/6 o 131(S)<1F(zx1) Ik + bOyH(/e (s — 1) La(7) dT) s
1 Jo,
GlﬁlﬂgrzRQﬁ1 02 s _ 01-1
- WHIH'[’O?/”/G «51(5)(/9 (s—1)n a(r)dr) ds
1 1
91151+/32_2R91—1 _
= @yt o+ boyll > 201k + boyl] > 2k

Hence,
h(6)
2

Ikl < < @ (17)
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In a similar manner, we deduce
Iy (b(s)g(h(s) + apx(s))) -
R /s(s — 1) 1p(7) ( inf (h(7T) + amc(r))) dt

>
['(az) Jo, T€[61,62]

Re(ﬁl—l)(rzfl) L[ .
B e — rp— — ap—
Ry I+ oo /(91 (s — ) b(r)dr, Vs € [61,64],

%

and so

n—1

6, B Re(ﬁlfl)(rzfl) ¢ s 02-1
k(61) > / 9ﬁ2 32(s) (lr(ﬂéz) |1+ aox|| (/e (s — 1) 'o(7) dT) ds
1
p1+p2—2 1 -1
9 R~ Q@
—||h+a0x|| / Jo(s (/es(sr)txz—lb(r)d'r> ds
1

([(az) )2
9,51"‘,32 Re—1
L Eal|h 4 aox[| = 2[|h + aox[| = 2([R].

T ([T())

Hence,
k(61)

2

Ikl
L

[k < < (18)
Therefore, using (17) and (18), we conclude that ||h|| < @ < M, which contradicts

the inequality ||k|| > 0. Then, problem (1), (2) has no positive solution. [

4. An Example

We consider ay =1/2, a0 =1/3,51 =9/4,n=3,p,=17/5m=4,p=2,9=1,
Yo =8/7, 91 = 1/5, 92 = 2/3,80 = 11/6,6; = 3/4, 1, = 21/5, 01 = 21/16, 1, = 11/2,
020 =11/9,a(t) =1, 6(t) = 1forall t € [0,1], H:1(t) = 7t/6 for all t € [0,1], H2(t) =
{1/2, t € 0,11/23); 17/18, t € [11/23,1]}, &1(t) = {2, t € [0,2/5); 61/21, t € [2/5,1]}.
We also consider the functions f(z) = 22—, g(z) = 22> forall z € Ry, with g; > 0,

w2+0’2’ g\z Zw4+0’4
w; >0,i=1,...,4 w1 > wr+16/5, w3 > w4 +9/2. We have lim,_, Zfrgi)l = oo and
lim; e 32(5)1 = co.

Hence, we consider the system of Riemann-Liouville fractional differential equations

v(t)()w + 02 (19)

with the boundary conditions

u(0) = u'(0) = 0, DY/*u(0) =0, DS7u(1 / Dy %u(t) dt + D2/3 (11> + ag,
19 4 (20)
v(0) = v/(0) = v"(0) = 0, Dy7/%v(0) =0, Dgy%(n —Dy/*v ( ) + bo.

We obtain A1 ~ 0.19646507 > 0, A, ~ 2.94848267 > 0. Therefore, assumptions (I1),
(I12) and (I4) are satisfied. In addition, we find
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(bs) = 1 /41 —5)38 —(t—5)>4, 0<s<t<1,
S = Tlo/a) | P41 —5)¥B, 0<t<s<1,
o 1 21/20(1 _ )3/ _ (4 _g)21/0 g <5< <1,
921( IS)_W t21/20(1—5)3/28, 0<t<s<l,
(£s) = 1 t7/12(1 — )3/ — (t —5)7/12, 0<s <t <1,
922058) = T19/12) | #/12(1—5)¥/%8, 0<t<s<1,
()= H2/5(1 = g)17/30 _ ( —5)12/5, 0 <s <t <1,
B = Ta7/5) | 12/5(1—)7/%0, 0<t<s<1,
o 1 PB3/20(1 _)17/30 _ (4 _)B/N0 g <s<t<T,
941( /S) - F(53/20) t33/20(1 _5)17/30, 0<t<s<l1,
/417 1 4 11
61(,5) =ms)+ 5|7 [ m(m et goa( 35|
196125 (2
B2(t,5) = 1(0,5) + 1o (3,5),
1
_ 1—§)3/28 _ (1 _ g)5/4
1
— 0 [ g)17/30 _ (] _g)12/5
forallt,s € [0,1]. In addition, we deduce
1 7 3/28 7 41/20
h(s) + 5, {6F 61/20) L ) 6T (61,207~
7/12 7/12
+L u (1—s5)3/28 — 1 —s ,0<s<E
R oT(19/12) |\ 23 23 23’
ile) = by (s) + 1 7 (1 8)3/28 _ L(l _g)41/20
A1 | 6T(61/20) 6T (61/20)
4 11\7/12 s8] 11
_ — — <s<
T or(19/12) (23) (1=s)"7), 3 ss=1
19 2 33/20 17/30 2 33/20 )
- |z i < z
N B A vy cyin) [(5) (5 ) 0=s<3
2= 19 A 17/30 2
S — 1— f<s<1
92(5) + 31,7 (53/20) (5) (1=s3) 5-°=

After some computations, we obtain f $7/323(s) ds ~ 2.7671383, [, s 152/275, (5) ds ~
0.12990129, A1 = 1, A = land L = 29.30581677 We take ¢g = 1 and, if we choose

0;,i = 1,...,4 which satisfy the conditions 07 < H%'Z and 03 < HLU‘*, then we deduce

f(z) < lilaz < t{andg(z) < 11304 < 1 forall z € [0,1]. For example, if 0, = 1 and 03 = 2,
then for o7 < 0.068 and 03 < 0.102, the above conditions for f and g are satisfied. Hence,
assumption (I3) is also satisfied. Using Theorems 1 and 2, we conclude that there exist
ay, by, ap, by such that, for any ap € (0, a;] and by € (0, by] there exists at least one positive
solution of problem (19), (20), and, for any ag > ay and by > by, there exists no positive

solution of (19), (20).

5. Conclusions

In this paper, we studied the system of Riemann-Liouville fractional differential
Equation (1) with r;-Laplacian and rp-Laplacian operators, supplemented with the nonlocal
uncoupled boundary conditions (2), which contain fractional derivatives of various orders,
Riemann-Stieltjes integrals, and two positive parameters. The functions a, b, f and g from
the system are continuous ones and satisfy some additional assumptions. We presented
some auxiliary results, including the associated Green functions with their properties. Then,
we investigated problem (1), (2) in some stages. First, we made a change in the unknown
functions, such that the new boundary conditions have no positive parameters, and then,
by using the Green functions, we equivalently wrote this new problem as the system of
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nonlinear integral equations (16). By constructing an appropriate operator A, the solutions
of the integral system are the fixed points of A. By applying the Schauder fixed-point
theorem, we showed that the operator 4 has at least one fixed point, which is a positive
solution of our problem, when the positive parameters belong to some intervals. Then, we
provided intervals for the parameters for which problem (1), (2) has no positive solution.
We also presented an example to illustrate our obtained results.
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